-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_A2I.py
183 lines (150 loc) · 7.16 KB
/
train_A2I.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
from PIL import Image
from tqdm import tqdm
from pathlib import Path
import time
import os
import numpy as np
#os.environ['KMP_DUPLICATE_LIB_OK']='True'
import matplotlib
#%matplotlib inline
import matplotlib.pyplot as plt
import IPython.display as ipd
from tqdm.notebook import tqdm
import torchaudio
import torchvision
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.data.dataset import random_split
import loss_function
import data_utils
import utils
from torch.autograd import Variable
class Runner(object):
def __init__(self, model, ImageDiscrimitor, lr, sr, save):
self.learning_rate = lr
self.stopping_rate = sr
self.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
self.model = model.to(self.device)
self.ImageDiscrimitor = ImageDiscrimitor.to(self.device)
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=lr)
self.optimizer_D = torch.optim.Adam(self.ImageDiscrimitor.parameters(), lr=lr)
self.scheduler = ReduceLROnPlateau(self.optimizer, mode='min', factor=0.1, patience=10, verbose=True)
self.scheduler_D = ReduceLROnPlateau(self.optimizer_D, mode='min', factor=0.1, patience=10, verbose=True)
#GAN loss definition
self.criterion_D = nn.BCELoss()
self.criterion_G = nn.BCELoss()
# Running model for train, test and validation. mode: 'train' for training, 'eval' for validation and test
def run(self, dataloader, epoch, mode='TRAIN'):
self.model.train() if mode is 'TRAIN' else self.model.eval()
epoch_loss = 0
loss_NLL_function = nn.CrossEntropyLoss()
#pbar = tqdm(dataloader, desc=f'{mode} Epoch {epoch:02}') # progress bar
#loop = tqdm(range(len(dataloader)))
#for item in pbar:
for iter, item in enumerate(dataloader):
# Move mini-batch to the desired device.
image, lms, label = item
image = image.to(self.device)
lms = lms.to(self.device)
label = label.to(self.device)
#GT_label = F.one_hot(label, num_classes=13).type(torch.cuda.FloatTensor)
output, mean, std, class_pred = self.model(lms, label)
## update D ##################################################
for p in self.ImageDiscrimitor.parameters():
p.requires_grad = True
self.ImageDiscrimitor.zero_grad()
# real image
output_real = self.ImageDiscrimitor(image)
true_labels = Variable(torch.ones_like(output_real))
loss_D_real = self.criterion_D(output_real, true_labels)
#fake image
fake_image = output.detach()
D_fake = self.ImageDiscrimitor(fake_image)
fake_labels = Variable(torch.zeros_like(D_fake))
loss_D_fake = self.criterion_D(D_fake, fake_labels)
loss_D_total = 0.5 * (loss_D_fake + loss_D_real)
if mode is 'TRAIN':
loss_D_total.backward()
self.optimizer_D.step()
## # update G #################################################
for p in self.ImageDiscrimitor.parameters():
p.requires_grad = False
self.ImageDiscrimitor.zero_grad()
loss_G = self.criterion_G(self.ImageDiscrimitor(output), true_labels)
#recon and latent ELBO
loss_VAE = loss_function.loss_function(image, output, mean, std)
#CE the class prediction
loss_NLL = loss_NLL_function(class_pred, label.detach())
total_loss = loss_VAE + loss_NLL + 0.0005 * loss_G
if mode is 'TRAIN':
# Perform backward propagation to compute gradients.
total_loss.backward()
# Update the parameters.
self.optimizer.step()
# Reset the computed gradients.
self.optimizer.zero_grad()
if iter % 100 == 0:
#print(GT_label[0])
log = "[Epoch %d][Iter %d] [Train Loss: %.4f] [VAE Loss: %.4f] [Classification Loss: %.4f] [GAN Loss: %.4f]" % (epoch, iter, total_loss, loss_VAE, loss_NLL, loss_G)
print(log)
save.save_log(log)
batch_size = image.shape[0]
epoch_loss += batch_size * total_loss.item()
epoch_loss = epoch_loss / len(dataloader.dataset)
return epoch_loss, output, image, lms ,label
def test(self, dataloader):
epoch_loss = 0
return epoch_loss
def early_stop(self, loss, epoch):
self.scheduler.step(loss, epoch)
self.learning_rate = self.optimizer.param_groups[0]['lr']
#match net_D lr with generator
#self.optimizer_D.param_groups[0]['lr'] = self.learning_rate
stop = self.learning_rate < self.stopping_rate
return stop
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--name', type=str)
parser.add_argument('--datasetPath', type=str, default='./dataset/')
parser.add_argument('--saveDir', type=str, default='./experiment')
parser.add_argument('--gpu', type=str, default='0', help='gpu')
parser.add_argument('--numEpoch', type=int, default=200, help='input batch size for training')
parser.add_argument('--batchSize', type=int, default=16, help='input batch size for training')
parser.add_argument('--lr', type=float, default=1e-3, help='learning rate')
parser.add_argument('--sr', type=float, default=1e-6, help='stopping rate')
args = parser.parse_args()
## basic run command : python train --name temp
if __name__ == '__main__':
#gpu setup.
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]=args.gpu
# Training setup.
LR = args.lr # learning rate
SR = args.sr # stopping rate
NUM_EPOCHS = args.numEpoch
BATCH_SIZE = args.batchSize
Dataset_Path = args.datasetPath
#Logging setup.
save = utils.SaveUtils(args, args.name)
from model import Audio2ImageACVAE, ImageDiscrimitor
ImageDiscrimitor = ImageDiscrimitor()
model = Audio2ImageACVAE()
train_dataloader, valid_dataloader, test_dataloader = data_utils.get_dataloader(Dataset_Path, BATCH_SIZE)
runner = Runner(model=model,ImageDiscrimitor = ImageDiscrimitor , lr = LR, sr = SR, save = save)
start = time.time()
for epoch in range(NUM_EPOCHS):
train_loss, _, _ = runner.run(train_dataloader, epoch, 'TRAIN')
valid_loss, output_image, gt ,lms ,label = runner.run(valid_dataloader, epoch, 'VALID')
log = "[Epoch %d/%d] [Train Loss: %.4f] [Valid Loss: %.4f]" % (epoch + 1, NUM_EPOCHS, train_loss, valid_loss)
save.save_model(model, epoch)
save.save_image(gt, output_image, epoch)
save.save_mel_onlyGT(lms.cpu().detach().numpy(), epoch, label.cpu().detach().numpy())
save.save_log(log)
print(log)
if runner.early_stop(valid_loss, epoch + 1):
break
print("Execution time: "+str(time.time()-start))