-
Notifications
You must be signed in to change notification settings - Fork 15
/
lm_vae_lstm.py
167 lines (150 loc) · 6.1 KB
/
lm_vae_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import argparse
import numpy
import theano
import theano.tensor as T
from databases.lm_reconstruction_database import LmReconstructionDatabase
from vae import Sampler, Dropword, Store, LMReconstructionModel
from nn.layers1d import LayoutCNNToRNN, LayoutRNNToCNN, Convolution1d, Deconvolution1D, HighwayConvolution1d
from nn.layers import Linear, Embed, Flatten, Reshape, SoftMax, Dropout, OneHot
from nn.activations import ReLU, Tanh, Gated
from nn.optimizer import Optimizer
from nn.updates import Adam
from nn.rnns import LNLSTM
from nn.containers import Sequential, Parallel
from nn.normalization import BatchNormalization
import nn.utils
def make_model(z, sample_size, dropword_p, n_classes, encdec_layers, lstm_size, alpha):
assert sample_size % (2 ** encdec_layers) == 0
if encdec_layers == 2:
encoder = [
OneHot(n_classes),
LayoutRNNToCNN(),
Convolution1d(3, 128, n_classes, pad=1, stride=2, causal=False, name="conv1"),
BatchNormalization(128, name="bn1", collect=False),
ReLU(),
Convolution1d(3, 256, 128, pad=1, stride=2, causal=False, name="conv2"),
BatchNormalization(256, name="bn2", collect=False),
ReLU(),
Flatten(),
Linear(sample_size / 4 * 256, z * 2, name="fc_encode"),
Sampler(z),
]
decoder_from_z = [
Linear(z, sample_size / 4 * 256, name="fc_decode"),
ReLU(),
Reshape((-1, 256, sample_size / 4, 1)),
Deconvolution1D(256, 128, 3, pad=1, stride=2, name="deconv2"),
BatchNormalization(128, name="deconv_bn2", collect=False),
ReLU(),
Deconvolution1D(128, 200, 3, pad=1, stride=2, name="deconv1"),
BatchNormalization(200, name="deconv_bn1", collect=False),
ReLU(),
LayoutCNNToRNN(),
Parallel([
[
Linear(200, n_classes, name="aux_classifier"),
SoftMax(),
Store()
],
[]
], shared_input=True),
lambda x: x[1]
]
elif encdec_layers == 3:
encoder = [
OneHot(n_classes),
LayoutRNNToCNN(),
Convolution1d(3, 128, n_classes, pad=1, stride=2, causal=False, name="conv1"),
BatchNormalization(128, name="bn1"),
ReLU(),
Convolution1d(3, 256, 128, pad=1, stride=2, causal=False, name="conv2"),
BatchNormalization(256, name="bn2"),
ReLU(),
Convolution1d(3, 512, 256, pad=1, stride=2, causal=False, name="conv3"),
BatchNormalization(512, name="bn3"),
ReLU(),
Flatten(),
Linear(sample_size / 8 * 512, z * 2, name="fc_encode"),
Sampler(z),
]
decoder_from_z = [
Linear(z, sample_size / 8 * 512, name="fc_decode"),
ReLU(),
Reshape((-1, 512, sample_size / 8, 1)),
Deconvolution1D(512, 256, 3, pad=1, stride=2, name="deconv3"),
BatchNormalization(256, name="deconv_bn3", collect=False),
ReLU(),
Deconvolution1D(256, 128, 3, pad=1, stride=2, name="deconv2"),
BatchNormalization(128, name="deconv_bn2", collect=False),
ReLU(),
Deconvolution1D(128, 200, 3, pad=1, stride=2, name="deconv1"),
BatchNormalization(200, name="deconv_bn1", collect=False),
ReLU(),
LayoutCNNToRNN(),
Parallel([
[
Linear(200, n_classes, name="aux_classifier"),
SoftMax(),
Store()
],
[]
], shared_input=True),
lambda x: x[1]
]
else:
raise Exception("unsupported number of encdec layers %d" % encdec_layers)
start_word = n_classes
dummy_word = n_classes + 1
decoder_from_words = [
Dropword(dropword_p, dummy_word=dummy_word),
lambda x: T.concatenate([T.ones((1, x.shape[1]), dtype='int32') * start_word, x], axis=0),
lambda x: x[:-1],
OneHot(n_classes+2),
]
layers = [
Parallel([
encoder,
[]
], shared_input=True),
Parallel([
decoder_from_z,
decoder_from_words
], shared_input=False),
lambda x: T.concatenate(x, axis=2),
LNLSTM(200+n_classes+2, lstm_size, name="declstm"),
Linear(lstm_size, n_classes, name="classifier"),
SoftMax(),
]
model = LMReconstructionModel(layers, aux_loss=True, alpha=alpha)
return model
def main(z, lr, sample_size, p, encdec_layers, lstm_size, alpha, anneal):
train_db = LmReconstructionDatabase("train", batches_per_epoch=1000, sample_size=sample_size)
valid_db = LmReconstructionDatabase("valid", batches_per_epoch=100, sample_size=sample_size)
anneal = bool(anneal)
print anneal
model = make_model(z, sample_size, p, train_db.n_classes, encdec_layers, lstm_size, alpha)
if not anneal:
model.anneal = False
#out = nn.utils.forward(model, train_db, out=model.output(model.input))
#print out.shape
#return
print model.total_params
name = "lm.charvae.z_%d.len_%d.layers_%d.p_%.2f.alpha_%.2f.lstmsz_%d" % \
(z, sample_size, encdec_layers, p, alpha, lstm_size)
if not anneal:
name += ".noanneal"
opt = Optimizer(model, train_db, valid_db, Adam(lr),
name=name, print_info=True)
opt.train(100, decay_after=20, lr_decay=0.95)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-z', default=50, type=int)
parser.add_argument('-lr', default=0.001, type=float)
parser.add_argument('-p', default=0.0, type=float)
parser.add_argument('-alpha', default=0.0, type=float)
parser.add_argument('-sample_size', default=56, type=int)
parser.add_argument('-encdec_layers', default=2, type=int)
parser.add_argument('-lstm_size', default=500, type=int)
parser.add_argument('-anneal', default=1, type=int)
args = parser.parse_args()
main(**vars(args))