diff --git a/vignettes/omnipath_intro.Rmd b/vignettes/omnipath_intro.Rmd index ed8100db..b24a971c 100644 --- a/vignettes/omnipath_intro.Rmd +++ b/vignettes/omnipath_intro.Rmd @@ -288,7 +288,7 @@ for a given gene in this particular case. ```{r pathwayextra} ## We query and store the interactions into a dataframe iactions <- - pathwayextra + pathwayextra( resources = c("Wang", "Lit-BM-17"), organism = 10090 # mouse ) @@ -313,7 +313,7 @@ going to focus on rat reactions targeting a particular gene. ```{r kinaseextra} ## We query and store the interactions into a dataframe phosphonetw <- - kinaseextra + kinaseextra( resources = c("PhosphoPoint", "PhosphoSite"), organism = 10116 # rat ) @@ -325,7 +325,7 @@ upstream_dpysl2 <- dplyr::filter( ) ## We print these interactions: -printupstream_dpysl2) +print_interactions(upstream_dpysl2) ``` ### Ligand-receptor Extra @@ -337,7 +337,7 @@ ligand, CDH1 (Figure \@ref(fig:fig3)). ```{r ligrecextra} ## We query and store the interactions into a dataframe -ligrec_netw <- ligrecextra +ligrec_netw <- ligrecextra( resources = c("iTALK", "Baccin2019"), organism = 9606 # human ) @@ -399,7 +399,7 @@ downstream_gli1 <- dplyr::filter( source_genesymbol == "GLI1" ) -printdownstream_gli1) +print_interactions(downstream_gli1) ``` ### miRNA-target dataset @@ -426,7 +426,7 @@ upstream_gli1 <- dplyr::filter( target_genesymbol == "GLI1" ) -printupstream_gli1) +print_interactions(upstream_gli1) ## We transform the previous selections to graphs (igraph objects) downstream_gli1_g <- interaction_graph(downstream_gli1) @@ -472,10 +472,10 @@ and Cellinker), but has prospects of a great growth in the future. As an example, lets look for targets of a cancer drug, the MEK inhibitor Trametinib: ```{r small-molecules} -trametinib_targets <- small_molecule_protein +trametinib_targets <- small_molecule( sources = "TRAMETINIB" ) -printtrametinib_targets) +print_interactions(trametinib_targets) ``` Note, the human readable compound names are not reliable, use PubChem CIDs @@ -508,7 +508,7 @@ enzsub <- enzyme_substrate() ## We can select and print the reactions between a specific kinase and ## a specific substrate -printdplyr::filter( +print_interactions(dplyr::filter( enzsub, enzyme_genesymbol == "MAP2K1", substrate_genesymbol == "MAPK3" @@ -522,7 +522,7 @@ enzsub <- signed_ptms(enzsub, interactions) ## We select again the same kinase and substrate. Now we have information ## about inhibition or activation when we print the enzyme-PTM relationships -printdplyr::filter(enzsub,enzyme_genesymbol=="MAP2K1", +print_interactions(dplyr::filter(enzsub,enzyme_genesymbol=="MAP2K1", substrate_genesymbol=="MAPK3")) ## We can also transform the enzyme-PTM relationships into a graph.