forked from ilyakava/pyfst
-
Notifications
You must be signed in to change notification settings - Fork 0
/
salt_binary_baseline.py
223 lines (173 loc) · 8.03 KB
/
salt_binary_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
""" Convolutional Neural Network.
Build and train a convolutional neural network with TensorFlow.
This example is using the MNIST database of handwritten digits
(http://yann.lecun.com/exdb/mnist/)
This example is using TensorFlow layers API, see 'convolutional_network_raw'
example for a raw implementation with variables.
Author: Aymeric Damien
Project: https://github.com/aymericdamien/TensorFlow-Examples/
"""
from __future__ import division, print_function, absolute_import
from collections import namedtuple
import itertools
import glob
import logging
import os
import numpy as np
from PIL import Image
import tensorflow as tf
from tqdm import tqdm
import windows as win
import salt_data as sd
import salt_pixelNN as sNN
import salt_baseline as sb
import matplotlib.pyplot as plt
import pdb
# Training Parameters
learning_rate = 0.0001
batch_size = 8
num_steps = 300
# Network Parameters
num_classes = 2 # MNIST total classes (0-9 digits)
dropout = 0.25 # Dropout, probability to drop a unit
# Create the neural network
def conv_net(x_dict, n_classes, dropout, reuse, is_training):
# Define a scope for reusing the variables
with tf.variable_scope('ConvNet', reuse=reuse):
# TF Estimator input is a dict, like in MNIST example
x = x_dict['images']
# 1x1 conv replaces PCA step
conv1 = tf.layers.conv2d(x, 64, 1)
# Convolution Layer with 64 filters and a kernel size of 3
conv2 = tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu, padding='same')
# Max Pooling (down-sampling) with strides of 2 and kernel size of 2
conv2 = tf.layers.max_pooling2d(conv2, 2, 2) # 52
conv3 = tf.layers.conv2d(conv2, 128, 3, activation=tf.nn.relu, padding='same')
conv3 = tf.layers.max_pooling2d(conv3, 2, 2) # 26
conv4 = tf.layers.conv2d(conv3, 256, 3, activation=tf.nn.relu, padding='same')
conv4 = tf.layers.max_pooling2d(conv4, 2, 2) # 13
# Flatten the data to a 1-D vector for the fully connected layer
fc1 = tf.contrib.layers.flatten(conv4)
# Fully connected layer (in tf contrib folder for now)
fc1 = tf.layers.dense(fc1, 4096)
# Apply Dropout (if is_training is False, dropout is not applied)
fc1 = tf.layers.dropout(fc1, rate=dropout, training=is_training)
fc2 = tf.layers.dense(fc1, 1000)
# Output layer, class prediction
out = tf.layers.dense(fc2, n_classes)
return out
# Define the model function (following TF Estimator Template)
def model_fn(features, labels, mode):
# Build the neural network
# Because Dropout have different behavior at training and prediction time, we
# need to create 2 distinct computation graphs that still share the same weights.
logits_train = conv_net(features, num_classes, dropout, reuse=False,
is_training=True)
logits_test = conv_net(features, num_classes, dropout, reuse=True,
is_training=False)
# Predictions
pred_classes = tf.argmax(logits_test, axis=1)
pred_probas = tf.nn.softmax(logits_test)
# If prediction mode, early return
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode, predictions=pred_classes)
# Define loss and optimizer
loss_op = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits_train, labels=tf.cast(labels, dtype=tf.int32)))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op,
global_step=tf.train.get_global_step())
# Evaluate the accuracy of the model
acc_op = tf.metrics.accuracy(labels=labels, predictions=pred_classes)
FP_op = tf.metrics.false_positives(labels, pred_classes)
FN_op = tf.metrics.false_negatives(labels, pred_classes)
TP_op = tf.metrics.true_positives(labels, pred_classes)
mask_predicted_rate_op = tf.metrics.mean(pred_classes)
prec_op = tf.metrics.precision(labels, pred_classes)
myevalops = {
'accuracy': acc_op,
'mask_presence/false_positives': FP_op,
'mask_presence/false_negatives': FN_op,
'mask_presence/true_positives': TP_op,
'mask_presence/mask_prediction_rate': mask_predicted_rate_op,
'mask_presence/mask_rate': tf.metrics.mean(labels),
'mask_presence/precision': prec_op}
# TF Estimators requires to return a EstimatorSpec, that specify
# the different ops for training, evaluating, ...
estim_specs = tf.estimator.EstimatorSpec(
mode=mode,
predictions=pred_classes,
loss=loss_op,
train_op=train_op,
eval_metric_ops=myevalops)
return estim_specs
def get_salt_images(folder='mytrain'):
image_list = []
for filename in glob.glob('/scratch0/ilya/locDoc/data/kaggle-seismic-dataset/%s/images/*.png' % folder): #assuming gif
im=Image.open(filename).convert('L')
npim = np.array(im, dtype=np.float32) / 255.0
npim_padded = np.pad(npim, ((2,1),(2,1)), 'reflect')
image_list.append(npim_padded)
im.close()
image_list = np.array(image_list)
return np.expand_dims(image_list, -1)
def save_decisions():
"""
change the first two vars to run on different sets
"""
valX = get_salt_images(folder='test')
fileids = sb.clean_glob(glob.glob('/scratch0/ilya/locDoc/data/kaggle-seismic-dataset/test/images/*.png'))
setsize = len(fileids)
headsz = int(setsize / float(batch_size)) * batch_size
input_fn = tf.estimator.inputs.numpy_input_fn(
x={'images': valX[:headsz,:,:,:]},
batch_size=batch_size, shuffle=False)
model_dir = '/scratch0/ilya/locDoc/data/kaggle-seismic-dataset/models/binary1'
bin_model = tf.estimator.Estimator(model_fn, model_dir=model_dir)
gen = bin_model.predict(input_fn)
id_to_pred = {}
for file_i, prediction in enumerate(tqdm(gen, total=headsz)):
fileid, file_extension = os.path.splitext(fileids[file_i])
id_to_pred[fileid] = prediction
# now get the tail
input_fn = tf.estimator.inputs.numpy_input_fn(x={'images': valX[-batch_size:,:,:,:]},
batch_size=batch_size, shuffle=False)
gen = bin_model.predict(input_fn)
for file_i, prediction in enumerate(gen):
idx = setsize-batch_size+file_i
fileid, file_extension = os.path.splitext(fileids[idx])
id_to_pred[fileid] = prediction
np.save('/scratch0/ilya/locDoc/data/kaggle-seismic-dataset/models/binary1/test_bin_pred', id_to_pred)
def main():
trainX = get_salt_images(folder='mytrain')
train_pix_num = sd.salt_pixel_num(folder='mytrain')
trainY = np.array(train_pix_num > 0).astype(int)
valX = get_salt_images(folder='myval')
val_pix_num = sd.salt_pixel_num(folder='myval')
valY = np.array(val_pix_num > 0).astype(int)
# Build the Estimator
model_dir = '/scratch0/ilya/locDoc/data/kaggle-seismic-dataset/models/binary_base1'
model = tf.estimator.Estimator(model_fn, model_dir=model_dir)
for i in range(100000):
# Define the input function for training
input_fn = tf.estimator.inputs.numpy_input_fn(
x={'images': trainX[:3584,:,:,:]}, y=trainY[:3584],
batch_size=batch_size, num_epochs=1, shuffle=True)
# Train the Model
tf.logging.set_verbosity(tf.logging.INFO)
model.train(input_fn, steps=None)
if i % 10 == 0:
# Evaluate the Model
# Define the input function for evaluating
input_fn = tf.estimator.inputs.numpy_input_fn(
x={'images': valX[:384,:,:,:]}, y=valY[:384],
batch_size=batch_size, shuffle=False)
# Use the Estimator 'evaluate' method
e = model.evaluate(input_fn)
print("Testing Accuracy:", e['accuracy'])
if __name__ == '__main__':
main()
# lets look at the result images with the scroll thru vis
# then do the mnist like network on binary and see results (with PCA layer in between)
# and research what they do for semantic segmentation, u net like stuff
# later concatenate in 2d wavelet features