forked from OpenRLHF/OpenRLHF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_ppo_llama_ray_slurm.sh
executable file
·96 lines (86 loc) · 3.36 KB
/
train_ppo_llama_ray_slurm.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#!/bin/bash
#SBATCH -p { partition }
#SBATCH -A { account }
#SBATCH -J { jobname }
#SBATCH -N 2 # 64x8x4
#SBATCH -t {LIMIT_TIME} # wall time
#SBATCH --ntasks-per-node=1 # tasks per node
#SBATCH --exclusive # exclusive node access
#SBATCH --mem=0 # all mem avail
#SBATCH --mail-type=FAIL # only send email on failure
#SBATCH --overcommit # needed for pytorch
# project settings
OPENRLHF_PATH=<OPENRLHF_ROOT_PATH>
MOUNT="$OPENRLHF_PATH:/openrlhf,$HOME/.cache:/root/.cache"
IMAGE_NAME="nvcr.io/nvidia/pytorch:24.02-py3"
RAY_VERSION=2.12.0
JOBLOG="$(realpath .)/train_ppo_llama_ray-$SLURM_JOB_ID.log"
echo "$(date '+%Y-%m-%d %H:%M:%S') Job ${SLURM_JOB_ID} started ..." &>> ${JOBLOG}
# launch ray daemon
nodes=$(scontrol show hostnames "$SLURM_JOB_NODELIST") # Getting the node names
nodes_array=( $nodes )
node_1=${nodes_array[0]}
ip=$node_1
port=6379
ip_head=$ip:$port
export ip_head
echo "IP Head: $ip_head" &>> ${JOBLOG}
echo "STARTING HEAD at $node_1" &>> ${JOBLOG}
srun --nodes=1 --ntasks=1 -w "$node_1" --container-image="$IMAGE_NAME" --container-mounts="$MOUNT" bash -c \
&& pip install ray[default]==$RAY_VERSION \
&& /root/.local/bin/ray start --head --node-ip-address=$ip --port=$port --block" &>> ${JOBLOG} &
sleep 10s
worker_num=$((SLURM_JOB_NUM_NODES)) #number of nodes other than the head node
for ((i = 1; i < worker_num; i++)); do
node_i=${nodes_array[$i]}
echo "STARTING WORKER $i at $node_i" &>> ${JOBLOG}
srun --nodes=1 --ntasks=1 -w "$node_i" --container-image="$IMAGE_NAME" --container-mounts="$MOUNT" bash -c \
&& pip install ray[default]==$RAY_VERSION \
&& /root/.local/bin/ray start --address "$ip_head" --block" &>> ${JOBLOG} &
sleep 1s;
done
sleep 30s
# ===== submit ray job =====
# Job start
srun --overlap --nodes=1 --ntasks=1 -w "$node_1" --container-image="$IMAGE_NAME" --container-mounts="$MOUNT" bash -c \
"pip install ray[default]==$RAY_VERSION \
&& /root/.local/bin/ray job submit --address=http://localhost:8265 \
--runtime-env-json='{\"working_dir\": \"/openrlhf\", \"pip\": \"/openrlhf/requirements.txt\"}' \
-- python3 -m openrlhf.cli.train_ppo_ray \
--ref_num_nodes 1 \
--ref_num_gpus_per_node 4 \
--reward_num_nodes 1 \
--reward_num_gpus_per_node 4 \
--critic_num_nodes 1 \
--critic_num_gpus_per_node 4 \
--actor_num_nodes 1 \
--actor_num_gpus_per_node 4 \
--vllm_num_engines 4 \
--vllm_tensor_parallel_size 2 \
--colocate_critic_reward \
--colocate_actor_ref \
--pretrain OpenRLHF/Llama-3-8b-sft-mixture \
--reward_pretrain OpenRLHF/Llama-3-8b-rm-mixture \
--save_path /openrlhf/examples/checkpoint/llama3-8b-rlhf \
--micro_train_batch_size 8 \
--train_batch_size 128 \
--micro_rollout_batch_size 16 \
--rollout_batch_size 1024 \
--max_samples 100000 \
--max_epochs 1 \
--prompt_max_len 1024 \
--generate_max_len 1024 \
--zero_stage 3 \
--bf16 \
--actor_learning_rate 5e-7 \
--critic_learning_rate 9e-6 \
--init_kl_coef 0.01 \
--prompt_data OpenRLHF/prompt-collection-v0.1 \
--input_key context_messages \
--apply_chat_template \
--normalize_reward \
--adam_offload \
--flash_attn \
--gradient_checkpointing \
--use_wandb {wandb_token}" &>> ${JOBLOG}
echo "$(date '+%Y-%m-%d %H:%M:%S') Job ${SLURM_JOB_ID} stopped ..." &>> ${JOBLOG}