-
Notifications
You must be signed in to change notification settings - Fork 96
/
train_model_args.py
262 lines (240 loc) · 7.08 KB
/
train_model_args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# coding=utf-8
# Copyright 2023 Research Center of Body Data Science from South China University of Technology. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# File: train_model_args.py
# Description: The training model code for SCUTChatLM
# Repository: https://github.com/scutcyr
# Mail: [[email protected]](mailto:[email protected])
# Date: 2023/03/14
# Usage:
# from train_model_args import parser
# args = parser.parse_args()
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_type",
default="t5",
type=str,
choices=['t5'],
help="The model architecture to be trained or fine-tuned.",
)
# model_parallel: 设置模型是否并行,也就是将一个超大模型放在多张GPU上
parser.add_argument(
"--model_parallel",
action="store_true",
help="Set model_parallel=True",
)
# 预训练模型路径或名称或者初始化配置路径
parser.add_argument(
"--model_name_or_path",
default="scutcyr/BianQue-1.0",
type=str,
required=True,
help="The model checkpoint for weights initialization. Leave None if you want to train a model from scratch.",
)
# 增加的special token
parser.add_argument(
"--add_special_tokens",
default=None,
type=str,
help="Optional file containing a JSON dictionary of special tokens that should be added to the tokenizer.",
)
# 训练的数据集csv格式文件,包含以下列:input、target、answer_choices、type
parser.add_argument(
"--data_path",
type=str,
default="./data/cMedialog_example.csv",
help='the path of the dataset for training model'
)
parser.add_argument(
"--dataset_sample_frac",
default=1,
type=float,
help="数据集的采样率,范围:0~1"
)
parser.add_argument(
"--train_radio_of_dataset",
default=0.94,
type=float,
help="数据集的训练样本比例,范围:0~1"
)
parser.add_argument(
"--dataset_input_column_name",
default="input",
type=str,
help="column name of source text",
)
parser.add_argument(
"--dataset_target_column_name",
default="target",
type=str,
help="column name of target text",
)
parser.add_argument(
"--max_source_text_length",
default=512,
type=int,
help="max length of source text, 512",
)
parser.add_argument(
"--max_target_text_length",
default=512,
type=int,
help="max length of target text, 512",
)
# 模型保存的路径
parser.add_argument(
"--output_dir",
required=True,
type=str,
help="The model checkpoint saving path",
)
parser.add_argument(
"--seed",
default=42,
type=int,
help="The seed setting.",
)
# 模型从output_dir继续运行
parser.add_argument(
"--should_continue",
action="store_true",
help="Whether to continue from latest checkpoint in output_dir",
)
parser.add_argument(
"--save_optimizer_and_scheduler",
action="store_true",
help="save optimizer and scheduler in the checkpoint",
)
parser.add_argument(
"--overwrite_output_dir",
action="store_true",
help="Overwrite the content of the output directory",
)
parser.add_argument(
"--no_cuda", action="store_true", help="Avoid using CUDA when available"
)
parser.add_argument(
"--log_steps", default=10, type=int, help="logging output steps."
)
parser.add_argument(
"--per_gpu_train_batch_size",
default=1,
type=int,
help="Batch size per GPU/CPU for training.",
)
parser.add_argument(
"--per_gpu_eval_batch_size",
default=1,
type=int,
help="Batch size per GPU/CPU for evaluation.",
)
# 训练的优化器和学习率下降模式设置
parser.add_argument(
"--optimizer",
type=str,
default="Adam",
choices=['Adam', 'AdamW', 'Adafactor', 'Adafactor-srwf'],
help="For optimizer.",
)
# 学习率下降模式
parser.add_argument(
"--scheduler",
type=str,
default="get_constant_schedule",
choices=['get_linear_schedule_with_warmup', 'get_constant_schedule_with_warmup', 'get_constant_schedule',
'get_cosine_schedule_with_warmup', 'get_adafactor_schedule', 'no_schedule'],
help="For scheduler.",
)
parser.add_argument(
"--learning_rate",
default=5e-5,
type=float,
help="The initial learning rate for Adam.",
)
parser.add_argument(
"--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer."
)
parser.add_argument(
"--warmup_steps", default=8000, type=int, help="Linear warmup over warmup_steps."
)
parser.add_argument(
"--warm_up_ratio", default=0.1, type=float, help="Linear warmup over warmup_steps(warm_up_ratio*t_total)."
)
parser.add_argument(
"--max_grad_norm", default=1.0, type=float, help="Max gradient norm."
)
parser.add_argument(
"--weight_decay", default=0.0, type=float, help="Weight decay if we apply some."
)
# 模型训练的epoch数目
parser.add_argument(
'--num_train_epochs',
default=3,
type=int,
)
# 模型训练的最大步数
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
)
# 设置是否进行迅雷
parser.add_argument(
"--no_train", action="store_true", help="Only evaluate the checkpoint and not train"
)
# 模型的梯度加速
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
# Dataloder的num_workers
parser.add_argument(
"--num_workers",
default=4,
type=int,
help="num_workers for Dataloder",
)
parser.add_argument(
"--local_rank",
type=int,
default=-1,
help="For distributed training: local_rank",
)
parser.add_argument(
"--not_find_unused_parameters", action="store_true", help="If True set find_unused_parameters=False in DDP constructor"
)
parser.add_argument(
"--save_total_limit",
type=int,
default=3,
help="Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default",
)
# 混合精度训练
parser.add_argument("--autocast", action='store_true',
help="If true using autocast to automatically mix accuracy to accelerate training(开启自动混合精度加速训练)")
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument(
"--fp16_opt_level",
type=str,
default="O1",
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html",
)