[ English | 中文 ]
- 👏🏻 2024.12.19: Our paper has released on the arXiv: PsyDT: Using LLMs to Construct the Digital Twin of Psychological Counselor with Personalized Counseling Style for Psychological Counseling
In order to facilitate further research in the mental health dialogue research community, we plan to open source a series of psychological counselor digital twin models that have undergone full parameter fine-tuning, as shown in the table below:
Models | Download Link | Foundation Model Download Link |
---|---|---|
SoulChat2.0-Qwen2-7B | download from modelscope | Qwen2-7B-Instruct |
SoulChat2.0-internlm2-7b | download from modelscope | internlm2-chat-7b |
SoulChat2.0-Baichuan2-7B | download from modelscope | Baichuan2-7B-Chat |
SoulChat2.0-Llama-3.1-8B | download from modelscope | Meta-Llama-3.1-8B-Instruct |
SoulChat2.0-Llama-3-8B | download from modelscope | Meta-Llama-3-8B-Instruct |
SoulChat2.0-Yi-1.5-9B | download from modelscope | Yi-1.5-9B-Chat-16K |
SoulChat2.0-glm-4-9b | download from modelscope | glm-4-9b-chat |
Assuming the IP address of your server is 198.0.0.8
SERVER_MODEL_NAME=SoulChat2.0-Llama-3.1-8B
MODEL_NAME_OR_PATH=<local path>/SoulChat2.0-Llama-3.1-8B
GPU_MEMORY_UTILIZATION=0.8
PORT=8001
API_KEY=soulchat-rcEmrhVe6zWot67QkJSwqUnNI0EQxxFBMQSAXLtMNsD97PlyGQgjgjW-9jCdQD30
MAX_MODEL_LEN=20000
python -m vllm.entrypoints.openai.api_server \
--served-model-name $SERVER_MODEL_NAME \
--model $MODEL_NAME_OR_PATH \
--gpu-memory-utilization $GPU_MEMORY_UTILIZATION \
--port $PORT \
--api-key $API_KEY \
--max-model-len $MAX_MODEL_LEN
pip install openai==1.7.1
pip install streamlit==1.27.0
pip install streamlit_authenticator==0.3.1
cd infer_demo
streamlit run soulchat2.0_app.py --server.port 8002
@misc{xie2024psydtusingllmsconstruct,
title={PsyDT: Using LLMs to Construct the Digital Twin of Psychological Counselor with Personalized Counseling Style for Psychological Counseling},
author={Haojie Xie and Yirong Chen and Xiaofen Xing and Jingkai Lin and Xiangmin Xu},
year={2024},
eprint={2412.13660},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2412.13660},
}