diff --git a/README.md b/README.md
index 17f69b9..451b10c 100644
--- a/README.md
+++ b/README.md
@@ -1,12 +1,17 @@
+
+
![Supported python versions](https://img.shields.io/badge/python-3.8%20%7C%203.9%20%7C%203.10%20%7C%203.11-blue)
[![PEP8](https://img.shields.io/badge/code%20style-pep8-black.svg)](https://www.python.org/dev/peps/pep-0008/)
[![License](https://img.shields.io/badge/License-MIT%202.0-blue.svg)](LICENSE)
[![Run Pytest](https://github.com/samadpls/BestRAG/actions/workflows/pytest.yml/badge.svg?branch=main)](https://github.com/samadpls/BestRAG/actions/workflows/pytest.yml)
-
+![GitHub stars](https://img.shields.io/github/stars/samadpls/BestRAG?color=red&label=stars&logoColor=black&style=social)
+
Welcome to **BestRAG**! This Python library enables you to efficiently store and retrieve embeddings using a hybrid Retrieval-Augmented Generation (RAG) approach. It combines dense, sparse, and late interaction embeddings to provide a robust solution for handling large datasets.
+---
+
## 🚀 Installation
To install **BestRAG**, simply run:
@@ -54,4 +59,4 @@ This project is licensed under the [MIT License](LICENSE).
---
-Created by [samadpls](https://github.com/samadpls) 🎉
\ No newline at end of file
+Created by [samadpls](https://github.com/samadpls) 🎉
diff --git a/bestrag/best_rag.py b/bestrag/best_rag.py
index 77ff6da..062a960 100644
--- a/bestrag/best_rag.py
+++ b/bestrag/best_rag.py
@@ -28,10 +28,10 @@ class BestRAG:
interaction model to use. Defaults to "BAAI/bge-small-en-v1.5".
"""
- def __init__(self,
- url: str,
- api_key: str,
- collection_name: str,
+ def __init__(self,
+ url: str,
+ api_key: str,
+ collection_name: str,
late_interaction_model_name: Optional[str] = "BAAI/bge-small-en-v1.5"
):
self.collection_name = collection_name
@@ -57,9 +57,9 @@ def _create_or_use_collection(self):
collection_name=self.collection_name,
vectors_config={
"dense-vector": models.VectorParams(
- size=384,
+ size=384,
distance=Distance.COSINE
- ),
+ ),
"output-token-embeddings": models.VectorParams(
size=384,
distance=Distance.COSINE,
@@ -180,6 +180,7 @@ def store_pdf_embeddings(self, pdf_path: str):
collection_name=self.collection_name,
points=[point]
)
+
print(
f"Stored embedding for page {page_num + 1} in collection '{self.collection_name}'.")
diff --git a/setup.py b/setup.py
index 4ce21ae..0a2f26c 100644
--- a/setup.py
+++ b/setup.py
@@ -5,7 +5,7 @@
setup(
name="bestrag",
- version="0.1.3",
+ version="0.2.0",
description="BestRAG (Best Retrieval Augmented) is a library for storing and"
" searching document embeddings in a Qdrant vector database. It uses a "
"hybrid embedding technique combining dense, late interaction and sparse representations for better performance.",
@@ -13,7 +13,7 @@
author_email="abdulsamadsid1@gmail.com",
long_description=long_description,
long_description_content_type="text/markdown",
- url="https://github.com/samadpls/bestrag",
+ url="https://github.com/samadpls/bestRAG",
packages=find_packages(),
install_requires=[
"fastembed==0.4.1",