forked from ausgerechnet/cwb-ccc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ccc-utils.R
184 lines (151 loc) · 5.17 KB
/
ccc-utils.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
library(tidyverse)
library(lubridate)
library(kableExtra)
library(DT)
library(colorspace)
library(matrixStats)
library(anomalize)
library(gespeR)
library(irr)
library(gridExtra)
# function for formatting concordance lines
concordance.format <- function(conc, n = 10, tex = F, crop=NULL){
if (tex){
conc %>%
head(n) %>%
xtable::xtable() %>%
print(booktabs = TRUE, hline.after = 0:n)
}
else {
conc %>%
head(n) %>%
select(c("left_word", "node_word", "right_word")) %>%
kbl(booktabs = T, align = c("rcl"), longtable = T,
col.names = c("left context", "node", "right context"),
table.attr = "style = \"color: white; background-color: black;\"") %>%
row_spec(0, bold = T) %>%
column_spec(c(1, 3), width = "6cm") %>%
column_spec(2, bold = T, width = "3cm") %>%
kable_styling(latex_options = "striped")
}
}
# function for plotting collocates
collocates.plot <- function(df.plot,
am = 'conservative_log_ratio', # x-axis
significance = 'log_likelihood', # shade
size = 'marginal',
max_item_length = 30){
# deal with row names if necessary
if(! 'item' %in% names(df.plot)){
df.plot$item <- row.names(df.plot)
}
# cut items that are too long
df.plot$item <- str_sub(df.plot$item, 1, max_item_length)
# encode significance thresholds
df.plot$significance <- cut(df.plot[, significance],
breaks = c(0, qchisq(.95, 1), qchisq(.99, 1), qchisq(.999, 1), Inf),
labels = c("", "*", "**", "***"),
ordered_result = T)
# plot
df.plot %>%
ggplot(aes_string(x = nrow(df.plot):1,
y = am,
colour = "significance",
size = size)) +
geom_point() +
scale_color_manual(values = sequential_hcl(5, palette = "Grays")[4:1], drop = FALSE) +
scale_x_continuous(breaks = nrow(df.plot):1, labels = df.plot$item) +
labs(x = NULL, y = am) +
coord_flip()
}
# function for translating UFA collocates into data frame
ufa.table <- function(tables, am = 'log_likelihood'){
# get tables
df <- data.frame(item = character())
for (i in 1:length(tables)){
new.table <- tables[[names(tables)[i]]] %>%
py_to_r %>%
# filter(log_likelihood > qchisq(.999, 1)) %>%
arrange(desc(!!sym(am)))
new.items <- row.names(new.table)
new.df <- data.frame(item = new.items, rank = 1:length(new.items))
names(new.df)[2] <- names(tables)[i]
df <- merge(df, new.df, all = TRUE, by = "item")
}
# add average rank (unobserved = Inf)
row.names(df) <- df$item
df <- df[, 2:ncol(df)] %>%
replace(is.na(.), Inf) %>%
mutate(average_rank = rowMedians(as.matrix(.))) %>%
arrange(average_rank)
return(df)
}
# function for calculating average overlap between two data frames stored in list of tables arranged by given am
pairwise.overlap <- function(tables, name1, name2, am = "log_likelihood", cut_off = 100, p = .95){
# create top-cut_off-list according to column1
left <- tables[[name1]] %>%
py_to_r() %>%
arrange(desc(!!sym(am))) %>%
head(cut_off)
left.list <- left[, am]
names(left.list) <- row.names(left)
right <- tables[[name2]] %>%
py_to_r() %>%
arrange(desc(!!sym(am))) %>%
head(cut_off)
right.list <- right[, am]
names(right.list) <- row.names(right)
# calculate rbo
value = rbo(left.list, right.list, p)
return(value)
}
# function for calculating average overlap between two columns
pairwise.overlap.2 <- function(df, column1, column2, cut_off = 100, p = .95, method = "rbo"){
if (method == "rbo"){
# create top-cut_off-list according to column1
left <- df %>%
arrange(desc(!!sym(column1))) %>%
head(cut_off)
left.list <- left[, column1]
names(left.list) <- row.names(left)
# create top-cut_off-list according to column2
right <- df %>%
arrange(desc(!!sym(column2))) %>%
head(cut_off)
right.list <- right[, column2]
names(right.list) <- row.names(right)
# calculate rbo
value = rbo(left.list, right.list, p)
}
else if (method == "kappa"){
# create input data frame
df.input <- df %>%
arrange(desc(!!sym(column1))) %>%
mutate(rank.left = 1:n()) %>%
arrange(desc(!!sym(column2))) %>%
mutate(rank.right = 1:n()) %>%
select(rank.left, rank.right)
# calculate kappa
value <- kappa2(df.input)$value
}
else {
value <- NULL
}
return(value)
}
# function for creating dataframe of average overlaps
overlap.table <- function(tables, name = "s", am = "log_likelihood", cut_off = 100, p = .95){
values <- c()
for (i in 2:length(tables)){
value <- pairwise.overlap(tables,
names(tables)[i-1],
names(tables)[i],
am = am,
cut_off = cut_off,
p = p)
values <- append(values, value)
}
g <- data.frame(names(tables)[2:length(tables)], values)
names(g) <- c(name, "overlap")
return(g)
}