Examples of Boutique Models | |
---|---|
Image Classification | Dish Identification, Animal Identification, Animal Identification, -->More |
Object Detection | Universal Detection, Pedestrian Detection, Vehicle Detection, -->More |
Face Detection | Face Detection, Mask Detection, -->More |
Image Segmentation | Portrait Segmentation, Body Analysis, Pneumonia CT Imaging Analysis, -->More |
Key Point Detection | Body Key Points, Face Key Points, Hands Key Points, -->More |
Text Recognition | Ultra Lightweight Chinese & English OCR Text Recognition, -->More |
Image Generation | Style Migration, Street View Cartoon, -->More |
Image Editing | Super Resolution, B&W Color, -->More |
Examples of Boutique Models | |
---|---|
Word Analysis | Linguistic Analysis, Syntactic Analysis, -->More |
Sentiment Analysis | Emotion Judgment, Emotion Analysis, -->More |
Text Review | Porn Review, -->More |
Text Generation | Poetic Couplet Generation, Love Letters Generation, Popular Love Letters, -->More |
Semantic Models | ERNIE, Text Similarity, -->More |
Examples of Boutique Models | |
---|---|
Text-to-speech | Text-to-speech, -->More |
Examples of Boutique Models | |
---|---|
Video Classification | Video Classification, -->More |
- For example, if you use the lightweight Chinese OCR model chinese_ocr_db_crnn_mobile for text recognition, you can quickly recognize the text in an image with pressing one key.
$ pip install paddlehub
$ wget https://paddlehub.bj.bcebos.com/model/image/ocr/test_ocr.jpg
$ hub run chinese_ocr_db_crnn_mobile --input_path test_ocr.jpg --visualization=True
- The prediction results images are stored in the ocr_result folder under the current path, as shown in the following figure.
* Use the lexical analysis model LAC for word segmentation.
$ hub run lac --input_text "现在,慕尼黑再保险公司不仅是此类行动的倡议者,更是将其大量气候数据整合进保险产品中,并与公众共享大量天气信息,参与到新能源领域的保障中。"
[{
'word': ['现在', ',', '慕尼黑再保险公司', '不仅', '是', '此类', '行动', '的', '倡议者', ',', '更是', '将', '其', '大量', '气候', '数据', '整合', '进', '保险', '产品', '中', ',', '并', '与', '公众', '共享', '大量', '天气', '信息', ',', '参与', '到', '新能源', '领域', '的', '保障', '中', '。'],
'tag': ['TIME', 'w', 'ORG', 'c', 'v', 'r', 'n', 'u', 'n', 'w', 'd', 'p', 'r', 'a', 'n', 'n', 'v', 'v', 'n', 'n', 'f', 'w', 'c', 'p', 'n', 'v', 'a', 'n', 'n', 'w', 'v', 'v', 'n', 'n', 'u', 'vn', 'f', 'w']
}]
In addition to one-line code prediction, PaddleHub also supports the use of API to revoke the model. For details, refer to the detailed documentation of each model.
PaddleHub provides convenient model-to-service capability to deploy HTTP services for models with one simple command. The LAC lexical analysis service can quickly start with the following commands:
$ hub serving start -m chinese_ocr_db_crnn_mobile
For more instructions on using Model Serving, See PaddleHub Model One-Key Model Serving Deployment.
With the Fine-tune API, deep learning models can be migrated and learned in computer vision scenarios with a small number of codes.
- The Demo Examples provides rich codes for using Fine-tune API, including Image Classification, Image Coloring, Style Migration, and other scenario model migration examples.
Transfer Learning within Ten Lines of Codes
- For a quick online experience, click PaddleHub Tutorial Collection to use the GPU computing power provided by AI Studio platform for a quick attempt.