forked from vmware-archive/ml-conversational-analytic-tool
-
Notifications
You must be signed in to change notification settings - Fork 0
/
commentAnalysis.html
395 lines (375 loc) · 20 KB
/
commentAnalysis.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" />
<meta name="generator" content="pdoc 0.10.0" />
<title>mcat.commentAnalysis API documentation</title>
<meta name="description" content="" />
<link rel="preload stylesheet" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/11.0.1/sanitize.min.css" integrity="sha256-PK9q560IAAa6WVRRh76LtCaI8pjTJ2z11v0miyNNjrs=" crossorigin>
<link rel="preload stylesheet" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/11.0.1/typography.min.css" integrity="sha256-7l/o7C8jubJiy74VsKTidCy1yBkRtiUGbVkYBylBqUg=" crossorigin>
<link rel="stylesheet preload" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.1.1/styles/github.min.css" crossorigin>
<style>:root{--highlight-color:#fe9}.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:30px;overflow:hidden}#sidebar > *:last-child{margin-bottom:2cm}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:1em 0 .50em 0}h3{font-size:1.4em;margin:25px 0 10px 0}h4{margin:0;font-size:105%}h1:target,h2:target,h3:target,h4:target,h5:target,h6:target{background:var(--highlight-color);padding:.2em 0}a{color:#058;text-decoration:none;transition:color .3s ease-in-out}a:hover{color:#e82}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900}pre code{background:#f8f8f8;font-size:.8em;line-height:1.4em}code{background:#f2f2f1;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{background:#f8f8f8;border:0;border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0;padding:1ex}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{margin-top:.6em;font-weight:bold}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-weight:bold;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}dt:target .name{background:var(--highlight-color)}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}td{padding:0 .5em}.admonition{padding:.1em .5em;margin-bottom:1em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%;height:100vh;overflow:auto;position:sticky;top:0}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.item .name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul{padding-left:1.5em}.toc > ul > li{margin-top:.5em}}</style>
<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
<script defer src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.1.1/highlight.min.js" integrity="sha256-Uv3H6lx7dJmRfRvH8TH6kJD1TSK1aFcwgx+mdg3epi8=" crossorigin></script>
<script>window.addEventListener('DOMContentLoaded', () => hljs.initHighlighting())</script>
</head>
<body>
<main>
<article id="content">
<header>
<h1 class="title">Module <code>mcat.commentAnalysis</code></h1>
</header>
<section id="section-intro">
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python"># Copyright 2021 VMware, Inc.
# SPDX-License-Identifier: Apache-2.0
import argparse
import nltk
from nltk.sentiment import vader
nltk.download('vader_lexicon') # Model download
class CommentAnalyzer:
def __init__(self, words):
"""
Constructors form a dictionary to be used for counting.
Parameters: words - list of words to count
"""
self.word_count = {word.lower(): 0 for word in words} # Create dictionary with list items as key
self.vader_sentiment = vader.SentimentIntensityAnalyzer() # Initialize sentiment analysis model
def analyzeComment(self, comment):
"""
Method to get desired features from an input comment.
Parameters: comment - string.
Returns: dictionary with features
"""
result = {} # Create return dictionary
cleaned_comment = self.preProcess(comment) # Clean comment text
# result['Word Counts'] = self.countWords(cleaned_comment) # Determine word counts
result.update(self.countWords(cleaned_comment))
result['Sentiment'] = self.getSentiment(comment) # Determine sentiment
result['Code Blocks'] = self.getCodeBlockCount(cleaned_comment) # Determine code block count
return result
def preProcess(self, text):
"""
Method to clean and return text.
Parameters: text - string.
Returns: string after cleaning
"""
if not isinstance(text, str):
return ""
cleaned_text = text.strip() # Remove trailing and starting spaces
cleaned_text = cleaned_text.lower() # Convert to lowercase
return cleaned_text
def countWords(self, comment):
"""
Method to determine word count.
Parameters: comment - string
Returns: dictionary with word counts
"""
words = comment.split(" ") # Split text into words
current_word_count = self.word_count.copy() # Copy default dict for new count
for word in words: # Iterate over all words
if word in self.word_count:
current_word_count[word] = current_word_count[word] + 1
return current_word_count
def getCodeBlockCount(self, comment):
"""
Method to determine the code blocks.
Parameters: comment - string
Returns: integer count
"""
count = comment.count("```") # Find occurences of code block
if count % 2 != 0: # Should be in pairs
print("Warning: Mismatched code blocks")
return int(count / 2 - 1) # Subtract 1 since unmatched pair
return int(count / 2) # Divide by 2 since pairs
def getSentiment(self, comment):
"""
Method to determine sentiment. Parameters: comment - string
Returns: dictionary with positive, negative and neutral scores
"""
return self.vader_sentiment.polarity_scores(comment)["compound"]
def changeWords(self, words):
"""
Method to change words to count. Parameters: Set new word count with new keys/
"""
self.word_count = {word: 0 for word in words}
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Analyze input text segment.')
parser.add_argument('text', help='Text to analyze')
parser.add_argument('-w', '--words', required=False, help='File containing words to count')
args = parser.parse_args()
# Form word list through the file
word_list = []
if args.words:
with open(args.words, 'r') as word_file:
word_list = word_file.read().replace(" ", "").strip().split(",")
analyzer = CommentAnalyzer(word_list)
print(analyzer.analyzeComment(args.text))</code></pre>
</details>
</section>
<section>
</section>
<section>
</section>
<section>
</section>
<section>
<h2 class="section-title" id="header-classes">Classes</h2>
<dl>
<dt id="mcat.commentAnalysis.CommentAnalyzer"><code class="flex name class">
<span>class <span class="ident">CommentAnalyzer</span></span>
<span>(</span><span>words)</span>
</code></dt>
<dd>
<div class="desc"><p>Constructors form a dictionary to be used for counting.
Parameters: words - list of words to count</p></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">class CommentAnalyzer:
def __init__(self, words):
"""
Constructors form a dictionary to be used for counting.
Parameters: words - list of words to count
"""
self.word_count = {word.lower(): 0 for word in words} # Create dictionary with list items as key
self.vader_sentiment = vader.SentimentIntensityAnalyzer() # Initialize sentiment analysis model
def analyzeComment(self, comment):
"""
Method to get desired features from an input comment.
Parameters: comment - string.
Returns: dictionary with features
"""
result = {} # Create return dictionary
cleaned_comment = self.preProcess(comment) # Clean comment text
# result['Word Counts'] = self.countWords(cleaned_comment) # Determine word counts
result.update(self.countWords(cleaned_comment))
result['Sentiment'] = self.getSentiment(comment) # Determine sentiment
result['Code Blocks'] = self.getCodeBlockCount(cleaned_comment) # Determine code block count
return result
def preProcess(self, text):
"""
Method to clean and return text.
Parameters: text - string.
Returns: string after cleaning
"""
if not isinstance(text, str):
return ""
cleaned_text = text.strip() # Remove trailing and starting spaces
cleaned_text = cleaned_text.lower() # Convert to lowercase
return cleaned_text
def countWords(self, comment):
"""
Method to determine word count.
Parameters: comment - string
Returns: dictionary with word counts
"""
words = comment.split(" ") # Split text into words
current_word_count = self.word_count.copy() # Copy default dict for new count
for word in words: # Iterate over all words
if word in self.word_count:
current_word_count[word] = current_word_count[word] + 1
return current_word_count
def getCodeBlockCount(self, comment):
"""
Method to determine the code blocks.
Parameters: comment - string
Returns: integer count
"""
count = comment.count("```") # Find occurences of code block
if count % 2 != 0: # Should be in pairs
print("Warning: Mismatched code blocks")
return int(count / 2 - 1) # Subtract 1 since unmatched pair
return int(count / 2) # Divide by 2 since pairs
def getSentiment(self, comment):
"""
Method to determine sentiment. Parameters: comment - string
Returns: dictionary with positive, negative and neutral scores
"""
return self.vader_sentiment.polarity_scores(comment)["compound"]
def changeWords(self, words):
"""
Method to change words to count. Parameters: Set new word count with new keys/
"""
self.word_count = {word: 0 for word in words}</code></pre>
</details>
<h3>Methods</h3>
<dl>
<dt id="mcat.commentAnalysis.CommentAnalyzer.analyzeComment"><code class="name flex">
<span>def <span class="ident">analyzeComment</span></span>(<span>self, comment)</span>
</code></dt>
<dd>
<div class="desc"><p>Method to get desired features from an input comment.
Parameters: comment - string.
Returns: dictionary with features</p></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def analyzeComment(self, comment):
"""
Method to get desired features from an input comment.
Parameters: comment - string.
Returns: dictionary with features
"""
result = {} # Create return dictionary
cleaned_comment = self.preProcess(comment) # Clean comment text
# result['Word Counts'] = self.countWords(cleaned_comment) # Determine word counts
result.update(self.countWords(cleaned_comment))
result['Sentiment'] = self.getSentiment(comment) # Determine sentiment
result['Code Blocks'] = self.getCodeBlockCount(cleaned_comment) # Determine code block count
return result</code></pre>
</details>
</dd>
<dt id="mcat.commentAnalysis.CommentAnalyzer.changeWords"><code class="name flex">
<span>def <span class="ident">changeWords</span></span>(<span>self, words)</span>
</code></dt>
<dd>
<div class="desc"><p>Method to change words to count. Parameters: Set new word count with new keys/</p></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def changeWords(self, words):
"""
Method to change words to count. Parameters: Set new word count with new keys/
"""
self.word_count = {word: 0 for word in words}</code></pre>
</details>
</dd>
<dt id="mcat.commentAnalysis.CommentAnalyzer.countWords"><code class="name flex">
<span>def <span class="ident">countWords</span></span>(<span>self, comment)</span>
</code></dt>
<dd>
<div class="desc"><p>Method to determine word count.
Parameters: comment - string
Returns: dictionary with word counts</p></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def countWords(self, comment):
"""
Method to determine word count.
Parameters: comment - string
Returns: dictionary with word counts
"""
words = comment.split(" ") # Split text into words
current_word_count = self.word_count.copy() # Copy default dict for new count
for word in words: # Iterate over all words
if word in self.word_count:
current_word_count[word] = current_word_count[word] + 1
return current_word_count</code></pre>
</details>
</dd>
<dt id="mcat.commentAnalysis.CommentAnalyzer.getCodeBlockCount"><code class="name flex">
<span>def <span class="ident">getCodeBlockCount</span></span>(<span>self, comment)</span>
</code></dt>
<dd>
<div class="desc"><p>Method to determine the code blocks.
Parameters: comment - string
Returns: integer count</p></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def getCodeBlockCount(self, comment):
"""
Method to determine the code blocks.
Parameters: comment - string
Returns: integer count
"""
count = comment.count("```") # Find occurences of code block
if count % 2 != 0: # Should be in pairs
print("Warning: Mismatched code blocks")
return int(count / 2 - 1) # Subtract 1 since unmatched pair
return int(count / 2) # Divide by 2 since pairs</code></pre>
</details>
</dd>
<dt id="mcat.commentAnalysis.CommentAnalyzer.getSentiment"><code class="name flex">
<span>def <span class="ident">getSentiment</span></span>(<span>self, comment)</span>
</code></dt>
<dd>
<div class="desc"><p>Method to determine sentiment. Parameters: comment - string
Returns: dictionary with positive, negative and neutral scores</p></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def getSentiment(self, comment):
"""
Method to determine sentiment. Parameters: comment - string
Returns: dictionary with positive, negative and neutral scores
"""
return self.vader_sentiment.polarity_scores(comment)["compound"]</code></pre>
</details>
</dd>
<dt id="mcat.commentAnalysis.CommentAnalyzer.preProcess"><code class="name flex">
<span>def <span class="ident">preProcess</span></span>(<span>self, text)</span>
</code></dt>
<dd>
<div class="desc"><p>Method to clean and return text.
Parameters: text - string.
Returns: string after cleaning</p></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def preProcess(self, text):
"""
Method to clean and return text.
Parameters: text - string.
Returns: string after cleaning
"""
if not isinstance(text, str):
return ""
cleaned_text = text.strip() # Remove trailing and starting spaces
cleaned_text = cleaned_text.lower() # Convert to lowercase
return cleaned_text</code></pre>
</details>
</dd>
</dl>
</dd>
</dl>
</section>
</article>
<nav id="sidebar">
<h1>Index</h1>
<div class="toc">
<ul></ul>
</div>
<ul id="index">
<li><h3>Super-module</h3>
<ul>
<li><code><a title="mcat" href="index.html">mcat</a></code></li>
</ul>
</li>
<li><h3><a href="#header-classes">Classes</a></h3>
<ul>
<li>
<h4><code><a title="mcat.commentAnalysis.CommentAnalyzer" href="#mcat.commentAnalysis.CommentAnalyzer">CommentAnalyzer</a></code></h4>
<ul class="two-column">
<li><code><a title="mcat.commentAnalysis.CommentAnalyzer.analyzeComment" href="#mcat.commentAnalysis.CommentAnalyzer.analyzeComment">analyzeComment</a></code></li>
<li><code><a title="mcat.commentAnalysis.CommentAnalyzer.changeWords" href="#mcat.commentAnalysis.CommentAnalyzer.changeWords">changeWords</a></code></li>
<li><code><a title="mcat.commentAnalysis.CommentAnalyzer.countWords" href="#mcat.commentAnalysis.CommentAnalyzer.countWords">countWords</a></code></li>
<li><code><a title="mcat.commentAnalysis.CommentAnalyzer.getCodeBlockCount" href="#mcat.commentAnalysis.CommentAnalyzer.getCodeBlockCount">getCodeBlockCount</a></code></li>
<li><code><a title="mcat.commentAnalysis.CommentAnalyzer.getSentiment" href="#mcat.commentAnalysis.CommentAnalyzer.getSentiment">getSentiment</a></code></li>
<li><code><a title="mcat.commentAnalysis.CommentAnalyzer.preProcess" href="#mcat.commentAnalysis.CommentAnalyzer.preProcess">preProcess</a></code></li>
</ul>
</li>
</ul>
</li>
</ul>
</nav>
</main>
<footer id="footer">
<p>Generated by <a href="https://pdoc3.github.io/pdoc" title="pdoc: Python API documentation generator"><cite>pdoc</cite> 0.10.0</a>.</p>
</footer>
</body>
</html>