forked from SuperMedIntel/Medical-SAM-Adapter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
160 lines (131 loc) · 5.42 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# train.py
#!/usr/bin/env python3
""" train network using pytorch
Junde Wu
"""
import os
import sys
import argparse
from datetime import datetime
from collections import OrderedDict
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import roc_auc_score, accuracy_score,confusion_matrix
import torchvision
import torchvision.transforms as transforms
from skimage import io
from torch.utils.data import DataLoader
#from dataset import *
from torch.autograd import Variable
from PIL import Image
from tensorboardX import SummaryWriter
#from models.discriminatorlayer import discriminator
from dataset import *
from conf import settings
import time
import cfg
from tqdm import tqdm
from torch.utils.data import DataLoader, random_split
from utils import *
import function
args = cfg.parse_args()
GPUdevice = torch.device('cuda', args.gpu_device)
net = get_network(args, args.net, use_gpu=args.gpu, gpu_device=GPUdevice, distribution = args.distributed)
if args.pretrain:
weights = torch.load(args.pretrain)
net.load_state_dict(weights,strict=False)
optimizer = optim.Adam(net.parameters(), lr=args.lr, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.5) #learning rate decay
'''load pretrained model'''
if args.weights != 0:
print(f'=> resuming from {args.weights}')
assert os.path.exists(args.weights)
checkpoint_file = os.path.join(args.weights)
assert os.path.exists(checkpoint_file)
loc = 'cuda:{}'.format(args.gpu_device)
checkpoint = torch.load(checkpoint_file, map_location=loc)
start_epoch = checkpoint['epoch']
best_tol = checkpoint['best_tol']
net.load_state_dict(checkpoint['state_dict'],strict=False)
# optimizer.load_state_dict(checkpoint['optimizer'], strict=False)
args.path_helper = checkpoint['path_helper']
logger = create_logger(args.path_helper['log_path'])
print(f'=> loaded checkpoint {checkpoint_file} (epoch {start_epoch})')
args.path_helper = set_log_dir('logs', args.exp_name)
logger = create_logger(args.path_helper['log_path'])
logger.info(args)
'''segmentation data'''
transform_train = transforms.Compose([
transforms.Resize((args.image_size,args.image_size)),
transforms.ToTensor(),
])
transform_train_seg = transforms.Compose([
transforms.Resize((args.out_size,args.out_size)),
transforms.ToTensor(),
])
transform_test = transforms.Compose([
transforms.Resize((args.image_size, args.image_size)),
transforms.ToTensor(),
])
transform_test_seg = transforms.Compose([
transforms.Resize((args.out_size,args.out_size)),
transforms.ToTensor(),
])
if args.dataset == 'isic':
'''isic data'''
isic_train_dataset = ISIC2016(args, args.data_path, transform = transform_train, transform_msk= transform_train_seg, mode = 'Training')
isic_test_dataset = ISIC2016(args, args.data_path, transform = transform_test, transform_msk= transform_test_seg, mode = 'Test')
nice_train_loader = DataLoader(isic_train_dataset, batch_size=args.b, shuffle=True, num_workers=8, pin_memory=True)
nice_test_loader = DataLoader(isic_test_dataset, batch_size=args.b, shuffle=False, num_workers=8, pin_memory=True)
'''end'''
elif args.dataset == 'decathlon':
nice_train_loader, nice_test_loader, transform_train, transform_val, train_list, val_list =get_decath_loader(args)
'''checkpoint path and tensorboard'''
# iter_per_epoch = len(Glaucoma_training_loader)
checkpoint_path = os.path.join(settings.CHECKPOINT_PATH, args.net, settings.TIME_NOW)
#use tensorboard
if not os.path.exists(settings.LOG_DIR):
os.mkdir(settings.LOG_DIR)
writer = SummaryWriter(log_dir=os.path.join(
settings.LOG_DIR, args.net, settings.TIME_NOW))
# input_tensor = torch.Tensor(args.b, 3, 256, 256).cuda(device = GPUdevice)
# writer.add_graph(net, Variable(input_tensor, requires_grad=True))
#create checkpoint folder to save model
if not os.path.exists(checkpoint_path):
os.makedirs(checkpoint_path)
checkpoint_path = os.path.join(checkpoint_path, '{net}-{epoch}-{type}.pth')
'''begain training'''
best_acc = 0.0
best_tol = 1e4
for epoch in range(settings.EPOCH):
if args.mod == 'sam_adpt':
net.train()
time_start = time.time()
loss = function.train_sam(args, net, optimizer, nice_train_loader, epoch, writer, vis = args.vis)
logger.info(f'Train loss: {loss}|| @ epoch {epoch}.')
time_end = time.time()
print('time_for_training ', time_end - time_start)
net.eval()
if epoch and epoch % args.val_freq == 0 or epoch == settings.EPOCH-1:
tol, (eiou, edice) = function.validation_sam(args, nice_test_loader, epoch, net, writer)
logger.info(f'Total score: {tol}, IOU: {eiou}, DICE: {edice} || @ epoch {epoch}.')
if args.distributed != 'none':
sd = net.module.state_dict()
else:
sd = net.state_dict()
if tol < best_tol:
best_tol = tol
is_best = True
save_checkpoint({
'epoch': epoch + 1,
'model': args.net,
'state_dict': sd,
'optimizer': optimizer.state_dict(),
'best_tol': best_tol,
'path_helper': args.path_helper,
}, is_best, args.path_helper['ckpt_path'], filename="best_checkpoint")
else:
is_best = False
writer.close()