forked from pdollar/edges
-
Notifications
You must be signed in to change notification settings - Fork 20
/
edgeBoxesEval.m
33 lines (26 loc) · 1.08 KB
/
edgeBoxesEval.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
% Demo for Edge Boxes (please see readme.txt first).
%% load pre-trained edge detection model and set opts (see edgesDemo.m)
model=load('models/forest/modelBsds'); model=model.model;
model.opts.multiscale=0; model.opts.sharpen=2; model.opts.nThreads=4;
%% set up opts for edgeBoxes (see edgeBoxes.m)
opts = edgeBoxes;
opts.alpha = .65; % step size of sliding window search
opts.beta = .75; % nms threshold for object proposals
opts.minScore = .01; % min score of boxes to detect
opts.maxBoxes = 1e4; % max number of boxes to detect
%% detect Edge Box bounding box proposals (see edgeBoxes.m)
test_path = '~/Documents/sandbox/test_edge_boxes/test/';
d = dir([test_path, '/*.jpg']);
for i = 1 : numel(d)
I = imread([test_path, '/', d(i).name]);
bbs = edgeBoxes(I,model,opts);
n = 25;
bbtmp = [bbs(1:n, :), ones(n, 1)];
clf; hs = bbGt('showRes',I,[],bbtmp);
colors = 'ymcrgbwk';
for j = 1:n
set(hs(2*j-1), 'EdgeColor', colors(mod(j,numel(colors)) + 1));
end
F = getframe;
imwrite(F.cdata, [test_path, '/../results_matlab/', d(i).name]);
end