forked from pdollar/edges
-
Notifications
You must be signed in to change notification settings - Fork 20
/
edgeBoxesCanny.m
99 lines (95 loc) · 4.75 KB
/
edgeBoxesCanny.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
function bbs = edgeBoxesCanny( I, model, varargin )
% Generate Edge Boxes object proposals in given image(s).
%
% Compute Edge Boxes object proposals as described in:
% C. Lawrence Zitnick and Piotr Doll�r
% "Edge Boxes: Locating Object Proposals from Edges", ECCV 2014.
% The proposal boxes are fast to compute and give state-of-the-art recall.
% Please cite the above paper if you end up using the code.
%
% The most important params are alpha and beta. The defaults are optimized
% for detecting boxes at intersection over union (IoU) of 0.7. For other
% settings of alpha/beta see the ECCV paper. In general larger alpha/beta
% improve results at higher IoU (but using large alpha can be quite slow).
% minScore/maxBoxes control the number of boxes returned and impact speed.
% Finally, a number of additional params listed below are set to reasonable
% defaults and in most cases should not need to be altered.
%
% We recently introduced an adaptive variant of nms that results in better
% Average Recall (AR) and also better subsequent detection performance.
% This variant is described in Section 5.E of the following paper:
% Jan Hosang, Rodrigo Benenson, Piotr Doll�r, and Bernt Schiele
% "What makes for effective detection proposals?", arXiv 2015.
% TL;DR: to get top AR for 1000 boxes set alpha=.65, beta=.90, eta=.9996.
%
% For a faster version the proposal code runs at ~10 fps on average use:
% model.opts.sharpen=0; opts.alpha=.625; opts.minScore=.02;
%
% The code uses the Structured Edge Detector to compute edge strength and
% orientation. See edgesDetect.m for details. Alternatively, the code could
% be altered to use any other edge detector such as Canny.
%
% The input 'I' can either be a single (color) image (or filename) or a
% cell array of images (or filenames). In the first case, the return is a
% set of bbs where each row has the format [x y w h score] and score is the
% confidence of detection. If the input is a cell array, the output is a
% cell array where each element is a set of bbs in the form above (in this
% case a parfor loop is used to speed execution).
%
% USAGE
% opts = edgeBoxes()
% bbs = edgeBoxes( I, model, opts )
%
% INPUTS
% I - input image(s) of filename(s) of input image(s)
% model - Structured Edge model trained with edgesTrain
% opts - parameters (struct or name/value pairs)
% (1) main parameters, see above for details
% .name - [] target filename (if specified return is 1)
% .alpha - [.65] step size of sliding window search
% .beta - [.75] nms threshold for object proposals
% .eta - [1.0] adaptation rate for nms threshold (see arXiv15)
% .minScore - [.01] min score of boxes to detect
% .maxBoxes - [1e4] max number of boxes to detect
% (2) additional parameters, safe to ignore and leave at default vals
% .edgeMinMag - [.1] increase to trade off accuracy for speed
% .edgeMergeThr - [.5] increase to trade off accuracy for speed
% .clusterMinMag - [.5] increase to trade off accuracy for speed
% .maxAspectRatio - [3] max aspect ratio of boxes
% .minBoxArea - [1000] minimum area of boxes
% .gamma - [2] affinity sensitivity, see equation 1 in paper
% .kappa - [1.5] scale sensitivity, see equation 3 in paper
%
% OUTPUTS
% bbs - [nx5] array containing proposal bbs [x y w h score]
%
% EXAMPLE
%
% See also edgeBoxesDemo, edgesDetect
%
% Structured Edge Detection Toolbox Version 3.01
% Code written by Piotr Dollar and Larry Zitnick, 2014.
% Licensed under the MSR-LA Full Rights License [see license.txt]
% Modified to use Canny edges
% get default parameters (unimportant parameters are undocumented)
dfs={'name','', 'alpha',.65, 'beta',.75, 'eta',1, 'minScore',.01, ...
'maxBoxes',1e4, 'edgeMinMag',.1, 'edgeMergeThr',.5,'clusterMinMag',.5,...
'maxAspectRatio',3, 'minBoxArea',1000, 'gamma',2, 'kappa',1.5 };
o=getPrmDflt(varargin,dfs,1); if(nargin==0), bbs=o; return; end
% run detector possibly over multiple images and optionally save results
f=o.name; if(~isempty(f) && exist(f,'file')), bbs=1; return; end
if(~iscell(I)), bbs=edgeBoxesImg(I,model,o); else n=length(I);
bbs=cell(n,1); parfor i=1:n, bbs{i}=edgeBoxesImg(I{i},model,o); end; end
d=fileparts(f); if(~isempty(d)&&~exist(d,'dir')), mkdir(d); end
if(~isempty(f)), save(f,'bbs'); bbs=1; end
end
function bbs = edgeBoxesImg( I, model, o )
% Generate Edge Boxes object proposals in single image.
if(all(ischar(I))), I=imread(I); end
model.opts.nms=0; [E,O]=edgesDetectCanny(I);
if(0), E=gradientMag(convTri(single(I),4)); E=E/max(E(:)); end
% E=edgesNmsMex(E,O,2,0,1,model.opts.nThreads);
bbs=edgeBoxesMex(E,O,o.alpha,o.beta,o.eta,o.minScore,o.maxBoxes,...
o.edgeMinMag,o.edgeMergeThr,o.clusterMinMag,...
o.maxAspectRatio,o.minBoxArea,o.gamma,o.kappa);
end