diff --git a/lib/kriswiner/MPU9250.cpp b/lib/kriswiner/MPU9250.cpp index b779c50..95fcf1a 100644 --- a/lib/kriswiner/MPU9250.cpp +++ b/lib/kriswiner/MPU9250.cpp @@ -14,29 +14,28 @@ #include "MPU9250.h" #include "Wire.h" - // See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in // above document; the MPU9250 and MPU9150 are virtually identical but the latter has a different register map // -//Magnetometer Registers -#define AK8963_ADDRESS 0x0C -#define WHO_AM_I_AK8963 0x00 // should return 0x48 -#define INFO 0x01 -#define AK8963_ST1 0x02 // data ready status bit 0 -#define AK8963_XOUT_L 0x03 // data -#define AK8963_XOUT_H 0x04 -#define AK8963_YOUT_L 0x05 -#define AK8963_YOUT_H 0x06 -#define AK8963_ZOUT_L 0x07 -#define AK8963_ZOUT_H 0x08 -#define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status bit 2 -#define AK8963_CNTL 0x0A // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0 -#define AK8963_CNTL2 0x0B // Reset -#define AK8963_ASTC 0x0C // Self test control -#define AK8963_I2CDIS 0x0F // I2C disable -#define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value -#define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value -#define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value +// Magnetometer Registers +#define AK8963_ADDRESS 0x0C +#define WHO_AM_I_AK8963 0x00 // should return 0x48 +#define INFO 0x01 +#define AK8963_ST1 0x02 // data ready status bit 0 +#define AK8963_XOUT_L 0x03 // data +#define AK8963_XOUT_H 0x04 +#define AK8963_YOUT_L 0x05 +#define AK8963_YOUT_H 0x06 +#define AK8963_ZOUT_L 0x07 +#define AK8963_ZOUT_H 0x08 +#define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status bit 2 +#define AK8963_CNTL 0x0A // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0 +#define AK8963_CNTL2 0x0B // Reset +#define AK8963_ASTC 0x0C // Self test control +#define AK8963_I2CDIS 0x0F // I2C disable +#define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value +#define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value +#define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value #define SELF_TEST_X_GYRO 0x00 #define SELF_TEST_Y_GYRO 0x01 @@ -56,64 +55,64 @@ #define SELF_TEST_Y_ACCEL 0x0E #define SELF_TEST_Z_ACCEL 0x0F -#define SELF_TEST_A 0x10 - -#define XG_OFFSET_H 0x13 // User-defined trim values for gyroscope -#define XG_OFFSET_L 0x14 -#define YG_OFFSET_H 0x15 -#define YG_OFFSET_L 0x16 -#define ZG_OFFSET_H 0x17 -#define ZG_OFFSET_L 0x18 -#define SMPLRT_DIV 0x19 -#define CONFIG 0x1A -#define GYRO_CONFIG 0x1B -#define ACCEL_CONFIG 0x1C -#define ACCEL_CONFIG2 0x1D -#define LP_ACCEL_ODR 0x1E -#define WOM_THR 0x1F - -#define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms -#define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0] -#define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms - -#define FIFO_EN 0x23 -#define I2C_MST_CTRL 0x24 -#define I2C_SLV0_ADDR 0x25 -#define I2C_SLV0_REG 0x26 -#define I2C_SLV0_CTRL 0x27 -#define I2C_SLV1_ADDR 0x28 -#define I2C_SLV1_REG 0x29 -#define I2C_SLV1_CTRL 0x2A -#define I2C_SLV2_ADDR 0x2B -#define I2C_SLV2_REG 0x2C -#define I2C_SLV2_CTRL 0x2D -#define I2C_SLV3_ADDR 0x2E -#define I2C_SLV3_REG 0x2F -#define I2C_SLV3_CTRL 0x30 -#define I2C_SLV4_ADDR 0x31 -#define I2C_SLV4_REG 0x32 -#define I2C_SLV4_DO 0x33 -#define I2C_SLV4_CTRL 0x34 -#define I2C_SLV4_DI 0x35 -#define I2C_MST_STATUS 0x36 -#define INT_PIN_CFG 0x37 -#define INT_ENABLE 0x38 -#define DMP_INT_STATUS 0x39 // Check DMP interrupt -#define INT_STATUS 0x3A -#define ACCEL_XOUT_H 0x3B -#define ACCEL_XOUT_L 0x3C -#define ACCEL_YOUT_H 0x3D -#define ACCEL_YOUT_L 0x3E -#define ACCEL_ZOUT_H 0x3F -#define ACCEL_ZOUT_L 0x40 -#define TEMP_OUT_H 0x41 -#define TEMP_OUT_L 0x42 -#define GYRO_XOUT_H 0x43 -#define GYRO_XOUT_L 0x44 -#define GYRO_YOUT_H 0x45 -#define GYRO_YOUT_L 0x46 -#define GYRO_ZOUT_H 0x47 -#define GYRO_ZOUT_L 0x48 +#define SELF_TEST_A 0x10 + +#define XG_OFFSET_H 0x13 // User-defined trim values for gyroscope +#define XG_OFFSET_L 0x14 +#define YG_OFFSET_H 0x15 +#define YG_OFFSET_L 0x16 +#define ZG_OFFSET_H 0x17 +#define ZG_OFFSET_L 0x18 +#define SMPLRT_DIV 0x19 +#define CONFIG 0x1A +#define GYRO_CONFIG 0x1B +#define ACCEL_CONFIG 0x1C +#define ACCEL_CONFIG2 0x1D +#define LP_ACCEL_ODR 0x1E +#define WOM_THR 0x1F + +#define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms +#define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0] +#define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms + +#define FIFO_EN 0x23 +#define I2C_MST_CTRL 0x24 +#define I2C_SLV0_ADDR 0x25 +#define I2C_SLV0_REG 0x26 +#define I2C_SLV0_CTRL 0x27 +#define I2C_SLV1_ADDR 0x28 +#define I2C_SLV1_REG 0x29 +#define I2C_SLV1_CTRL 0x2A +#define I2C_SLV2_ADDR 0x2B +#define I2C_SLV2_REG 0x2C +#define I2C_SLV2_CTRL 0x2D +#define I2C_SLV3_ADDR 0x2E +#define I2C_SLV3_REG 0x2F +#define I2C_SLV3_CTRL 0x30 +#define I2C_SLV4_ADDR 0x31 +#define I2C_SLV4_REG 0x32 +#define I2C_SLV4_DO 0x33 +#define I2C_SLV4_CTRL 0x34 +#define I2C_SLV4_DI 0x35 +#define I2C_MST_STATUS 0x36 +#define INT_PIN_CFG 0x37 +#define INT_ENABLE 0x38 +#define DMP_INT_STATUS 0x39 // Check DMP interrupt +#define INT_STATUS 0x3A +#define ACCEL_XOUT_H 0x3B +#define ACCEL_XOUT_L 0x3C +#define ACCEL_YOUT_H 0x3D +#define ACCEL_YOUT_L 0x3E +#define ACCEL_ZOUT_H 0x3F +#define ACCEL_ZOUT_L 0x40 +#define TEMP_OUT_H 0x41 +#define TEMP_OUT_L 0x42 +#define GYRO_XOUT_H 0x43 +#define GYRO_XOUT_L 0x44 +#define GYRO_YOUT_H 0x45 +#define GYRO_YOUT_L 0x46 +#define GYRO_ZOUT_H 0x47 +#define GYRO_ZOUT_L 0x48 #define EXT_SENS_DATA_00 0x49 #define EXT_SENS_DATA_01 0x4A #define EXT_SENS_DATA_02 0x4B @@ -139,135 +138,146 @@ #define EXT_SENS_DATA_22 0x5F #define EXT_SENS_DATA_23 0x60 #define MOT_DETECT_STATUS 0x61 -#define I2C_SLV0_DO 0x63 -#define I2C_SLV1_DO 0x64 -#define I2C_SLV2_DO 0x65 -#define I2C_SLV3_DO 0x66 +#define I2C_SLV0_DO 0x63 +#define I2C_SLV1_DO 0x64 +#define I2C_SLV2_DO 0x65 +#define I2C_SLV3_DO 0x66 #define I2C_MST_DELAY_CTRL 0x67 -#define SIGNAL_PATH_RESET 0x68 -#define MOT_DETECT_CTRL 0x69 -#define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP -#define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode -#define PWR_MGMT_2 0x6C -#define DMP_BANK 0x6D // Activates a specific bank in the DMP -#define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank -#define DMP_REG 0x6F // Register in DMP from which to read or to which to write -#define DMP_REG_1 0x70 -#define DMP_REG_2 0x71 -#define FIFO_COUNTH 0x72 -#define FIFO_COUNTL 0x73 -#define FIFO_R_W 0x74 +#define SIGNAL_PATH_RESET 0x68 +#define MOT_DETECT_CTRL 0x69 +#define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP +#define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode +#define PWR_MGMT_2 0x6C +#define DMP_BANK 0x6D // Activates a specific bank in the DMP +#define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank +#define DMP_REG 0x6F // Register in DMP from which to read or to which to write +#define DMP_REG_1 0x70 +#define DMP_REG_2 0x71 +#define FIFO_COUNTH 0x72 +#define FIFO_COUNTL 0x73 +#define FIFO_R_W 0x74 #define WHO_AM_I_MPU9250 0x75 // Should return 0x71 -#define XA_OFFSET_H 0x77 -#define XA_OFFSET_L 0x78 -#define YA_OFFSET_H 0x7A -#define YA_OFFSET_L 0x7B -#define ZA_OFFSET_H 0x7D -#define ZA_OFFSET_L 0x7E +#define XA_OFFSET_H 0x77 +#define XA_OFFSET_L 0x78 +#define YA_OFFSET_H 0x7A +#define YA_OFFSET_L 0x7B +#define ZA_OFFSET_H 0x7D +#define ZA_OFFSET_L 0x7E // Define I2C addresses of MPU9250 #define ADO 0 #if ADO -#define MPU9250_ADDRESS 0x69 // Device address when ADO = 1 -#define AK8963_ADDRESS 0x0C // Address of magnetometer +#define MPU9250_ADDRESS 0x69 // Device address when ADO = 1 +#define AK8963_ADDRESS 0x0C // Address of magnetometer #else -#define MPU9250_ADDRESS 0x68 // Device address when ADO = 0 -#define AK8963_ADDRESS 0x0C // Address of magnetometer +#define MPU9250_ADDRESS 0x68 // Device address when ADO = 0 +#define AK8963_ADDRESS 0x0C // Address of magnetometer #endif -MPU9250::MPU9250(uint8_t intPin) { +MPU9250::MPU9250(uint8_t intPin) +{ _intPin = intPin; } - -uint8_t MPU9250::getMPU9250ID() { - uint8_t c = readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250 +uint8_t MPU9250::getMPU9250ID() +{ + uint8_t c = readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250 return c; } -uint8_t MPU9250::getAK8963CID() { - uint8_t c = readByte(AK8963_ADDRESS, WHO_AM_I_AK8963); // Read WHO_AM_I register for MPU-9250 +uint8_t MPU9250::getAK8963CID() +{ + uint8_t c = readByte(AK8963_ADDRESS, WHO_AM_I_AK8963); // Read WHO_AM_I register for MPU-9250 return c; } - - -float MPU9250::getMres(uint8_t Mscale) { - switch (Mscale) { - // Possible magnetometer scales (and their register bit settings) are: - // 14 bit resolution (0) and 16 bit resolution (1) - case MFS_14BITS: - return 10.*4912. / 8190.; // Proper scale to return milliGauss - break; - - case MFS_16BITS: - return 10.*4912. / 32760.0; // Proper scale to return milliGauss - break; +float MPU9250::getMres(uint8_t Mscale) +{ + switch (Mscale) + { + // Possible magnetometer scales (and their register bit settings) are: + // 14 bit resolution (0) and 16 bit resolution (1) + case MFS_14BITS: + return 10. * 4912. / 8190.; // Proper scale to return milliGauss + break; + + case MFS_16BITS: + return 10. * 4912. / 32760.0; // Proper scale to return milliGauss + break; + default: + return 0.0; } } -float MPU9250::getGres(uint8_t Gscale) { - switch (Gscale) { - // Possible gyro scales (and their register bit settings) are: - // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). - case GFS_250DPS: - return 250.0 / 32768.0; - break; - - case GFS_500DPS: - return 500.0 / 32768.0; - break; - - case GFS_1000DPS: - return 1000.0 / 32768.0; - break; - - case GFS_2000DPS: - return 2000.0 / 32768.0; - break; +float MPU9250::getGres(uint8_t Gscale) +{ + switch (Gscale) + { + // Possible gyro scales (and their register bit settings) are: + // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). + case GFS_250DPS: + return 250.0 / 32768.0; + break; + + case GFS_500DPS: + return 500.0 / 32768.0; + break; + + case GFS_1000DPS: + return 1000.0 / 32768.0; + break; + + case GFS_2000DPS: + return 2000.0 / 32768.0; + break; + default: + return 0.0; } } -float MPU9250::getAres(uint8_t Ascale) { - switch (Ascale) { - // Possible accelerometer scales (and their register bit settings) are: - // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11). - // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: - case AFS_2G: - return 2.0f / 32768.0f; - break; - - case AFS_4G: - return 4.0f / 32768.0f; - break; - - case AFS_8G: - return 8.0f / 32768.0f; - break; - - case AFS_16G: - return 16.0f / 32768.0f; - break; +float MPU9250::getAres(uint8_t Ascale) +{ + switch (Ascale) + { + // Possible accelerometer scales (and their register bit settings) are: + // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11). + // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: + case AFS_2G: + return 2.0f / 32768.0f; + break; + + case AFS_4G: + return 4.0f / 32768.0f; + break; + + case AFS_8G: + return 8.0f / 32768.0f; + break; + + case AFS_16G: + return 16.0f / 32768.0f; + break; + default: + return 0.0; } } - - -void MPU9250::accelWakeOnMotion() { +void MPU9250::accelWakeOnMotion() +{ // Set accelerometer sample rate configuration // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz uint8_t c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2); // get current ACCEL_CONFIG2 register value - c = c & ~0x0F; // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0]) - c = c | 0x01; // Set accelerometer rate to 1 kHz and bandwidth to 184 Hz - writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c); // Write new ACCEL_CONFIG2 register value + c = c & ~0x0F; // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0]) + c = c | 0x01; // Set accelerometer rate to 1 kHz and bandwidth to 184 Hz + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c); // Write new ACCEL_CONFIG2 register value // Configure Interrupts and Bypass Enable // Set interrupt pin active high, push-pull, hold interrupt pin level HIGH until interrupt cleared, // clear on read of INT_STATUS, and enable I2C_BYPASS_EN so additional chips // can join the I2C bus and all can be controlled by the Arduino as master - writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x12); // INT is 50 microsecond pulse and any read to clear - writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x41); // Enable data ready (bit 0) and wake on motion (bit 6) interrupt + writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x12); // INT is 50 microsecond pulse and any read to clear + writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x41); // Enable data ready (bit 0) and wake on motion (bit 6) interrupt // enable wake on motion detection logic (bit 7) and compare current sample to previous sample (bit 6) writeByte(MPU9250_ADDRESS, MOT_DETECT_CTRL, 0xC0); @@ -282,114 +292,122 @@ void MPU9250::accelWakeOnMotion() { writeByte(MPU9250_ADDRESS, LP_ACCEL_ODR, 0x02); c = readByte(MPU9250_ADDRESS, PWR_MGMT_1); - writeByte(MPU9250_ADDRESS, PWR_MGMT_1, c | 0x20); // Write bit 5 to enable accel cycling + writeByte(MPU9250_ADDRESS, PWR_MGMT_1, c | 0x20); // Write bit 5 to enable accel cycling gyromagSleep(); delay(100); // Wait for all registers to reset - } - -void MPU9250::gyromagSleep() { +void MPU9250::gyromagSleep() +{ uint8_t temp = 0; temp = readByte(AK8963_ADDRESS, AK8963_CNTL); - writeByte(AK8963_ADDRESS, AK8963_CNTL, temp & ~(0x0F)); // Clear bits 0 - 3 to power down magnetometer + writeByte(AK8963_ADDRESS, AK8963_CNTL, temp & ~(0x0F)); // Clear bits 0 - 3 to power down magnetometer temp = readByte(MPU9250_ADDRESS, PWR_MGMT_1); - writeByte(MPU9250_ADDRESS, PWR_MGMT_1, temp | 0x10); // Write bit 4 to enable gyro standby - delay(10); // Wait for all registers to reset + writeByte(MPU9250_ADDRESS, PWR_MGMT_1, temp | 0x10); // Write bit 4 to enable gyro standby + delay(10); // Wait for all registers to reset } -void MPU9250::gyromagWake(uint8_t Mmode) { +void MPU9250::gyromagWake(uint8_t Mmode) +{ uint8_t temp = 0; temp = readByte(AK8963_ADDRESS, AK8963_CNTL); - writeByte(AK8963_ADDRESS, AK8963_CNTL, temp | Mmode); // Reset normal mode for magnetometer + writeByte(AK8963_ADDRESS, AK8963_CNTL, temp | Mmode); // Reset normal mode for magnetometer temp = readByte(MPU9250_ADDRESS, PWR_MGMT_1); - writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // return gyro and accel normal mode - delay(10); // Wait for all registers to reset + writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // return gyro and accel normal mode + delay(10); // Wait for all registers to reset } - -void MPU9250::resetMPU9250() { +void MPU9250::resetMPU9250() +{ // reset device writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Set bit 7 to reset MPU9250 - delay(100); // Wait for all registers to reset + delay(100); // Wait for all registers to reset } -void MPU9250::readMPU9250Data(int16_t* destination) { - uint8_t rawData[14]; // x/y/z accel register data stored here - readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 14, &rawData[0]); // Read the 14 raw data registers into data array - destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value - destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ; - destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ; - destination[3] = ((int16_t)rawData[6] << 8) | rawData[7] ; - destination[4] = ((int16_t)rawData[8] << 8) | rawData[9] ; - destination[5] = ((int16_t)rawData[10] << 8) | rawData[11] ; - destination[6] = ((int16_t)rawData[12] << 8) | rawData[13] ; +void MPU9250::readMPU9250Data(int16_t *destination) +{ + uint8_t rawData[14]; // x/y/z accel register data stored here + readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 14, &rawData[0]); // Read the 14 raw data registers into data array + destination[0] = ((int16_t)rawData[0] << 8) | rawData[1]; // Turn the MSB and LSB into a signed 16-bit value + destination[1] = ((int16_t)rawData[2] << 8) | rawData[3]; + destination[2] = ((int16_t)rawData[4] << 8) | rawData[5]; + destination[3] = ((int16_t)rawData[6] << 8) | rawData[7]; + destination[4] = ((int16_t)rawData[8] << 8) | rawData[9]; + destination[5] = ((int16_t)rawData[10] << 8) | rawData[11]; + destination[6] = ((int16_t)rawData[12] << 8) | rawData[13]; } -void MPU9250::readAccelData(int16_t* destination) { - uint8_t rawData[6]; // x/y/z accel register data stored here - readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array - destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value - destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ; - destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ; +void MPU9250::readAccelData(int16_t *destination) +{ + uint8_t rawData[6]; // x/y/z accel register data stored here + readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array + destination[0] = ((int16_t)rawData[0] << 8) | rawData[1]; // Turn the MSB and LSB into a signed 16-bit value + destination[1] = ((int16_t)rawData[2] << 8) | rawData[3]; + destination[2] = ((int16_t)rawData[4] << 8) | rawData[5]; } - -void MPU9250::readGyroData(int16_t* destination) { - uint8_t rawData[6]; // x/y/z gyro register data stored here +void MPU9250::readGyroData(int16_t *destination) +{ + uint8_t rawData[6]; // x/y/z gyro register data stored here readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array - destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value - destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ; - destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ; + destination[0] = ((int16_t)rawData[0] << 8) | rawData[1]; // Turn the MSB and LSB into a signed 16-bit value + destination[1] = ((int16_t)rawData[2] << 8) | rawData[3]; + destination[2] = ((int16_t)rawData[4] << 8) | rawData[5]; } -bool MPU9250::checkNewMagData() { +bool MPU9250::checkNewMagData() +{ bool test; test = (readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01); return test; } -bool MPU9250::checkNewAccelGyroData() { +bool MPU9250::checkNewAccelGyroData() +{ bool test; test = (readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01); return test; } -bool MPU9250::checkWakeOnMotion() { +bool MPU9250::checkWakeOnMotion() +{ bool test; test = (readByte(MPU9250_ADDRESS, INT_STATUS) & 0x40); return test; } - -void MPU9250::readMagData(int16_t* destination) { - uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition - readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array - uint8_t c = rawData[6]; // End data read by reading ST2 register - - if (!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data - destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value - destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ; // Data stored as little Endian - destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ; +void MPU9250::readMagData(int16_t *destination) +{ + uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition + readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array + uint8_t c = rawData[6]; // End data read by reading ST2 register + + if (!(c & 0x08)) + { // Check if magnetic sensor overflow set, if not then report data + destination[0] = ((int16_t)rawData[1] << 8) | rawData[0]; // Turn the MSB and LSB into a signed 16-bit value + destination[1] = ((int16_t)rawData[3] << 8) | rawData[2]; // Data stored as little Endian + destination[2] = ((int16_t)rawData[5] << 8) | rawData[4]; } } -int16_t MPU9250::readGyroTempData() { - uint8_t rawData[2]; // x/y/z gyro register data stored here - readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array - return ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a 16-bit value +int16_t MPU9250::readGyroTempData() +{ + uint8_t rawData[2]; // x/y/z gyro register data stored here + readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array + return ((int16_t)rawData[0] << 8) | rawData[1]; // Turn the MSB and LSB into a 16-bit value } -void MPU9250::initAK8963(uint8_t Mscale, uint8_t Mmode, float* magCalibration) { +void MPU9250::initAK8963(uint8_t Mscale, uint8_t Mmode, float *magCalibration) +{ // First extract the factory calibration for each magnetometer axis - uint8_t rawData[3]; // x/y/z gyro calibration data stored here + uint8_t rawData[3]; // x/y/z gyro calibration data stored here writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer delay(10); writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode delay(10); - readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values - magCalibration[0] = (float)(rawData[0] - 128) / 256.0f + 1.0f; // Return x-axis sensitivity adjustment values, etc. + readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values + magCalibration[0] = (float)(rawData[0] - 128) / 256.0f + 1.0f; // Return x-axis sensitivity adjustment values, etc. magCalibration[1] = (float)(rawData[1] - 128) / 256.0f + 1.0f; magCalibration[2] = (float)(rawData[2] - 128) / 256.0f + 1.0f; _magCalibration[0] = magCalibration[0]; @@ -405,14 +423,14 @@ void MPU9250::initAK8963(uint8_t Mscale, uint8_t Mmode, float* magCalibration) { delay(10); } - -void MPU9250::initMPU9250(uint8_t Ascale, uint8_t Gscale, uint8_t sampleRate) { +void MPU9250::initMPU9250(uint8_t Ascale, uint8_t Gscale, uint8_t sampleRate) +{ // wake up device writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors - delay(100); // Wait for all registers to reset + delay(100); // Wait for all registers to reset // get stable time source - writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Auto select clock source to be PLL gyroscope reference if ready else + writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Auto select clock source to be PLL gyroscope reference if ready else delay(200); // Configure Gyro and Thermometer @@ -424,32 +442,32 @@ void MPU9250::initMPU9250(uint8_t Ascale, uint8_t Gscale, uint8_t sampleRate) { writeByte(MPU9250_ADDRESS, CONFIG, 0x03); // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV) - writeByte(MPU9250_ADDRESS, SMPLRT_DIV, sampleRate); // Use a 200 Hz rate; a rate consistent with the filter update rate + writeByte(MPU9250_ADDRESS, SMPLRT_DIV, sampleRate); // Use a 200 Hz rate; a rate consistent with the filter update rate // determined inset in CONFIG above // Set gyroscope full scale range // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3 uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG); // get current GYRO_CONFIG register value // c = c & ~0xE0; // Clear self-test bits [7:5] - c = c & ~0x02; // Clear Fchoice bits [1:0] - c = c & ~0x18; // Clear AFS bits [4:3] + c = c & ~0x02; // Clear Fchoice bits [1:0] + c = c & ~0x18; // Clear AFS bits [4:3] c = c | Gscale << 3; // Set full scale range for the gyro // c =| 0x00; // Set Fchoice for the gyro to 11 by writing its inverse to bits 1:0 of GYRO_CONFIG - writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c); // Write new GYRO_CONFIG value to register + writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c); // Write new GYRO_CONFIG value to register // Set accelerometer full-scale range configuration c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG); // get current ACCEL_CONFIG register value // c = c & ~0xE0; // Clear self-test bits [7:5] - c = c & ~0x18; // Clear AFS bits [4:3] - c = c | Ascale << 3; // Set full scale range for the accelerometer + c = c & ~0x18; // Clear AFS bits [4:3] + c = c | Ascale << 3; // Set full scale range for the accelerometer writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c); // Write new ACCEL_CONFIG register value // Set accelerometer sample rate configuration // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2); // get current ACCEL_CONFIG2 register value - c = c & ~0x0F; // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0]) - c = c | 0x03; // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz + c = c & ~0x0F; // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0]) + c = c | 0x03; // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c); // Write new ACCEL_CONFIG2 register value // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates, @@ -460,12 +478,13 @@ void MPU9250::initMPU9250(uint8_t Ascale, uint8_t Gscale, uint8_t sampleRate) { // clear on read of INT_STATUS, and enable I2C_BYPASS_EN so additional chips // can join the I2C bus and all can be controlled by the Arduino as master // writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22); - writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x12); // INT is 50 microsecond pulse and any read to clear + writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x12); // INT is 50 microsecond pulse and any read to clear writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt delay(100); } -void MPU9250::magcalMPU9250(float* dest1, float* dest2, float mRes) { +void MPU9250::magcalMPU9250(float *dest1, float *dest2, float mRes) +{ uint16_t ii = 0, sample_count = 0; int32_t mag_bias[3] = {0, 0, 0}, mag_scale[3] = {0, 0, 0}; int16_t mag_max[3] = {-32767, -32767, -32767}, mag_min[3] = {32767, 32767, 32767}, mag_temp[3] = {0, 0, 0}; @@ -474,33 +493,41 @@ void MPU9250::magcalMPU9250(float* dest1, float* dest2, float mRes) { delay(4000); // shoot for ~fifteen seconds of mag data - if (_Mmode == 0x02) { - sample_count = 128; // at 8 Hz ODR, new mag data is available every 125 ms + if (_Mmode == 0x02) + { + sample_count = 128; // at 8 Hz ODR, new mag data is available every 125 ms } - if (_Mmode == 0x06) { - sample_count = 1500; // at 100 Hz ODR, new mag data is available every 10 ms + if (_Mmode == 0x06) + { + sample_count = 1500; // at 100 Hz ODR, new mag data is available every 10 ms } - for (ii = 0; ii < sample_count; ii++) { - readMagData(mag_temp); // Read the mag data + for (ii = 0; ii < sample_count; ii++) + { + readMagData(mag_temp); // Read the mag data - for (int jj = 0; jj < 3; jj++) { - if (mag_temp[jj] > mag_max[jj]) { + for (int jj = 0; jj < 3; jj++) + { + if (mag_temp[jj] > mag_max[jj]) + { mag_max[jj] = mag_temp[jj]; } - if (mag_temp[jj] < mag_min[jj]) { + if (mag_temp[jj] < mag_min[jj]) + { mag_min[jj] = mag_temp[jj]; } } - if (_Mmode == 0x02) { - delay(135); // at 8 Hz ODR, new mag data is available every 125 ms + if (_Mmode == 0x02) + { + delay(135); // at 8 Hz ODR, new mag data is available every 125 ms } - if (_Mmode == 0x06) { - delay(12); // at 100 Hz ODR, new mag data is available every 10 ms + if (_Mmode == 0x06) + { + delay(12); // at 100 Hz ODR, new mag data is available every 10 ms } } @@ -509,18 +536,18 @@ void MPU9250::magcalMPU9250(float* dest1, float* dest2, float mRes) { // Serial.println("mag z min/max:"); Serial.println(mag_max[2]); Serial.println(mag_min[2]); // Get hard iron correction - mag_bias[0] = (mag_max[0] + mag_min[0]) / 2; // get average x mag bias in counts - mag_bias[1] = (mag_max[1] + mag_min[1]) / 2; // get average y mag bias in counts - mag_bias[2] = (mag_max[2] + mag_min[2]) / 2; // get average z mag bias in counts + mag_bias[0] = (mag_max[0] + mag_min[0]) / 2; // get average x mag bias in counts + mag_bias[1] = (mag_max[1] + mag_min[1]) / 2; // get average y mag bias in counts + mag_bias[2] = (mag_max[2] + mag_min[2]) / 2; // get average z mag bias in counts - dest1[0] = (float) mag_bias[0] * mRes * _magCalibration[0]; // save mag biases in G for main program - dest1[1] = (float) mag_bias[1] * mRes * _magCalibration[1]; - dest1[2] = (float) mag_bias[2] * mRes * _magCalibration[2]; + dest1[0] = (float)mag_bias[0] * mRes * _magCalibration[0]; // save mag biases in G for main program + dest1[1] = (float)mag_bias[1] * mRes * _magCalibration[1]; + dest1[2] = (float)mag_bias[2] * mRes * _magCalibration[2]; // Get soft iron correction estimate - mag_scale[0] = (mag_max[0] - mag_min[0]) / 2; // get average x axis max chord length in counts - mag_scale[1] = (mag_max[1] - mag_min[1]) / 2; // get average y axis max chord length in counts - mag_scale[2] = (mag_max[2] - mag_min[2]) / 2; // get average z axis max chord length in counts + mag_scale[0] = (mag_max[0] - mag_min[0]) / 2; // get average x axis max chord length in counts + mag_scale[1] = (mag_max[1] - mag_min[1]) / 2; // get average y axis max chord length in counts + mag_scale[2] = (mag_max[2] - mag_min[2]) / 2; // get average z axis max chord length in counts float avg_rad = mag_scale[0] + mag_scale[1] + mag_scale[2]; avg_rad /= 3.0; @@ -534,10 +561,11 @@ void MPU9250::magcalMPU9250(float* dest1, float* dest2, float mRes) { // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers. -void MPU9250::calibrateMPU9250(float* dest1, float* dest2) { +void MPU9250::calibrateMPU9250(float *dest1, float *dest2) +{ uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data uint16_t ii, packet_count, fifo_count; - int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; + int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; // reset device writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device @@ -559,77 +587,80 @@ void MPU9250::calibrateMPU9250(float* dest1, float* dest2) { delay(15); // Configure MPU6050 gyro and accelerometer for bias calculation - writeByte(MPU9250_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz - writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz + writeByte(MPU9250_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz + writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity - uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec - uint16_t accelsensitivity = 16384; // = 16384 LSB/g + uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec + uint16_t accelsensitivity = 16384; // = 16384 LSB/g // Configure FIFO to capture accelerometer and gyro data for bias calculation - writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO - writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9150) - delay(40); // accumulate 40 samples in 40 milliseconds = 480 bytes + writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO + writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9150) + delay(40); // accumulate 40 samples in 40 milliseconds = 480 bytes // At end of sample accumulation, turn off FIFO sensor read - writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO + writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count fifo_count = ((uint16_t)data[0] << 8) | data[1]; packet_count = fifo_count / 12; // How many sets of full gyro and accelerometer data for averaging - for (ii = 0; ii < packet_count; ii++) { + for (ii = 0; ii < packet_count; ii++) + { int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0}; - readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging - accel_temp[0] = (int16_t)(((int16_t)data[0] << 8) | data[1]) ; // Form signed 16-bit integer for each sample in FIFO - accel_temp[1] = (int16_t)(((int16_t)data[2] << 8) | data[3]) ; - accel_temp[2] = (int16_t)(((int16_t)data[4] << 8) | data[5]) ; - gyro_temp[0] = (int16_t)(((int16_t)data[6] << 8) | data[7]) ; - gyro_temp[1] = (int16_t)(((int16_t)data[8] << 8) | data[9]) ; - gyro_temp[2] = (int16_t)(((int16_t)data[10] << 8) | data[11]) ; - - accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases - accel_bias[1] += (int32_t) accel_temp[1]; - accel_bias[2] += (int32_t) accel_temp[2]; - gyro_bias[0] += (int32_t) gyro_temp[0]; - gyro_bias[1] += (int32_t) gyro_temp[1]; - gyro_bias[2] += (int32_t) gyro_temp[2]; - + readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging + accel_temp[0] = (int16_t)(((int16_t)data[0] << 8) | data[1]); // Form signed 16-bit integer for each sample in FIFO + accel_temp[1] = (int16_t)(((int16_t)data[2] << 8) | data[3]); + accel_temp[2] = (int16_t)(((int16_t)data[4] << 8) | data[5]); + gyro_temp[0] = (int16_t)(((int16_t)data[6] << 8) | data[7]); + gyro_temp[1] = (int16_t)(((int16_t)data[8] << 8) | data[9]); + gyro_temp[2] = (int16_t)(((int16_t)data[10] << 8) | data[11]); + + accel_bias[0] += (int32_t)accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases + accel_bias[1] += (int32_t)accel_temp[1]; + accel_bias[2] += (int32_t)accel_temp[2]; + gyro_bias[0] += (int32_t)gyro_temp[0]; + gyro_bias[1] += (int32_t)gyro_temp[1]; + gyro_bias[2] += (int32_t)gyro_temp[2]; } - accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases - accel_bias[1] /= (int32_t) packet_count; - accel_bias[2] /= (int32_t) packet_count; - gyro_bias[0] /= (int32_t) packet_count; - gyro_bias[1] /= (int32_t) packet_count; - gyro_bias[2] /= (int32_t) packet_count; - - if (accel_bias[2] > 0L) { - accel_bias[2] -= (int32_t) accelsensitivity; // Remove gravity from the z-axis accelerometer bias calculation - } else { - accel_bias[2] += (int32_t) accelsensitivity; + accel_bias[0] /= (int32_t)packet_count; // Normalize sums to get average count biases + accel_bias[1] /= (int32_t)packet_count; + accel_bias[2] /= (int32_t)packet_count; + gyro_bias[0] /= (int32_t)packet_count; + gyro_bias[1] /= (int32_t)packet_count; + gyro_bias[2] /= (int32_t)packet_count; + + if (accel_bias[2] > 0L) + { + accel_bias[2] -= (int32_t)accelsensitivity; // Remove gravity from the z-axis accelerometer bias calculation + } + else + { + accel_bias[2] += (int32_t)accelsensitivity; } // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup - data[0] = (-gyro_bias[0] / 4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format - data[1] = (-gyro_bias[0] / 4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases - data[2] = (-gyro_bias[1] / 4 >> 8) & 0xFF; - data[3] = (-gyro_bias[1] / 4) & 0xFF; - data[4] = (-gyro_bias[2] / 4 >> 8) & 0xFF; - data[5] = (-gyro_bias[2] / 4) & 0xFF; + data[0] = (-gyro_bias[0] / 4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format + data[1] = (-gyro_bias[0] / 4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases + data[2] = (-gyro_bias[1] / 4 >> 8) & 0xFF; + data[3] = (-gyro_bias[1] / 4) & 0xFF; + data[4] = (-gyro_bias[2] / 4 >> 8) & 0xFF; + data[5] = (-gyro_bias[2] / 4) & 0xFF; // Push gyro biases to hardware registers writeByte(MPU9250_ADDRESS, XG_OFFSET_H, 0); - writeByte(MPU9250_ADDRESS, XG_OFFSET_L, 0); - writeByte(MPU9250_ADDRESS, YG_OFFSET_H, 0); - writeByte(MPU9250_ADDRESS, YG_OFFSET_L, 0); - writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, 0); - writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, 0); + writeByte(MPU9250_ADDRESS, XG_OFFSET_L, 0); + writeByte(MPU9250_ADDRESS, YG_OFFSET_H, 0); + writeByte(MPU9250_ADDRESS, YG_OFFSET_L, 0); + writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, 0); + writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, 0); // Output scaled gyro biases for display in the main program - dest1[0] = (float) gyro_bias[0] / (float) gyrosensitivity; - dest1[1] = (float) gyro_bias[1] / (float) gyrosensitivity; - dest1[2] = (float) gyro_bias[2] / (float) gyrosensitivity; + dest1[0] = (float)gyro_bias[0] / (float)gyrosensitivity; + dest1[1] = (float)gyro_bias[1] / (float)gyrosensitivity; + dest1[2] = (float)gyro_bias[2] / (float)gyrosensitivity; // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold @@ -637,7 +668,7 @@ void MPU9250::calibrateMPU9250(float* dest1, float* dest2) { // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that // the accelerometer biases calculated above must be divided by 8. - int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases + int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values accel_bias_reg[0] = (int32_t)(((int16_t)data[0] << 8) | data[1]); readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]); @@ -645,12 +676,14 @@ void MPU9250::calibrateMPU9250(float* dest1, float* dest2) { readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]); accel_bias_reg[2] = (int32_t)(((int16_t)data[0] << 8) | data[1]); - uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers + uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis - for (ii = 0; ii < 3; ii++) { - if ((accel_bias_reg[ii] & mask)) { - mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit + for (ii = 0; ii < 3; ii++) + { + if ((accel_bias_reg[ii] & mask)) + { + mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit } } @@ -660,13 +693,13 @@ void MPU9250::calibrateMPU9250(float* dest1, float* dest2) { accel_bias_reg[2] -= (accel_bias[2] / 8); data[0] = (accel_bias_reg[0] >> 8) & 0xFF; - data[1] = (accel_bias_reg[0]) & 0xFF; + data[1] = (accel_bias_reg[0]) & 0xFF; data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers data[2] = (accel_bias_reg[1] >> 8) & 0xFF; - data[3] = (accel_bias_reg[1]) & 0xFF; + data[3] = (accel_bias_reg[1]) & 0xFF; data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers data[4] = (accel_bias_reg[2] >> 8) & 0xFF; - data[5] = (accel_bias_reg[2]) & 0xFF; + data[5] = (accel_bias_reg[2]) & 0xFF; data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers // Apparently this is not working for the acceleration biases in the MPU-9250 @@ -686,64 +719,69 @@ void MPU9250::calibrateMPU9250(float* dest1, float* dest2) { } // Accelerometer and gyroscope self test; check calibration wrt factory settings -void MPU9250::SelfTest(float* destination) { // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass +void MPU9250::SelfTest(float *destination) +{ // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass uint8_t rawData[6] = {0, 0, 0, 0, 0, 0}; uint8_t selfTest[6]; int32_t gAvg[3] = {0}, aAvg[3] = {0}, aSTAvg[3] = {0}, gSTAvg[3] = {0}; float factoryTrim[6]; uint8_t FS = 0; - writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz - writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz - writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1 << FS); // Set full scale range for the gyro to 250 dps - writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz + writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz + writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz + writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1 << FS); // Set full scale range for the gyro to 250 dps + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1 << FS); // Set full scale range for the accelerometer to 2 g - for (int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer + for (int ii = 0; ii < 200; ii++) + { // get average current values of gyro and acclerometer - readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array - aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value - aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; - aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; + readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array + aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]); // Turn the MSB and LSB into a signed 16-bit value + aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]); + aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]); readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array - gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value - gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; - gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; + gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]); // Turn the MSB and LSB into a signed 16-bit value + gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]); + gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]); } - for (int ii = 0; ii < 3; ii++) { // Get average of 200 values and store as average current readings + for (int ii = 0; ii < 3; ii++) + { // Get average of 200 values and store as average current readings aAvg[ii] /= 200; gAvg[ii] /= 200; } // Configure the accelerometer for self-test writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g - writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s - delay(25); // Delay a while to let the device stabilize + writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s + delay(25); // Delay a while to let the device stabilize - for (int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer + for (int ii = 0; ii < 200; ii++) + { // get average self-test values of gyro and acclerometer - readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array - aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value - aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; - aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; - - readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array - gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value - gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; - gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; + readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array + aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]); // Turn the MSB and LSB into a signed 16-bit value + aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]); + aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]); + + readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array + gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]); // Turn the MSB and LSB into a signed 16-bit value + gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]); + gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]); } - for (int ii = 0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings + for (int ii = 0; ii < 3; ii++) + { // Get average of 200 values and store as average self-test readings aSTAvg[ii] /= 200; gSTAvg[ii] /= 200; } // Configure the gyro and accelerometer for normal operation writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); - writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); - delay(25); // Delay a while to let the device stabilize + writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); + delay(25); // Delay a while to let the device stabilize // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results @@ -763,16 +801,16 @@ void MPU9250::SelfTest(float* destination) { // Should return percent deviation // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response // To get percent, must multiply by 100 - for (int i = 0; i < 3; i++) { - destination[i] = 100.0f * ((float)(aSTAvg[i] - aAvg[i])) / factoryTrim[i] - 100.0f; // Report percent differences + for (int i = 0; i < 3; i++) + { + destination[i] = 100.0f * ((float)(aSTAvg[i] - aAvg[i])) / factoryTrim[i] - 100.0f; // Report percent differences destination[i + 3] = 100.0f * ((float)(gSTAvg[i] - gAvg[i])) / factoryTrim[i + 3] - 100.0f; // Report percent differences } - } - // simple function to scan for I2C devices on the bus -void MPU9250::I2Cscan() { +void MPU9250::I2Cscan() +{ // scan for i2c devices byte error, address; int nDevices; @@ -781,18 +819,20 @@ void MPU9250::I2Cscan() { nDevices = 0; - for (address = 1; address < 127; address++) { + for (address = 1; address < 127; address++) + { // The i2c_scanner uses the return value of // the Write.endTransmisstion to see if // a device did acknowledge to the address. Wire.beginTransmission(address); error = Wire.endTransmission(); - - if (error == 0) { + if (error == 0) + { Serial.print("I2C device found at address 0x"); - if (address < 16) { + if (address < 16) + { Serial.print("0"); } @@ -800,10 +840,13 @@ void MPU9250::I2Cscan() { Serial.println(" !"); nDevices++; - } else if (error == 4) { + } + else if (error == 4) + { Serial.print("Unknown error at address 0x"); - if (address < 16) { + if (address < 16) + { Serial.print("0"); } @@ -811,45 +854,47 @@ void MPU9250::I2Cscan() { } } - if (nDevices == 0) { + if (nDevices == 0) + { Serial.println("No I2C devices found\n"); - } else { + } + else + { Serial.println("done\n"); } } - // I2C read/write functions for the MPU9250 sensors -void MPU9250::writeByte(uint8_t address, uint8_t subAddress, uint8_t data) { - Wire.beginTransmission(address); // Initialize the Tx buffer - Wire.write(subAddress); // Put slave register address in Tx buffer - Wire.write(data); // Put data in Tx buffer - Wire.endTransmission(); // Send the Tx buffer +void MPU9250::writeByte(uint8_t address, uint8_t subAddress, uint8_t data) +{ + Wire.beginTransmission(address); // Initialize the Tx buffer + Wire.write(subAddress); // Put slave register address in Tx buffer + Wire.write(data); // Put data in Tx buffer + Wire.endTransmission(); // Send the Tx buffer } -uint8_t MPU9250::readByte(uint8_t address, uint8_t subAddress) { - uint8_t data = 0; // `data` will store the register data - Wire.beginTransmission(address); // Initialize the Tx buffer - Wire.write(subAddress); // Put slave register address in Tx buffer - Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive - Wire.requestFrom(address, 1); // Read two bytes from slave register address on MPU9250 - data = Wire.read(); // Fill Rx buffer with result - return data; // Return data read from slave register +uint8_t MPU9250::readByte(uint8_t address, uint8_t subAddress) +{ + uint8_t data = 0; // `data` will store the register data + Wire.beginTransmission(address); // Initialize the Tx buffer + Wire.write(subAddress); // Put slave register address in Tx buffer + Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive + Wire.requestFrom(address, 1); // Read two bytes from slave register address on MPU9250 + data = Wire.read(); // Fill Rx buffer with result + return data; // Return data read from slave register } -void MPU9250::readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t* dest) { - Wire.beginTransmission(address); // Initialize the Tx buffer - Wire.write(subAddress); // Put slave register address in Tx buffer - Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive +void MPU9250::readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t *dest) +{ + Wire.beginTransmission(address); // Initialize the Tx buffer + Wire.write(subAddress); // Put slave register address in Tx buffer + Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive uint8_t i = 0; - Wire.requestFrom(address, count); // Read bytes from slave register address + Wire.requestFrom(address, count); // Read bytes from slave register address - while (Wire.available()) { + while (Wire.available()) + { dest[i++] = Wire.read(); - } // Put read results in the Rx buffer + } // Put read results in the Rx buffer } - - - - diff --git a/lib/kriswiner/hwheadtrackmpu9250.h b/lib/kriswiner/hwheadtrackmpu9250.h index cc7c039..c3ba631 100644 --- a/lib/kriswiner/hwheadtrackmpu9250.h +++ b/lib/kriswiner/hwheadtrackmpu9250.h @@ -2,7 +2,7 @@ #include #include //https://github.com/bblanchon/ArduinoJson -#include "mpu9250.h" +#include "MPU9250.h" /** * 6DOF MPU6050 HeadTracker diff --git a/platformio.ini b/platformio.ini index 5088491..8706361 100644 --- a/platformio.ini +++ b/platformio.ini @@ -13,8 +13,9 @@ lib_deps_embedded_external = I2Cdevlib-MPU6050 Brzo I2C@1.3.2 - https://github.com/tzapu/WiFiManager#development + https://github.com/tzapu/WiFiManager ArduinoJson + electroniccats/MPU6050@^0.5.0 [env:wemos] diff --git a/src/main.cpp b/src/main.cpp index 479569b..28f1816 100644 --- a/src/main.cpp +++ b/src/main.cpp @@ -24,7 +24,7 @@ #include "jscript.generated.h" #include "protocolSelect_html.generated.h" -#include "I2Cdev.h" +// #include "I2Cdev.h" #include #include #include