diff --git a/docs/demos/math.tsx b/docs/demos/math.tsx index 0988753..880116b 100644 --- a/docs/demos/math.tsx +++ b/docs/demos/math.tsx @@ -13,13 +13,60 @@ export default () => { { type: 'paragraph', children: [ - { text: '当' }, - { type: 'latex', children: [{ text: '' }], formula: 'b=1' }, + { text: '如图所示,倾角为' }, + { type: 'latex', children: [{ text: '' }], formula: 'θ' }, + { text: '的周定斜面顶端安装有定滑轮,轻绳跨过滑轮两端分别连接物体' }, + { type: 'latex', children: [{ text: '' }], formula: 'A' }, { text: '、' }, - { type: 'latex', children: [{ text: '' }], formula: 'c=2' }, - { text: '时,请计算' }, - { type: 'latex', children: [{ text: '' }], formula: 'a=b+c' }, - { text: '的结果?' }, + { type: 'latex', children: [{ text: '' }], formula: 'B' }, + { + text: ',轻绵与斜面平行,整个系统始终处于静止状态。不计滑轮的摩擦。已知物体', + }, + { type: 'latex', children: [{ text: '4 ' }], formula: 'A' }, + { text: ' 的质量为' }, + { type: 'latex', children: [{ text: '' }], formula: 'm1' }, + { text: ',物体 ' }, + { type: 'latex', children: [{ text: '' }], formula: 'A' }, + { text: ' 与斜面间的动摩擦因数为 ' }, + { type: 'latex', children: [{ text: '' }], formula: 'μ( μ< tanθ < 1)' }, + { text: ',设最大静摩擦力等于滑动摩擦力,重力加速度大小为' }, + { type: 'latex', children: [{ text: '' }], formula: 'g' }, + { text: '。求:' }, + ], + }, + { + type: 'paragraph', + children: [ + { text: '(1)斜面对物体 ' }, + { type: 'latex', children: [{ text: '' }], formula: 'A' }, + { text: ' 的支持力大小 ' }, + { type: 'latex', children: [{ text: '' }], formula: 'F_N' }, + { text: ';' }, + ], + }, + { + type: 'paragraph', + children: [ + { text: '(2)物休 ' }, + { type: 'latex', children: [{ text: '' }], formula: 'B' }, + { text: ' 的质量 ' }, + { type: 'latex', children: [{ text: '' }], formula: 'm_B' }, + { text: ' 的取值范围;' }, + ], + }, + { type: 'paragraph', children: [{ text: '' }] }, + { + type: 'paragraph', + children: [ + { text: '' }, + { + type: 'img', + url: '', + children: [{ text: '' }], + imgHeight: 206, + imgWidth: 227, + }, + { text: '' }, ], }, ]); @@ -79,6 +126,8 @@ export default () => {