-
Notifications
You must be signed in to change notification settings - Fork 1
/
LogisticRegression.py
258 lines (175 loc) · 5.99 KB
/
LogisticRegression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#!/usr/bin/env python
# coding: utf-8
# # Importing all the necessary modules
# In[1]:
import pickle
import gzip
from sklearn.cluster import KMeans
import tensorflow as tf
import numpy as np
import csv
import math
import matplotlib.pyplot
from itertools import islice
from matplotlib import pyplot as plt
import random
# ## Load MNIST on Python 3.x
# In[2]:
filename = 'mnist.pkl.gz'
f = gzip.open(filename, 'rb')
training_data, validation_data, test_data = pickle.load(f, encoding='latin1')
f.close()
# # Confusion matrix customization
# In[3]:
def plot_confusion_matrix(cm,
title='Confusion matrix',
cmap=None,
normalize=True):
import matplotlib.pyplot as plt
import numpy as np
import itertools
accuracy = np.trace(cm) / float(np.sum(cm))
misclass = 1 - accuracy
if cmap is None:
cmap = plt.get_cmap('Blues')
plt.figure(figsize=(8, 6))
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
thresh = cm.max() / 1.5 if normalize else cm.max() / 2
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
if normalize:
plt.text(j, i, "{:0.4f}".format(cm[i, j]),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
else:
plt.text(j, i, "{:,}".format(cm[i, j]),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label\naccuracy={:0.4f}; misclass={:0.4f}'.format(accuracy, misclass))
plt.show()
# # Logistic Regression with multiple classes
# In[4]:
import scipy.sparse
import tensorflow as tf
def GetSigmoid(z):
return 1 / (1 + np.exp(-z))
def SigmoidValTest(VAL_PHI,W):
z = np.dot(np.transpose(VAL_PHI),W)
h = GetSigmoid(z)
return h
def getLoss(w,x,y):
m = x.shape[0] #First we get the number of training examples
y_mat = oneHotIt(y) #Next we convert the integer class coding into a one-hot representation
scores = np.dot(x,w) #Then we compute raw class scores given our input and current weights
prob = GetSigmoid(scores) #Next we perform a softmax on these scores to get their probabilities
#loss = (-1 / m) * np.sum(y_mat * np.log(prob)) + (lam/2)*np.sum(w*w) #We then find the loss of the probabilities
grad = np.dot(x.T,( prob-y_mat))#And compute the gradient for that loss
return grad
def oneHotIt(Y):
m = Y.shape[0]
#Y = Y[:,0]
OHX = scipy.sparse.csr_matrix((np.ones(m), (Y, np.array(range(m)))))
OHX = np.array(OHX.todense()).T
return OHX
def getProbsAndPreds(someX):
probs = GetSigmoid(np.dot(someX,w))
preds = np.argmax(probs,axis=1)
return probs,preds
def getAccuracy(someX,someY):
prob,prede = getProbsAndPreds(someX)
accuracy = sum(prede == someY)/(float(len(someY)))
return accuracy
from beautifultable import BeautifulTable
AccuracyTable = BeautifulTable()
AccuracyTable.column_headers = ["Learning Rate","Iteration", "AccuracyTraining","AccuarcyValidation","AccuracyTesting"]
W = tf.Variable(tf.random_normal([784,10],stddev=0.01))
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
w = W.eval(sess)
itr=500
learningRate = 0.0001
val = []
tr = []
test = []
W_Mat = []
losses = []
x=training_data[0]
y=training_data[1]
testX=test_data[0]
testY=test_data[1]
for i in range(0,itr):
grad = getLoss(w,x,y)
w = w - (learningRate * grad)
tr.append(getAccuracy(x,y))
test.append(getAccuracy(testX,testY))
val.append(getAccuracy(validation_data[0],validation_data[1]))
AccuracyTable.append_row([learningRate,i,str(float(getAccuracy(x,y))),str(float(getAccuracy(validation_data[0],validation_data[1]))),str(float( getAccuracy(testX,testY)))])
print(AccuracyTable)
# # Confusion Matrix of MNIST dataset
# In[5]:
from sklearn.metrics import confusion_matrix
predicted=np.dot(testX,w)
pred=[]
for i in predicted:
pred.append(i.argmax())
logistic_prediction_mnist=np.array(pred)
conf_mat = confusion_matrix(testY,logistic_prediction_mnist )
plot_confusion_matrix(cm = conf_mat,
normalize = False,
title = "Confusion Matrix")
# # Testing on USPS dataset
# In[6]:
from PIL import Image
import os
import numpy as np
from keras.utils import np_utils
image_size = 28
num_labels = 10
USPSMat = []
USPSTar = []
curPath = 'USPSdata/Numerals'
savedImg = []
for j in range(0,10):
curFolderPath = curPath + '/' + str(j)
imgs = os.listdir(curFolderPath)
for img in imgs:
curImg = curFolderPath + '/' + img
if curImg[-3:] == 'png':
img = Image.open(curImg,'r')
img = img.resize((28, 28))
savedImg = img
imgdata = (255-np.array(img.getdata()))/255
USPSMat.append(imgdata)
USPSTar.append(j)
def reformat(labels):
labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32)
return labels
USPSMat = np.array(USPSMat)
print(USPSMat.shape)
USPSTar= np.array(USPSTar)
print(reformat(USPSTar).shape)
test = np_utils.to_categorical(np.array(USPSTar),10)
getAccuracy(USPSMat,USPSTar)
# # Confusion matrix of USPS dataset
# In[7]:
from sklearn.metrics import confusion_matrix
predicted=np.dot(USPSMat,w)
pred=[]
for i in predicted:
pred.append(i.argmax())
logistic_prediction_usps=np.array(pred)
conf_mat = confusion_matrix(USPSTar,logistic_prediction_usps)
plot_confusion_matrix(cm = conf_mat,
normalize = False,
title = "Confusion Matrix")
# In[8]:
from sklearn.metrics import classification_report
print(classification_report(logistic_prediction_usps,
USPSTar))
# In[ ]: