Skip to content

Commit

Permalink
Memory Leak Logs
Browse files Browse the repository at this point in the history
Signed-off-by: Chaurasiya, Payal <[email protected]>
  • Loading branch information
payalcha committed Nov 19, 2024
1 parent 1b586cb commit beccad7
Show file tree
Hide file tree
Showing 6 changed files with 147 additions and 10 deletions.
59 changes: 57 additions & 2 deletions openfl/component/aggregator/aggregator.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,8 @@
"""Aggregator module."""
import queue
import time
import psutil
import json
from logging import getLogger
from threading import Lock

Expand All @@ -16,6 +18,7 @@
from openfl.utilities import TaskResultKey, TensorKey, change_tags
from openfl.utilities.logs import write_metric

AGG_MEM_FILE_NAME = "agg_mem_details.json"

class Aggregator:
"""An Aggregator is the central node in federated learning.
Expand Down Expand Up @@ -75,6 +78,7 @@ def __init__(
compression_pipeline=None,
db_store_rounds=1,
write_logs=False,
log_memory_usage=False,
log_metric_callback=None,
**kwargs,
):
Expand Down Expand Up @@ -122,7 +126,8 @@ def __init__(
)
self._end_of_round_check_done = [False] * rounds_to_train
self.stragglers = []

self.log_memory_usage = log_memory_usage
self.memory_details = []
self.rounds_to_train = rounds_to_train

# if the collaborator requests a delta, this value is set to true
Expand Down Expand Up @@ -667,6 +672,49 @@ def send_local_task_results(

self._end_of_round_with_stragglers_check()

def get_memory_usage(self, round_number, metric_origin):
"""Logs the memory usage statistics for the given round number.
This method retrieves the current virtual and swap memory usage statistics
using the psutil library, formats them into a dictionary, and logs the
information using the logger.
Args:
round_number (int): The current round number for which memory usage is being logged.
"""
process = psutil.Process()
self.logger.info(f"{metric_origin} process id is {process}")
virtual_memory = psutil.virtual_memory()
swap_memory = psutil.swap_memory()
memory_usage = {
"round_number": round_number,
"metric_origin": metric_origin,
"process_memory": round(process.memory_info().rss / (1024 ** 2),2),
"virtual_memory": {
"total": round(virtual_memory.total / (1024 ** 2), 2),
"available": round(virtual_memory.available / (1024 ** 2), 2),
"percent": virtual_memory.percent,
"used": round(virtual_memory.used / (1024 ** 2), 2),
"free": round(virtual_memory.free / (1024 ** 2), 2),
"active": round(virtual_memory.active / (1024 ** 2), 2),
"inactive": round(virtual_memory.inactive / (1024 ** 2), 2),
"buffers": round(virtual_memory.buffers / (1024 ** 2), 2),
"cached": round(virtual_memory.cached / (1024 ** 2), 2),
"shared": round(virtual_memory.shared / (1024 ** 2), 2),
},
"swap_memory": {
"total": round(swap_memory.total / (1024 ** 2), 2),
"used": round(swap_memory.used / (1024 ** 2), 2),
"free": round(swap_memory.free / (1024 ** 2), 2),
"percent": swap_memory.percent,
},
}
self.logger.info(f"**************** End of round check: {metric_origin} Memory Logs ******************")
self.logger.info("Memory Usage: %s", memory_usage)
self.logger.info("*************************************************************************************")

return memory_usage

def _end_of_round_with_stragglers_check(self):
"""
Checks if the minimum required collaborators have reported their results,
Expand Down Expand Up @@ -852,7 +900,7 @@ def _prepare_trained(self, tensor_name, origin, round_number, report, agg_result
new_model_round_number,
new_model_report,
new_model_tags,
) = new_model_tk
) = new_model_tk
final_model_tk = TensorKey(
new_model_tensor_name,
new_model_origin,
Expand Down Expand Up @@ -965,6 +1013,8 @@ def _end_of_round_check(self):
all_tasks = self.assigner.get_all_tasks_for_round(self.round_number)
for task_name in all_tasks:
self._compute_validation_related_task_metrics(task_name)
memory_detail = self.get_memory_usage(self.round_number, "aggregator")
self.memory_details.append(memory_detail)

# Once all of the task results have been processed
self._end_of_round_check_done[self.round_number] = True
Expand All @@ -981,6 +1031,11 @@ def _end_of_round_check(self):

# TODO This needs to be fixed!
if self._time_to_quit():
# Write self.memory_details to a file
if self.log_memory_usage:
self.logger.info("Writing memory details to file...")
with open(AGG_MEM_FILE_NAME, "w") as f:
json.dump(self.memory_details, f, indent=4)
self.logger.info("Experiment Completed. Cleaning up...")
else:
self.logger.info("Starting round %s...", self.round_number)
Expand Down
69 changes: 67 additions & 2 deletions openfl/component/collaborator/collaborator.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,8 @@


"""Collaborator module."""

import psutil
import json
from enum import Enum
from logging import getLogger
from time import sleep
Expand Down Expand Up @@ -80,6 +81,7 @@ def __init__(
delta_updates=False,
compression_pipeline=None,
db_store_rounds=1,
log_memory_usage=False,
**kwargs,
):
"""Initialize the Collaborator object.
Expand Down Expand Up @@ -123,7 +125,7 @@ def __init__(
self.delta_updates = delta_updates

self.client = client

self.log_memory_usage = log_memory_usage
self.task_config = task_config

self.logger = getLogger(__name__)
Expand Down Expand Up @@ -158,6 +160,7 @@ def set_available_devices(self, cuda: Tuple[str] = ()):

def run(self):
"""Run the collaborator."""
memory_details = []
while True:
tasks, round_number, sleep_time, time_to_quit = self.get_tasks()
if time_to_quit:
Expand All @@ -171,6 +174,24 @@ def run(self):

# Cleaning tensor db
self.tensor_db.clean_up(self.db_store_rounds)
if self.log_memory_usage:
# This is the place to check the memory usage of the collaborator
self.logger.info("*****************COLLABORATOR LOGS*******************************")
process = psutil.Process()
self.logger.info(process)
process_mem = round(process.memory_info().rss / (1024 ** 2),2)
self.logger.info("Collaborator Round: %s", round_number)
self.logger.info("Collaborator Process Mem: %s", process_mem)
self.logger.info("******************************************************************")

# NAD:This prints the data correctly : Get the Mem usage info here
memory_detail = self.get_memory_usage(round_number,
metric_origin=self.collaborator_name)
memory_details.append(memory_detail)
if self.log_memory_usage:
# Write json file with memory usage details and collabrator name
with open(f"{self.collaborator_name}_mem_details.json", "w") as f:
json.dump(memory_details, f, indent=4)

self.logger.info("End of Federation reached. Exiting...")

Expand Down Expand Up @@ -588,3 +609,47 @@ def named_tensor_to_nparray(self, named_tensor):
self.tensor_db.cache_tensor({decompressed_tensor_key: decompressed_nparray})

return decompressed_nparray

def get_memory_usage(self, round_number, metric_origin):
"""
Logs the memory usage statistics for the given round number.
This method retrieves the current virtual and swap memory usage statistics
using the psutil library, formats them into a dictionary, and logs the
information using the logger.
Args:
round_number (int): The current round number for which memory usage is being logged.
"""
process = psutil.Process()
self.logger.info(f"{metric_origin} process id is {process}")
virtual_memory = psutil.virtual_memory()
swap_memory = psutil.swap_memory()
memory_usage = {
"round_number": round_number,
"metric_origin": metric_origin,
"process_memory": round(process.memory_info().rss / (1024 ** 2),2),
"virtual_memory": {
"total": round(virtual_memory.total / (1024 ** 2), 2),
"available": round(virtual_memory.available / (1024 ** 2), 2),
"percent": virtual_memory.percent,
"used": round(virtual_memory.used / (1024 ** 2), 2),
"free": round(virtual_memory.free / (1024 ** 2), 2),
"active": round(virtual_memory.active / (1024 ** 2), 2),
"inactive": round(virtual_memory.inactive / (1024 ** 2), 2),
"buffers": round(virtual_memory.buffers / (1024 ** 2), 2),
"cached": round(virtual_memory.cached / (1024 ** 2), 2),
"shared": round(virtual_memory.shared / (1024 ** 2), 2),
},
"swap_memory": {
"total": round(swap_memory.total / (1024 ** 2), 2),
"used": round(swap_memory.used / (1024 ** 2), 2),
"free": round(swap_memory.free / (1024 ** 2), 2),
"percent": swap_memory.percent,
},
}
self.logger.info(f"**************** End of round check: {metric_origin} Memory Logs ******************")
self.logger.info("Memory Usage: %s", memory_usage)
self.logger.info("*************************************************************************************")

return memory_usage
14 changes: 11 additions & 3 deletions tests/end_to_end/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@
# Define a named tuple to store the objects for model owner, aggregator, and collaborators
federation_fixture = collections.namedtuple(
"federation_fixture",
"model_owner, aggregator, collaborators, model_name, disable_client_auth, disable_tls, workspace_path, results_dir",
"model_owner, aggregator, collaborators, model_name, disable_client_auth, disable_tls, workspace_path, results_dir, num_rounds",
)


Expand Down Expand Up @@ -62,6 +62,11 @@ def pytest_addoption(parser):
action="store_true",
help="Disable TLS for communication",
)
parser.addoption(
"--log_memory_usage",
action="store_true",
help="Enable memory log in collaborators and aggregator",
)


@pytest.fixture(scope="session", autouse=True)
Expand Down Expand Up @@ -234,14 +239,16 @@ def fx_federation(request, pytestconfig):
num_rounds = args.num_rounds
disable_client_auth = args.disable_client_auth
disable_tls = args.disable_tls
log_memory_usage = args.log_memory_usage

log.info(
f"Running federation setup using Task Runner API on single machine with below configurations:\n"
f"\tNumber of collaborators: {num_collaborators}\n"
f"\tNumber of rounds: {num_rounds}\n"
f"\tModel name: {model_name}\n"
f"\tClient authentication: {not disable_client_auth}\n"
f"\tTLS: {not disable_tls}"
f"\tTLS: {not disable_tls}\n"
f"\tMemory Logs: {log_memory_usage}"
)

# Validate the model name and create the workspace name
Expand All @@ -251,7 +258,7 @@ def fx_federation(request, pytestconfig):
workspace_name = f"workspace_{model_name}"

# Create model owner object and the workspace for the model
model_owner = participants.ModelOwner(workspace_name, model_name)
model_owner = participants.ModelOwner(workspace_name, model_name, log_memory_usage)
try:
workspace_path = model_owner.create_workspace(results_dir=results_dir)
except Exception as e:
Expand Down Expand Up @@ -318,4 +325,5 @@ def fx_federation(request, pytestconfig):
disable_tls=disable_tls,
workspace_path=workspace_path,
results_dir=results_dir,
num_rounds=num_rounds,
)
8 changes: 7 additions & 1 deletion tests/end_to_end/models/participants.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,12 +23,13 @@ class ModelOwner:
4. Importing and exporting the workspace etc.
"""

def __init__(self, workspace_name, model_name):
def __init__(self, workspace_name, model_name, log_memory_usage):
"""
Initialize the ModelOwner class
Args:
workspace_name (str): Workspace name
model_name (str): Model name
log_memory_usage (bool): Memory Log flag
"""
self.workspace_name = workspace_name
self.model_name = model_name
Expand All @@ -38,6 +39,7 @@ def __init__(self, workspace_name, model_name):
self.plan_path = None
self.num_collaborators = constants.NUM_COLLABORATORS
self.rounds_to_train = constants.NUM_ROUNDS
self.log_memory_usage = log_memory_usage

def create_workspace(self, results_dir=None):
"""
Expand Down Expand Up @@ -132,6 +134,10 @@ def modify_plan(self, new_rounds=None, num_collaborators=None, disable_client_au
data = yaml.load(fp, Loader=yaml.FullLoader)

data["aggregator"]["settings"]["rounds_to_train"] = int(self.rounds_to_train)
# Memory Leak related
data["aggregator"]["settings"]["log_memory_usage"] = self.log_memory_usage
data["collaborator"]["settings"]["log_memory_usage"] = self.log_memory_usage

data["data_loader"]["settings"]["collaborator_count"] = int(self.num_collaborators)
data["network"]["settings"]["disable_client_auth"] = disable_client_auth
data["network"]["settings"]["tls"] = not disable_tls
Expand Down
2 changes: 2 additions & 0 deletions tests/end_to_end/utils/conftest_helper.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@ def parse_arguments():
- model_name (str, default="torch_cnn_mnist"): Model name
- disable_client_auth (bool): Disable client authentication
- disable_tls (bool): Disable TLS for communication
- log_memory_usage (bool): Enable Memory leak logs
Raises:
SystemExit: If the required arguments are not provided or if any argument parsing error occurs.
Expand All @@ -32,6 +33,7 @@ def parse_arguments():
parser.add_argument("--model_name", type=str, help="Model name")
parser.add_argument("--disable_client_auth", action="store_true", help="Disable client authentication")
parser.add_argument("--disable_tls", action="store_true", help="Disable TLS for communication")
parser.add_argument("--log_memory_usage", action="store_true", help="Enable Memory leak logs")
args = parser.parse_known_args()[0]
return args

Expand Down
5 changes: 3 additions & 2 deletions tests/end_to_end/utils/federation_helper.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,6 +85,7 @@ def verify_federation_run_completion(fed_obj, results):
executor.submit(
_verify_completion_for_participant,
participant,
fed_obj.num_rounds,
results[i]
)
for i, participant in enumerate(fed_obj.collaborators + [fed_obj.aggregator])
Expand All @@ -99,7 +100,7 @@ def verify_federation_run_completion(fed_obj, results):
return all(results)


def _verify_completion_for_participant(participant, result_file):
def _verify_completion_for_participant(participant, num_rounds, result_file, time_for_each_round=100):
"""
Verify the completion of the process for the participant
Args:
Expand All @@ -109,7 +110,7 @@ def _verify_completion_for_participant(participant, result_file):
bool: True if successful, else False
"""
# Wait for the successful output message to appear in the log till timeout
timeout = 900 # in seconds
timeout = 300 + time_for_each_round * num_rounds # in seconds
log.info(f"Printing the last line of the log file for {participant.name} to track the progress")
with open(result_file, 'r') as file:
content = file.read()
Expand Down

0 comments on commit beccad7

Please sign in to comment.