Philipp Heinrich (October 16, 2022)
- Accessing Corpora
- Queries and Dumps
- Concordancing
- Anchored Queries
- Collocation Analyses
- Subcorpora
- Keyword Analyses
import ccc
ccc.__version__
'0.11.0'
To list all CWB corpora defined in the registry, you can use
from ccc import Corpora
corpora = Corpora(registry_path="/usr/local/share/cwb/registry/")
corpora.show() # returns a pd.DataFrame
print(corpora) # returns a str
All further methods rely on the Corpus
class, which establishes the
connection to your CWB-indexed corpus. You can activate a corpus with
corpus = corpora.activate(corpus_name="GERMAPARL1386")
or directly use the respective class:
from ccc import Corpus
corpus = Corpus(
corpus_name="GERMAPARL1386",
registry_path="/usr/local/share/cwb/registry/"
)
This will raise a KeyError
if the named corpus is not in the specified
registry.
If you are using macros and wordlists, you have to store them in a
separate folder (with subfolders “wordlists/” and “macros/”). Specify
this folder via lib_path
when initializing the corpus.
You can use the cqp_bin
to point the module to a specific version of
cqp
(this is also helpful if cqp
is not in your PATH
).
By default, the data_path
points to “/tmp/ccc-{version}/”. Make sure
that “/tmp/” exists and appropriate rights are granted. Otherwise,
change the parameter when initializing the corpus. Note that each corpus
will have its own subdirectory for each library.
If everything is set up correctly, you can list all available attributes of the activated corpus:
corpus.attributes_available
type | attribute | annotation | active |
---|---|---|---|
p-Att | word | False | True |
p-Att | pos | False | False |
p-Att | lemma | False | False |
s-Att | corpus | False | False |
s-Att | corpus_name | True | False |
s-Att | sitzung | False | False |
s-Att | sitzung_date | True | False |
s-Att | sitzung_period | True | False |
s-Att | sitzung_session | True | False |
s-Att | div | False | False |
s-Att | div_desc | True | False |
s-Att | div_n | True | False |
s-Att | div_type | True | False |
s-Att | div_what | True | False |
s-Att | text | False | False |
s-Att | text_id | True | False |
s-Att | text_name | True | False |
s-Att | text_parliamentary_group | True | False |
s-Att | text_party | True | False |
s-Att | text_position | True | False |
s-Att | text_role | True | False |
s-Att | text_who | True | False |
s-Att | p | False | False |
s-Att | p_type | True | False |
s-Att | s | False | False |
The usual starting point for using this module is to run a query with
corpus.query()
, which accepts valid CQP queries such as
query = r'"\[" ([word="[A-Z0-9]+.?"%d]+ "/"?)+ "\]"'
dump = corpus.query(query)
The result is a Dump
object. Its core is a pandas DataFrame
(dump.df
) similar to a CQP dump and multi-indexed by “match” and
“matchend” of the query. All entries of the DataFrame, including the
index, are integers representing corpus positions:
dump.df
match | matchend | context | contextend |
---|---|---|---|
2313 | 2319 | 2293 | 2339 |
8213 | 8217 | 8193 | 8237 |
8438 | 8444 | 8418 | 8464 |
15999 | 16001 | 15979 | 16021 |
24282 | 24288 | 24262 | 24308 |
… | … | … | … |
You can provide one or more parameters to define the context around the
matches: a parameter context
specifying the context window (defaults
to 20) and a parameter context_break
naming an s-attribute to limit
the context . You can specify asymmetric windows via context_left
and
context_right
.
When providing an s-attribute limiting the context, the module additionally retrieves the CWB-id of this attribute, the corpus positions of the respective span start and end, as well as the actual context spans:
dump = corpus.query(
cqp_query=query,
context=20,
context_break='s'
)
dump.df
match | matchend | s_cwbid | s_span | s_spanend | contextid | context | contextend |
---|---|---|---|---|---|---|---|
2313 | 2319 | 161 | 2304 | 2320 | 161 | 2304 | 2320 |
8213 | 8217 | 489 | 8187 | 8218 | 489 | 8193 | 8218 |
8438 | 8444 | 500 | 8425 | 8445 | 500 | 8425 | 8445 |
15999 | 16001 | 905 | 15992 | 16002 | 905 | 15992 | 16002 |
24282 | 24288 | 1407 | 24273 | 24289 | 1407 | 24273 | 24289 |
… | … | … | … | … | … | … | … |
There are two reasons for defining the context when running a query:
- If you provide a
context_break
parameter, the query will be automatically confined to spans delimited by this s-attribute; this is equivalent to formulating a query that ends on a respective “within” clause. - Subsequent analyses (concordancing, collocation) will all work on the same context.
Notwithstanding (1), the context can also be set after having run the query:
dump = dump.set_context(
context_left=5,
context_right=10,
context_break='s'
)
You can set CQP’s matching strategy (“standard”, “longest”, “shortest”,
“traditional”) via the match_strategy
parameter.
By default, the result is cached: the query parameters are used to create an appropriate identifier. This way, the result can be accessed directly by later queries with the same parameters on the same (sub)corpus, without the need for CQP to run again.
We are set up to analyze the query result. Here’s the frequency breakdown:
dump.breakdown()
item | freq |
---|---|
[ BÜNDNIS 90 / DIE GRÜNEN ] | 12 |
[ CDU / CSU ] | 13 |
[ F. D. P. ] | 14 |
[ PDS ] | 6 |
[ SPD ] | 18 |
You can access concordance lines via the concordance()
method of the
dump. This method returns a DataFrame with information about the query
matches in context:
dump.concordance()
match | matchend | word |
---|---|---|
2313 | 2319 | Joseph Fischer [ Frankfurt ] [ BÜNDNIS 90 / DIE GRÜNEN ] ) |
8213 | 8217 | Widerspruch des Abg. Wolfgang Zöller [ CDU / CSU ] ) |
8438 | 8444 | Joseph Fischer [ Frankfurt ] [ BÜNDNIS 90 / DIE GRÜNEN ] ) |
15999 | 16001 | des Abg. Dr. Peter Struck [ SPD ] ) |
24282 | 24288 | Joseph Fischer [ Frankfurt ] [ BÜNDNIS 90 / DIE GRÜNEN ] ) |
… | … | … |
By default, the output is a “simple” format, i.e. a DataFrame indexed by
“match” and “matchend” with a column “word” showing the matches in
context. You can choose which p-attributes to retrieve via the p_show
parameter. Similarly, you can retrieve s-attributes (at match-position):
dump.concordance(p_show=["word", "lemma"], s_show=["text_id"])
match | matchend | word | lemma | text_id |
---|---|---|---|---|
2313 | 2319 | Joseph Fischer [ Frankfurt ] [ BÜNDNIS 90 / DIE GRÜNEN ] ) | Joseph Fischer [ Frankfurt ] [ Bündnis 90 / die Grünen ] ) | i13_86_1_2 |
8213 | 8217 | Widerspruch des Abg. Wolfgang Zöller [ CDU / CSU ] ) | Widerspruch die Abg. Wolfgang Zöller [ CDU / CSU ] ) | i13_86_1_4 |
8438 | 8444 | Joseph Fischer [ Frankfurt ] [ BÜNDNIS 90 / DIE GRÜNEN ] ) | Joseph Fischer [ Frankfurt ] [ Bündnis 90 / die Grünen ] ) | i13_86_1_4 |
15999 | 16001 | des Abg. Dr. Peter Struck [ SPD ] ) | die Abg. Dr. Peter Struck [ SPD ] ) | i13_86_1_8 |
24282 | 24288 | Joseph Fischer [ Frankfurt ] [ BÜNDNIS 90 / DIE GRÜNEN ] ) | Joseph Fischer [ Frankfurt ] [ Bündnis 90 / die Grünen ] ) | i13_86_1_24 |
… | … | … | … | … |
The format can be changed using the form
parameter. The “kwic” format
e.g. returns three columns for each requested p-attribute:
dump.concordance(form="kwic")
match | matchend | left_word | node_word | right_word |
---|---|---|---|---|
2313 | 2319 | Joseph Fischer [ Frankfurt ] | [ BÜNDNIS 90 / DIE GRÜNEN ] | ) |
8213 | 8217 | Widerspruch des Abg. Wolfgang Zöller | [ CDU / CSU ] | ) |
8438 | 8444 | Joseph Fischer [ Frankfurt ] | [ BÜNDNIS 90 / DIE GRÜNEN ] | ) |
15999 | 16001 | des Abg. Dr. Peter Struck | [ SPD ] | ) |
24282 | 24288 | Joseph Fischer [ Frankfurt ] | [ BÜNDNIS 90 / DIE GRÜNEN ] | ) |
… | … | … | … | … |
If you want to inspect each query result in detail, use
form
=“dataframe”; here, every concordance line is verticalized text
formated as DataFrame with the cpos of each token as index:
lines = dump.concordance(
p_show=['word', 'pos', 'lemma'],
form='dataframe'
)
lines.iloc[0]['dataframe']
cpos | offset | word | pos | lemma |
---|---|---|---|---|
2308 | -5 | Joseph | NE | Joseph |
2309 | -4 | Fischer | NE | Fischer |
2310 | -3 | [ | XY | [ |
2311 | -2 | Frankfurt | NE | Frankfurt |
2312 | -1 | ] | APPRART | ] |
2313 | 0 | [ | ADJA | [ |
2314 | 0 | BÜNDNIS | NN | Bündnis |
2315 | 0 | 90 | CARD | 90 |
2316 | 0 | / | $( | / |
2317 | 0 | DIE | ART | die |
2318 | 0 | GRÜNEN | NN | Grünen |
2319 | 0 | ] | $. | ] |
2320 | 1 | ) | $( | ) |
Further form
s are “slots” (see below) and “dict”:
In the latter case, every entry in the “dict” column is a dictionary
with the following keys:
- “match” (int): the cpos of the match (serves as an identifier)
- “cpos” (list): the cpos of all tokens in the concordance line
- “offset” (list): the offset to match/matchend of all tokens
- “word” (list): the words of all tokens
- “anchors” (dict): a dictionary of {anchor: cpos} (see below)
This format is especially suitable for serialization purposes.
You can decide which and how many concordance lines you want to retrieve
by means of the parameters order
(“first”, “last”, or “random”) and
cut_off
. You can also provide a list of matches
to get only specific
concordance lines.
The concordancer detects anchored queries automatically. The following query
dump = corpus.query(
cqp_query=r'@1[pos="NE"]? @2[pos="NE"] @3"\[" ([word="[A-Z0-9]+.?"%d]+ "/"?)+ @4"\]"',
context=None,
context_break='s',
match_strategy='longest'
)
lines = dump.concordance(form='dataframe')
thus returns DataFrames with additional columns for each anchor point:
lines.iloc[0]['dataframe']
cpos | offset | word | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|---|
8187 | -24 | ( | False | False | False | False |
8188 | -23 | Anhaltender | False | False | False | False |
8189 | -22 | lebhafter | False | False | False | False |
8190 | -21 | Beifall | False | False | False | False |
8191 | -20 | bei | False | False | False | False |
8192 | -19 | der | False | False | False | False |
8193 | -18 | SPD | False | False | False | False |
8194 | -17 | – | False | False | False | False |
8195 | -16 | Beifall | False | False | False | False |
8196 | -15 | bei | False | False | False | False |
8197 | -14 | Abgeordneten | False | False | False | False |
8198 | -13 | des | False | False | False | False |
8199 | -12 | BÜNDNISSES | False | False | False | False |
8200 | -11 | 90 | False | False | False | False |
8201 | -10 | / | False | False | False | False |
8202 | -9 | DIE | False | False | False | False |
8203 | -8 | GRÜNEN | False | False | False | False |
8204 | -7 | und | False | False | False | False |
8205 | -6 | der | False | False | False | False |
8206 | -5 | PDS | False | False | False | False |
8207 | -4 | – | False | False | False | False |
8208 | -3 | Widerspruch | False | False | False | False |
8209 | -2 | des | False | False | False | False |
8210 | -1 | Abg. | False | False | False | False |
8211 | 0 | Wolfgang | True | False | False | False |
8212 | 0 | Zöller | False | True | False | False |
8213 | 0 | [ | False | False | True | False |
8214 | 0 | CDU | False | False | False | False |
8215 | 0 | / | False | False | False | False |
8216 | 0 | CSU | False | False | False | False |
8217 | 0 | ] | False | False | False | True |
8218 | 1 | ) | False | False | False | False |
For an analysis of certain spans of your query matches, you can use anchor points to define “slots”, i.e. single anchors or spans between anchors that define sub-parts of your matches. Use the “slots” format to extract these parts from each match:
dump = corpus.query(
r'@1[pos="NE"]? @2[pos="NE"] @3"\[" ([word="[A-Z0-9]+.?"%d]+ "/"?)+ @4"\]"',
context=0,
context_break='s',
match_strategy='longest',
)
lines = dump.concordance(
form='slots',
p_show=['word', 'lemma'],
slots={"name": [1, 2], "party": [3, 4]}
)
lines
match | matchend | word | lemma | name_word | name_lemma | party_word | party_lemma |
---|---|---|---|---|---|---|---|
8211 | 8217 | Wolfgang Zöller [ CDU / CSU ] | Wolfgang Zöller [ CDU / CSU ] | Wolfgang Zöller | Wolfgang Zöller | [ CDU / CSU ] | [ CDU / CSU ] |
15997 | 16001 | Peter Struck [ SPD ] | Peter Struck [ SPD ] | Peter Struck | Peter Struck | [ SPD ] | [ SPD ] |
25512 | 25516 | Jörg Tauss [ SPD ] | Jörg Tauss [ SPD ] | Jörg Tauss | Jörg Tauss | [ SPD ] | [ SPD ] |
32808 | 32814 | Ina Albowitz [ F. D. P. ] | Ina Albowitz [ F. D. P. ] | Ina Albowitz | Ina Albowitz | [ F. D. P. ] | [ F. D. P. ] |
36980 | 36984 | Christa Luft [ PDS ] | Christa Luft [ PDS ] | Christa Luft | Christa Luft | [ PDS ] | [ PDS ] |
… | … | … | … | … | … | … | … |
The module allows for correction of anchor points by integer offsets.
This is especially helpful if the query contains optional parts (defined
by ?
, +
or *
) – note that this works inplace:
dump.correct_anchors({3: +1, 4: -1})
lines = dump.concordance(
form='slots',
slots={"name": [1, 2],
"party": [3, 4]}
)
lines
match | matchend | word | name_word | party_word |
---|---|---|---|---|
8211 | 8217 | Wolfgang Zöller [ CDU / CSU ] | Wolfgang Zöller | CDU / CSU |
15997 | 16001 | Peter Struck [ SPD ] | Peter Struck | SPD |
25512 | 25516 | Jörg Tauss [ SPD ] | Jörg Tauss | SPD |
32808 | 32814 | Ina Albowitz [ F. D. P. ] | Ina Albowitz | F. D. P. |
36980 | 36984 | Christa Luft [ PDS ] | Christa Luft | PDS |
… | … | … | … | … |
After executing a query, you can use dump.collocates()
to extract
collocates for a given window size (symmetric windows around the corpus
matches). The result will be a DataFrame
with lexical items
(e.g. lemmata) as index and frequency signatures and association
measures as columns.
dump = corpus.query(
'[lemma="SPD"]',
context=10,
context_break='s'
)
dump.collocates()
item | O11 | O12 | O21 | O22 | R1 | R2 | C1 | C2 | N | E11 | E12 | E21 | E22 | z_score | t_score | log_likelihood | simple_ll | min_sensitivity | liddell | dice | log_ratio | conservative_log_ratio | mutual_information | local_mutual_information | ipm | ipm_reference | ipm_expected | in_nodes | marginal |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
die | 813 | 4373 | 12952 | 131030 | 5186 | 143982 | 13765 | 135403 | 149168 | 478.556 | 4707.44 | 13286.4 | 130696 | 15.2882 | 11.7295 | 226.513 | 192.823 | 0.059063 | 0.026767 | 0.0858 | 0.801347 | 0.545843 | 0.230157 | 187.118 | 156768 | 89955.7 | 92278.5 | 0 | 13765 |
bei | 366 | 4820 | 991 | 142991 | 5186 | 143982 | 1357 | 147811 | 149168 | 47.1777 | 5138.82 | 1309.82 | 142672 | 46.4174 | 16.6651 | 967.728 | 862.013 | 0.070575 | 0.237103 | 0.111875 | 3.35808 | 2.92542 | 0.889744 | 325.646 | 70574.6 | 6882.8 | 9097.13 | 0 | 1357 |
( | 314 | 4872 | 1444 | 142538 | 5186 | 143982 | 1758 | 147410 | 149168 | 61.1189 | 5124.88 | 1696.88 | 142285 | 32.3466 | 14.2709 | 574.854 | 522.005 | 0.060548 | 0.145561 | 0.090438 | 2.59389 | 2.14939 | 0.710754 | 223.177 | 60547.6 | 10029 | 11785.4 | 0 | 1758 |
[ | 221 | 4965 | 477 | 143505 | 5186 | 143982 | 698 | 148470 | 149168 | 24.2668 | 5161.73 | 673.733 | 143308 | 39.9366 | 13.2337 | 654.834 | 582.935 | 0.042615 | 0.283178 | 0.075119 | 3.68518 | 3.10689 | 0.95938 | 212.023 | 42614.7 | 3312.91 | 4679.29 | 0 | 698 |
) | 207 | 4979 | 1620 | 142362 | 5186 | 143982 | 1827 | 147341 | 149168 | 63.5178 | 5122.48 | 1763.48 | 142219 | 18.0032 | 9.9727 | 218.341 | 202.135 | 0.039915 | 0.079508 | 0.059033 | 1.82683 | 1.29206 | 0.513075 | 106.207 | 39915.2 | 11251.4 | 12247.9 | 0 | 1827 |
… | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … |
By default, collocates are calculated on the “lemma”-layer, assuming
that this is an available p-attribute in the corpus. The corresponding
parameter is p_query
(which will fall back to “word” if the specified
attribute is not annotated in the corpus). Note that you can also
perform collocation analyses on combinations of p-attribute layers, the
most prominent use case being POS-disambiguated lemmata:
dump.collocates(['lemma', 'pos'], order='log_likelihood')
item | O11 | O12 | O21 | O22 | R1 | R2 | C1 | C2 | N | E11 | E12 | E21 | E22 | z_score | t_score | log_likelihood | simple_ll | min_sensitivity | liddell | dice | log_ratio | conservative_log_ratio | mutual_information | local_mutual_information | ipm | ipm_reference | ipm_expected | in_nodes | marginal |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
bei APPR | 360 | 4826 | 869 | 143113 | 5186 | 143982 | 1229 | 147939 | 149168 | 42.7276 | 5143.27 | 1186.27 | 142796 | 48.5376 | 16.7217 | 1014.28 | 899.961 | 0.069418 | 0.2603 | 0.112237 | 3.52376 | 3.07952 | 0.925594 | 333.214 | 69417.7 | 6035.48 | 8239.03 | 0 | 1229 |
( $( | 314 | 4872 | 1444 | 142538 | 5186 | 143982 | 1758 | 147410 | 149168 | 61.1189 | 5124.88 | 1696.88 | 142285 | 32.3466 | 14.2709 | 574.854 | 522.005 | 0.060548 | 0.145561 | 0.090438 | 2.59389 | 2.14784 | 0.710754 | 223.177 | 60547.6 | 10029 | 11785.4 | 0 | 1758 |
Beifall NN | 199 | 4987 | 471 | 143511 | 5186 | 143982 | 670 | 148498 | 149168 | 23.2933 | 5162.71 | 646.707 | 143335 | 36.406 | 12.4555 | 561.382 | 502.351 | 0.038373 | 0.263432 | 0.067964 | 3.55216 | 2.94681 | 0.931621 | 185.393 | 38372.5 | 3271.24 | 4491.58 | 0 | 670 |
[ $( | 161 | 5025 | 259 | 143723 | 5186 | 143982 | 420 | 148748 | 149168 | 14.6018 | 5171.4 | 405.398 | 143577 | 38.3118 | 11.5378 | 545.131 | 480.087 | 0.031045 | 0.349551 | 0.057438 | 4.10923 | 3.39452 | 1.04242 | 167.83 | 31045.1 | 1798.84 | 2815.62 | 0 | 420 |
]: $( | 139 | 5047 | 340 | 143642 | 5186 | 143982 | 479 | 148689 | 149168 | 16.653 | 5169.35 | 462.347 | 143520 | 29.9811 | 10.3773 | 383.895 | 345.19 | 0.026803 | 0.256245 | 0.049073 | 3.50467 | 2.77726 | 0.921522 | 128.092 | 26802.9 | 2361.41 | 3211.14 | 0 | 479 |
… | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … |
By default, the dataframe contains the counts, namely
- observed and expected absolute frequencies (columns O11, …, E22),
- observed and expected relative frequencies (instances per million, IPM),
- marginal frequencies, and
- instances within nodes.
and is annotated with all available association measures in the
pandas-association-measures
package (parameter ams
). For notation and further information
regarding association measures, see
collocations.de.
For improved performance, all hapax legomena in the context are dropped
after calculating the context size. You can change this behaviour via
the min_freq
parameter.
The dataframe is sorted by co-occurrence frequency (column “O11”), and
only the first 100 most frequently co-occurring collocates are
retrieved. You can (and should) change this behaviour via the order
and cut_off
parameters.
In cwb-ccc terms, every instance of a Dump
is a subcorpus. There
are two possibilities to get a dump
: either by running a traditional
query as outlined above; the following query
e.g. defines a subcorpus of all sentences that contain “SPD”:
dump = corpus.query('"SPD" expand to s')
Alternatively, you can define subcorpora via values stored in
s-attributes. A subcorpus of all noun phrases (assuming they are indexed
as structural attribute np
) can e.g. be extracted using
dump = corpus.query(s_query="np")
You can also query the respective annotations:
dump = corpus.query(s_query="text_party", s_values={"CDU", "CSU"})
will e.g. retrieve all text
spans with respective constraints on the
party
annotation.
Implementation note: While the CWB does allow storage of arbitrary meta
data in s-attributes, it does not index these attributes.
corpus.query()
thus creates a dataframe with the spans of the
s-attribute encoded as matches and caches the result. Consequently, the
first query of an s-attribute will be compartively slow and subsequent
queries will be faster.
Note also that the CWB does not allow complex queries on s-attributes. It is thus reasonable to store meta data in separate spreadsheets or relational databases and link to text spans via simple identifiers. This way (1) you can work with natural meta data queries and (2) working with a small number of s-attributes also unburdens the cache.
In CWB terms, subcorpora are named query results (NQRs), which
consist of the corpus positions of match and matchend (and optional
anchor points called anchor and keyword). If you give a name
when
using corpus.query()
, the respective matches of the dump will also be
available as NQRs in CQP.
This way you can run queries on NQRs in CQP (a.k.a. subqueries). Compare e.g. the frequency breakdown for a query on the whole corpus
corpus.query('[lemma="sagen"]').breakdown()
item | freq |
---|---|
Sagen | 12 |
gesagt | 131 |
sage | 69 |
sagen | 234 |
sagt | 39 |
sagte | 6 |
with the one on a subcorpus:
# define the subcorpus via a query
tmp_dump = corpus.query(
s_query="text_party",
s_values={"CDU", "CSU"},
name="Union"
)
union = corpus.activate_subcorpus("Union")
print(union.subcorpus)
Union
union.query('[lemma="sagen"]').breakdown()
item | freq |
---|---|
Sagen | 6 |
gesagt | 45 |
sage | 30 |
sagen | 64 |
sagt | 12 |
sagte | 3 |
You can access all available NQRs via
corpus.show_nqr()
corpus | subcorpus | size | storage |
---|---|---|---|
GERMAPARL1386 | Union | 0 | -d- |
GERMAPARL1386 | Last | 0 | -d- |
Having created a dump
dump = corpus.query(s_query="text_party", s_values={"CDU", "CSU"})
you can use its keywords()
method for retrieving keywords:
dump.keywords()
item | O11 | O12 | O21 | O22 | R1 | R2 | C1 | C2 | N | E11 | E12 | E21 | E22 | z_score | t_score | log_likelihood | simple_ll | min_sensitivity | liddell | dice | log_ratio | conservative_log_ratio | mutual_information | local_mutual_information | ipm | ipm_reference | ipm_expected |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
die | 4107 | 37244 | 9658 | 98791 | 41351 | 108449 | 13765 | 136035 | 149800 | 3799.71 | 37551.3 | 9965.29 | 98483.7 | 4.9851 | 4.79498 | 37.261 | 24.2071 | 0.09932 | 0.024583 | 0.149031 | 0.157383 | 0.020783 | 0.033774 | 138.711 | 99320.5 | 89055.7 | 91889.2 |
, | 2499 | 38852 | 5371 | 103078 | 41351 | 108449 | 7870 | 141930 | 149800 | 2172.45 | 39178.6 | 5697.55 | 102751 | 7.00617 | 6.53239 | 69.6474 | 46.7967 | 0.060434 | 0.043794 | 0.101542 | 0.287183 | 0.109313 | 0.060817 | 151.982 | 60433.8 | 49525.6 | 52536.7 |
sie | 2343 | 39008 | 5357 | 103092 | 41351 | 108449 | 7700 | 142100 | 149800 | 2125.52 | 39225.5 | 5574.48 | 102875 | 4.71726 | 4.49299 | 31.7949 | 21.5301 | 0.056661 | 0.029775 | 0.095533 | 0.197954 | 0.015877 | 0.042307 | 99.1261 | 56661.3 | 49396.5 | 51401.9 |
. | 1742 | 39609 | 3917 | 104532 | 41351 | 108449 | 5659 | 144141 | 149800 | 1562.12 | 39788.9 | 4096.88 | 104352 | 4.55124 | 4.30986 | 29.1022 | 19.9616 | 0.042127 | 0.033035 | 0.074112 | 0.222018 | 0.009973 | 0.047334 | 82.4563 | 42127.2 | 36118.4 | 37777 |
und | 942 | 40409 | 1938 | 106511 | 41351 | 108449 | 2880 | 146920 | 149800 | 794.999 | 40556 | 2085 | 106364 | 5.21358 | 4.78955 | 36.9989 | 25.6457 | 0.022781 | 0.052042 | 0.042595 | 0.350253 | 0.056744 | 0.073684 | 69.4105 | 22780.6 | 17870.2 | 19225.6 |
… | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … |
Just as with collocates, the result is a DataFrame
with lexical items
(p_query
layer) as index and frequency signatures and association
measures as columns. And just as with collocates, you can calculate
keywords for p-attribute combinations:
dump.keywords(["lemma", "pos"], order="log_likelihood")
item | O11 | O12 | O21 | O22 | R1 | R2 | C1 | C2 | N | E11 | E12 | E21 | E22 | z_score | t_score | log_likelihood | simple_ll | min_sensitivity | liddell | dice | log_ratio | conservative_log_ratio | mutual_information | local_mutual_information | ipm | ipm_reference | ipm_expected |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
, $, | 2499 | 38288 | 5371 | 103642 | 40787 | 109013 | 7870 | 141930 | 149800 | 2142.82 | 38644.2 | 5727.18 | 103286 | 7.69455 | 7.12512 | 83.3197 | 56.1738 | 0.06127 | 0.047768 | 0.102719 | 0.314479 | 0.136118 | 0.066782 | 166.887 | 61269.5 | 49269.4 | 52536.7 |
F. NN | 161 | 40626 | 192 | 108821 | 40787 | 109013 | 353 | 149447 | 149800 | 96.1136 | 40690.9 | 256.886 | 108756 | 6.61853 | 5.11377 | 54.4564 | 36.3385 | 0.003947 | 0.184248 | 0.007827 | 1.16427 | 0.366081 | 0.224041 | 36.0706 | 3947.34 | 1761.26 | 2356.48 |
CSU NE | 255 | 40532 | 380 | 108633 | 40787 | 109013 | 635 | 149165 | 149800 | 172.895 | 40614.1 | 462.105 | 108551 | 6.24418 | 5.14158 | 49.731 | 33.9649 | 0.006252 | 0.129849 | 0.012312 | 0.842817 | 0.237919 | 0.168757 | 43.0329 | 6251.99 | 3485.82 | 4238.99 |
CDU NE | 260 | 40527 | 390 | 108623 | 40787 | 109013 | 650 | 149150 | 149800 | 176.98 | 40610 | 473.02 | 108540 | 6.24055 | 5.1487 | 49.7162 | 33.9757 | 0.006375 | 0.12828 | 0.012549 | 0.833356 | 0.235147 | 0.16705 | 43.433 | 6374.58 | 3577.55 | 4339.12 |
die ART | 3443 | 37344 | 8026 | 100987 | 40787 | 109013 | 11469 | 138331 | 149800 | 3122.74 | 37664.3 | 8346.26 | 100667 | 5.7311 | 5.45805 | 47.9751 | 31.7769 | 0.084414 | 0.030239 | 0.131774 | 0.197304 | 0.047397 | 0.042402 | 145.988 | 84414.2 | 73624.2 | 76562.1 |
… | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … |
Implementation note: dump.keywords()
looks at all unigrams at the
corpus positions in match..matchend, and compares the frequencies of
their surface realizations with their marginal frequencies. Similarly,
dump.collocates()
uses the the union of the corpus positions in
context..contextend, excluding all corpus positions containted in any
match..matchend.