diff --git a/.github/workflows/llama.yml b/.github/workflows/llama.yml
index 7b0b0da..8c88255 100644
--- a/.github/workflows/llama.yml
+++ b/.github/workflows/llama.yml
@@ -327,6 +327,19 @@ jobs:
default \
$'<|user|>\nWhat is the capital of Japan?<|end|>\n<|assistant|>'
+ - name: JSON Schema
+ run: |
+ test -f ~/.wasmedge/env && source ~/.wasmedge/env
+ cd wasmedge-ggml/json-schema
+ curl -LO https://huggingface.co/TheBloke/Llama-2-7b-Chat-GGUF/resolve/main/llama-2-7b-chat.Q5_K_M.gguf
+ cargo build --target wasm32-wasi --release
+ time wasmedge --dir .:. \
+ --env n_gpu_layers="$NGL" \
+ --nn-preload default:GGML:AUTO:llama-2-7b-chat.Q5_K_M.gguf \
+ target/wasm32-wasi/release/wasmedge-ggml-json-schema.wasm \
+ default \
+ $'[INST] <>\nYou are a helpful, respectful and honest assistant. Always output JSON format string.\n<>\nGive me a JSON array of Apple products.[/INST]'
+
- name: Build llama-stream
run: |
cd wasmedge-ggml/llama-stream
diff --git a/wasmedge-ggml/README.md b/wasmedge-ggml/README.md
index 4ed2380..ca8148d 100644
--- a/wasmedge-ggml/README.md
+++ b/wasmedge-ggml/README.md
@@ -151,6 +151,8 @@ Supported parameters include:
- `threads`: Set the number of threads for the inference, the same as the `--threads` parameter in llama.cpp.
- `mmproj`: Set the path to the multimodal projector file for llava, the same as the `--mmproj` parameter in llama.cpp.
- `image`: Set the path to the image file for llava, the same as the `--image` parameter in llama.cpp.
+- `grammar`: Specify a grammar to constrain model output to a specific format, the same as the `--grammar` parameter in llama.cpp.
+- `json-schema`: Specify a JSON schema to constrain model output, the same as the `--json-schema` parameter in llama.cpp.
(For more detailed instructions on usage or default values for the parameters, please refer to [WasmEdge](https://github.com/WasmEdge/WasmEdge/blob/master/plugins/wasi_nn/ggml.cpp).)
diff --git a/wasmedge-ggml/json-schema/Cargo.toml b/wasmedge-ggml/json-schema/Cargo.toml
new file mode 100644
index 0000000..da3fc2f
--- /dev/null
+++ b/wasmedge-ggml/json-schema/Cargo.toml
@@ -0,0 +1,8 @@
+[package]
+name = "wasmedge-ggml-json-schema"
+version = "0.1.0"
+edition = "2021"
+
+[dependencies]
+serde_json = "1.0"
+wasmedge-wasi-nn = "0.8.0"
diff --git a/wasmedge-ggml/json-schema/README.md b/wasmedge-ggml/json-schema/README.md
new file mode 100644
index 0000000..d1db910
--- /dev/null
+++ b/wasmedge-ggml/json-schema/README.md
@@ -0,0 +1,61 @@
+# JSON Schema Example For WASI-NN with GGML Backend
+
+> [!NOTE]
+> Please refer to the [wasmedge-ggml/README.md](../README.md) for the general introduction and the setup of the WASI-NN plugin with GGML backend. This document will focus on the specific example of using json schema in ggml.
+
+## Get the Model
+
+In this example, we are going to use the [llama-2-7b](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF) model. Please note that we are not using a fine-tuned chat model.
+
+```bash
+curl -LO https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/resolve/main/llama-2-7b-chat.Q5_K_M.gguf
+```
+
+## Parameters
+
+> [!NOTE]
+> Please check the parameters section of [wasmedge-ggml/README.md](https://github.com/second-state/WasmEdge-WASINN-examples/tree/master/wasmedge-ggml#parameters) first.
+
+In this example, we are going to use the `json-schema` option to constrain the model to generate the JSON output in a specific format.
+
+You can check [the documents at llama.cpp](https://github.com/ggerganov/llama.cpp/tree/master/examples/main#grammars--json-schemas) for more details about this.
+
+## Execute
+
+```console
+$ wasmedge --dir .:. \
+ --env n_predict=99 \
+ --nn-preload default:GGML:AUTO:llama-2-7b-chat.Q5_K_M.gguf \
+ wasmedge-ggml-json-schema.wasm default
+
+USER:
+Give me a JSON array of Apple products.
+ASSISTANT:
+[
+{
+"productId": 1,
+"productName": "iPhone 12 Pro",
+"price": 799.99
+},
+{
+"productId": 2,
+"productName": "iPad Air",
+"price": 599.99
+},
+{
+"productId": 3,
+"productName": "MacBook Air",
+"price": 999.99
+},
+{
+"productId": 4,
+"productName": "Apple Watch Series 7",
+"price": 399.99
+},
+{
+"productId": 5,
+"productName": "AirPods Pro",
+"price": 249.99
+}
+]
+```
diff --git a/wasmedge-ggml/json-schema/src/main.rs b/wasmedge-ggml/json-schema/src/main.rs
new file mode 100644
index 0000000..ff3e272
--- /dev/null
+++ b/wasmedge-ggml/json-schema/src/main.rs
@@ -0,0 +1,202 @@
+use serde_json::json;
+use serde_json::Value;
+use std::env;
+use std::io;
+use wasmedge_wasi_nn::{
+ self, BackendError, Error, ExecutionTarget, GraphBuilder, GraphEncoding, GraphExecutionContext,
+ TensorType,
+};
+
+fn read_input() -> String {
+ loop {
+ let mut answer = String::new();
+ io::stdin()
+ .read_line(&mut answer)
+ .expect("Failed to read line");
+ if !answer.is_empty() && answer != "\n" && answer != "\r\n" {
+ return answer.trim().to_string();
+ }
+ }
+}
+
+fn get_options_from_env() -> Value {
+ let mut options = json!({});
+ if let Ok(val) = env::var("enable_log") {
+ options["enable-log"] = serde_json::from_str(val.as_str())
+ .expect("invalid value for enable-log option (true/false)")
+ } else {
+ options["enable-log"] = serde_json::from_str("false").unwrap()
+ }
+ if let Ok(val) = env::var("n_gpu_layers") {
+ options["n-gpu-layers"] =
+ serde_json::from_str(val.as_str()).expect("invalid ngl value (unsigned integer")
+ } else {
+ options["n-gpu-layers"] = serde_json::from_str("0").unwrap()
+ }
+ if let Ok(val) = env::var("n_predict") {
+ options["n-predict"] =
+ serde_json::from_str(val.as_str()).expect("invalid n-predict value (unsigned integer")
+ }
+ if let Ok(val) = env::var("json_schema") {
+ options["json-schema"] =
+ serde_json::from_str(val.as_str()).expect("invalid n-predict value (unsigned integer")
+ }
+
+ options
+}
+
+fn set_data_to_context(context: &mut GraphExecutionContext, data: Vec) -> Result<(), Error> {
+ context.set_input(0, TensorType::U8, &[1], &data)
+}
+
+#[allow(dead_code)]
+fn set_metadata_to_context(
+ context: &mut GraphExecutionContext,
+ data: Vec,
+) -> Result<(), Error> {
+ context.set_input(1, TensorType::U8, &[1], &data)
+}
+
+fn get_data_from_context(context: &GraphExecutionContext, index: usize) -> String {
+ // Preserve for 4096 tokens with average token length 6
+ const MAX_OUTPUT_BUFFER_SIZE: usize = 4096 * 6;
+ let mut output_buffer = vec![0u8; MAX_OUTPUT_BUFFER_SIZE];
+ let mut output_size = context
+ .get_output(index, &mut output_buffer)
+ .expect("Failed to get output");
+ output_size = std::cmp::min(MAX_OUTPUT_BUFFER_SIZE, output_size);
+
+ return String::from_utf8_lossy(&output_buffer[..output_size]).to_string();
+}
+
+fn get_output_from_context(context: &GraphExecutionContext) -> String {
+ get_data_from_context(context, 0)
+}
+
+fn get_metadata_from_context(context: &GraphExecutionContext) -> Value {
+ serde_json::from_str(&get_data_from_context(context, 1)).expect("Failed to get metadata")
+}
+
+const JSON_SCHEMA: &str = r#"
+{
+ "items": {
+ "title": "Product",
+ "description": "A product from the catalog",
+ "type": "object",
+ "properties": {
+ "productId": {
+ "description": "The unique identifier for a product",
+ "type": "integer"
+ },
+ "productName": {
+ "description": "Name of the product",
+ "type": "string"
+ },
+ "price": {
+ "description": "The price of the product",
+ "type": "number",
+ "exclusiveMinimum": 0
+ }
+ },
+ "required": [
+ "productId",
+ "productName",
+ "price"
+ ]
+ },
+ "minItems": 5
+}
+"#;
+
+fn main() {
+ let args: Vec = env::args().collect();
+ let model_name: &str = &args[1];
+
+ // Set options for the graph. Check our README for more details:
+ // https://github.com/second-state/WasmEdge-WASINN-examples/tree/master/wasmedge-ggml#parameters
+ let mut options = get_options_from_env();
+
+ // Add grammar for JSON output.
+ // Check [here](https://github.com/ggerganov/llama.cpp/tree/master/grammars) for more details.
+ options["json-schema"] = JSON_SCHEMA.into();
+
+ // Make the output more consistent.
+ options["temp"] = json!(0.1);
+
+ // Create graph and initialize context.
+ let graph = GraphBuilder::new(GraphEncoding::Ggml, ExecutionTarget::AUTO)
+ .config(serde_json::to_string(&options).expect("Failed to serialize options"))
+ .build_from_cache(model_name)
+ .expect("Failed to build graph");
+ let mut context = graph
+ .init_execution_context()
+ .expect("Failed to init context");
+
+ // If there is a third argument, use it as the prompt and enter non-interactive mode.
+ // This is mainly for the CI workflow.
+ if args.len() >= 3 {
+ let prompt = &args[2];
+ // Set the prompt.
+ println!("Prompt:\n{}", prompt);
+ let tensor_data = prompt.as_bytes().to_vec();
+ context
+ .set_input(0, TensorType::U8, &[1], &tensor_data)
+ .expect("Failed to set input");
+ println!("Response:");
+
+ // Get the number of input tokens and llama.cpp versions.
+ let input_metadata = get_metadata_from_context(&context);
+ println!("[INFO] llama_commit: {}", input_metadata["llama_commit"]);
+ println!(
+ "[INFO] llama_build_number: {}",
+ input_metadata["llama_build_number"]
+ );
+ println!(
+ "[INFO] Number of input tokens: {}",
+ input_metadata["input_tokens"]
+ );
+
+ // Get the output.
+ context.compute().expect("Failed to compute");
+ let output = get_output_from_context(&context);
+ println!("{}", output.trim());
+
+ // Retrieve the output metadata.
+ let metadata = get_metadata_from_context(&context);
+ println!(
+ "[INFO] Number of input tokens: {}",
+ metadata["input_tokens"]
+ );
+ println!(
+ "[INFO] Number of output tokens: {}",
+ metadata["output_tokens"]
+ );
+ std::process::exit(0);
+ }
+
+ loop {
+ println!("USER:");
+ let input = read_input();
+
+ // Set prompt to the input tensor.
+ set_data_to_context(&mut context, input.as_bytes().to_vec()).expect("Failed to set input");
+
+ // Execute the inference.
+ match context.compute() {
+ Ok(_) => (),
+ Err(Error::BackendError(BackendError::ContextFull)) => {
+ println!("\n[INFO] Context full, we'll reset the context and continue.");
+ }
+ Err(Error::BackendError(BackendError::PromptTooLong)) => {
+ println!("\n[INFO] Prompt too long, we'll reset the context and continue.");
+ }
+ Err(err) => {
+ println!("\n[ERROR] {}", err);
+ }
+ }
+
+ // Retrieve the output.
+ let output = get_output_from_context(&context);
+ println!("ASSISTANT:\n{}", output.trim());
+ }
+}
diff --git a/wasmedge-ggml/json-schema/wasmedge-ggml-json-schema.wasm b/wasmedge-ggml/json-schema/wasmedge-ggml-json-schema.wasm
new file mode 100755
index 0000000..f32f852
Binary files /dev/null and b/wasmedge-ggml/json-schema/wasmedge-ggml-json-schema.wasm differ