-
Notifications
You must be signed in to change notification settings - Fork 0
/
MySVMlin.m
53 lines (44 loc) · 2.29 KB
/
MySVMlin.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
% M.-R. Amini, V. Truong, C. Goutte. A Boosting Algorithm for Learning Bipartite Ranking Functions with Partially Labeled Data.
% Proceedings of the 31st International ACM SIGIR (SIGIR 2008), 2008.
% http://vikas.sindhwani.org/svmlin.html
function [pred] = MySVMlin(Y1, X1, Y2, X2, para)
lambda = para.lambda;
lambda_u = para.lambda_u;
% create training and test files
fn_training_label = para.fn_training_label;
fn_training_data = para.fn_training_data;
fn_test_label = para.fn_test_label;
fn_test_data = para.fn_test_data;
% % parameter_file for trained model
% fn_model = para.fn_model;
% fn_prediction = para.fn_prediction;
% put all test cases in the training set for SSL
% labels of test cases are zero (not +1 or -1 like training cases)
Y_training = [Y1; zeros(length(Y2), 1)];
svmlin_input(Y_training, [X1; X2], fn_training_label, fn_training_data);
svmlin_input(Y2, X2, fn_test_label, fn_test_data);
% Usage
% Train: svmlin [options] training_examples training_labels
% Test: svmlin -f weights_file test_examples
% Evaluate: svmlin -f weights_file test_examples test_labels
%
% Options:
% -A algorithm : set algorithm (default 1)
% 0 -- Regularized Least Squares (RLS) Classification
% 1 -- SVM (L2-SVM-MFN) (default choice)
% 2 -- Multi-switch Transductive SVM (using L2-SVM-MFN)
% 3 -- Deterministic Annealing Semi-supervised SVM (using L2-SVM-MFN)
% -W regularization parameter lambda (default 1)
% -U regularization parameter lambda_u (default 1) (
% lambda_u is a user-provided parameter that provides control over the influence of unlabeled data
% -S maximum number of switches in TSVM (default 0.5*number of unlabeled examples)
% -R positive class fraction of unlabeled data (0.5)
% -f weights_filename (Test Mode: input_filename is the test file)
% -Cp relative cost for positive examples (only available with -A 1)
% -Cn relative cost for negative examples (only available with -A 1)
% MFN: Modified Finite Newton
command_train = sprintf('svmlin-v1.0/svmlin -A 3 -W %f -U %f %s %s', lambda, lambda_u, fn_training_data, fn_training_label);
system(command_train);
command_test = sprintf('svmlin-v1.0/svmlin -f %s.weights %s %s', fn_training_data, fn_test_data, fn_test_label);
system(command_test);
pred = load([fn_test_data '.outputs']);