forked from CVStack/crfill
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.sh
executable file
·96 lines (86 loc) · 2.32 KB
/
train.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
##BSIZE0=48 # stage coarse
BSIZE=24 # 96:64G
BSIZE0=$((BSIZE/2))
NWK=16
PREFIX="--dataset_mode_train trainimage \
--gpu_ids 0 \
--name debug \
--dataset_mode_val valimage \
--train_image_dir ./datasets/places/places2 \
--train_image_list ./datasets/places/train_example.txt \
--path_objectshape_list ./datasets/object_shapes.txt \
--path_objectshape_base ./datasets/object_masks \
--val_image_dir./datasets/places2sample1k_val/places2samples1k_crop256 \
--val_image_list ./datasets/places2sample1k_val/files.txt \
--val_mask_dir ./datasets/places2sample1k_val/places2samples1k_256_mask_square128 \
--no_vgg_loss \
--no_ganFeat_loss \
--load_size 640 \
--crop_size 512 \
--model inpaint \
--netG baseconv \
--netD deepfill \
--preprocess_mode scale_shortside_and_crop \
--validation_freq 10000 \
--gpu_ids 0 \
--niter 50 "
# python train.py \
# ${PREFIX} \
# --batchSize ${BSIZE0} \
# --nThreads ${NWK} \
# --no_fine_loss \
# --update_part coarse \
# --no_gan_loss \
# --freeze_D \
# --niter 1 \
# ${EXTRA}
# python train.py \
# ${PREFIX} \
# --batchSize ${BSIZE} \
# --nThreads ${NWK} \
# --update_part fine \
# --continue_train \
# --load_baseg \
# --niter 2 \
# ${EXTRA}
# python train.py \
# ${PREFIX} \
# --batchSize ${BSIZE} \
# --nThreads ${NWK} \
# --update_part all \
# --continue_train \
# --niter 4 \
# ${EXTRA}
PREFIX="--dataset_mode_train trainimage \
--name debugarr0 \
--gpu_ids 0 \
--dataset_mode_val valimage \
--train_image_dir ./datasets/places/places2 \
--train_image_list ./datasets/places/train_example.txt \
--path_objectshape_list ./datasets/object_shapes.txt \
--path_objectshape_base ./datasets/object_masks \
--val_image_dir ./datasets/places2sample1k_val/places2samples1k_crop256 \
--val_image_list ./datasets/places2sample1k_val/files.txt \
--val_mask_dir ./datasets/places2sample1k_val/places2samples1k_256_mask_square128 \
--no_vgg_loss \
--no_ganFeat_loss \
--gpu_ids 0 \
--load_size 640 \
--crop_size 256 \
--model arrange \
--netG twostagend \
--baseG baseconv \
--norm_type 1 \
--netD deepfill \
--lambda_ref 0.5 \
--lambda_l1 1 \
--preprocess_mode scale_shortside_and_crop"
# --load_base_g ./checkpoints/debug/latest_net_G.pth \
# --load_base_d ./checkpoints/debug/latest_net_D.pth \
python train.py \
${PREFIX} \
--batchSize ${BSIZE0} \
--nThreads ${NWK} \
--update_part all \
--niter 100 \
${EXTRA}