-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference_ideas.html
1241 lines (1208 loc) · 73.8 KB
/
inference_ideas.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
<meta charset="utf-8">
<meta name="generator" content="quarto-1.6.1">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<title>17 The Basic Ideas in Statistical Inference – Resampling statistics</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
width: 0.8em;
margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */
vertical-align: middle;
}
/* CSS for citations */
div.csl-bib-body { }
div.csl-entry {
clear: both;
margin-bottom: 0em;
}
.hanging-indent div.csl-entry {
margin-left:2em;
text-indent:-2em;
}
div.csl-left-margin {
min-width:2em;
float:left;
}
div.csl-right-inline {
margin-left:2em;
padding-left:1em;
}
div.csl-indent {
margin-left: 2em;
}</style>
<script src="site_libs/quarto-nav/quarto-nav.js"></script>
<script src="site_libs/quarto-nav/headroom.min.js"></script>
<script src="site_libs/clipboard/clipboard.min.js"></script>
<script src="site_libs/quarto-search/autocomplete.umd.js"></script>
<script src="site_libs/quarto-search/fuse.min.js"></script>
<script src="site_libs/quarto-search/quarto-search.js"></script>
<meta name="quarto:offset" content="./">
<link href="./inference_intro.html" rel="next">
<link href="./standard_scores.html" rel="prev">
<script src="site_libs/quarto-html/quarto.js"></script>
<script src="site_libs/quarto-html/popper.min.js"></script>
<script src="site_libs/quarto-html/tippy.umd.min.js"></script>
<script src="site_libs/quarto-html/anchor.min.js"></script>
<link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
<script src="site_libs/bootstrap/bootstrap.min.js"></script>
<link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
<script id="quarto-search-options" type="application/json">{
"location": "sidebar",
"copy-button": false,
"collapse-after": 3,
"panel-placement": "start",
"type": "textbox",
"limit": 50,
"keyboard-shortcut": [
"f",
"/",
"s"
],
"show-item-context": false,
"language": {
"search-no-results-text": "No results",
"search-matching-documents-text": "matching documents",
"search-copy-link-title": "Copy link to search",
"search-hide-matches-text": "Hide additional matches",
"search-more-match-text": "more match in this document",
"search-more-matches-text": "more matches in this document",
"search-clear-button-title": "Clear",
"search-text-placeholder": "",
"search-detached-cancel-button-title": "Cancel",
"search-submit-button-title": "Submit",
"search-label": "Search"
}
}</script>
<script type="text/javascript">
$(document).ready(function() {
$("table").addClass('lightable-paper lightable-striped lightable-hover')
});
</script>
<link rel="stylesheet" href="style.css">
<link rel="stylesheet" href="font-awesome.min.css">
</head>
<body class="nav-sidebar floating">
<div id="quarto-search-results"></div>
<header id="quarto-header" class="headroom fixed-top">
<nav class="quarto-secondary-nav">
<div class="container-fluid d-flex">
<button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="Toggle sidebar navigation" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
<i class="bi bi-layout-text-sidebar-reverse"></i>
</button>
<nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./inference_ideas.html"><span class="chapter-number">17</span> <span class="chapter-title">The Basic Ideas in Statistical Inference</span></a></li></ol></nav>
<a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="Toggle sidebar navigation" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
</a>
<button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
<i class="bi bi-search"></i>
</button>
</div>
</nav>
</header>
<!-- content -->
<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
<!-- sidebar -->
<nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
<div class="pt-lg-2 mt-2 text-left sidebar-header">
<div class="sidebar-title mb-0 py-0">
<a href="./">Resampling statistics</a>
</div>
</div>
<div class="mt-2 flex-shrink-0 align-items-center">
<div class="sidebar-search">
<div id="quarto-search" class="" title="Search"></div>
</div>
</div>
<div class="sidebar-menu-container">
<ul class="list-unstyled mt-1">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./index.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">R version</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./preface_third.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">Preface to the third edition</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./preface_second.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">Preface to the second edition</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./intro.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">1</span> <span class="chapter-title">Introduction</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./resampling_method.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">2</span> <span class="chapter-title">The resampling method</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./what_is_probability.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">3</span> <span class="chapter-title">What is probability?</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./about_technology.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">4</span> <span class="chapter-title">Introducing R and the Jupyter notebook</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./resampling_with_code.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">5</span> <span class="chapter-title">Resampling with code</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./resampling_with_code2.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">6</span> <span class="chapter-title">More resampling with code</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./sampling_tools.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">7</span> <span class="chapter-title">Tools for samples and sampling</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./probability_theory_1a.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">8</span> <span class="chapter-title">Probability Theory, Part 1</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./probability_theory_1b.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">9</span> <span class="chapter-title">Probability Theory Part I (continued)</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./more_sampling_tools.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">10</span> <span class="chapter-title">Two puzzles and more tools</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./probability_theory_2_compound.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">11</span> <span class="chapter-title">Probability Theory, Part 2: Compound Probability</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./probability_theory_3.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">12</span> <span class="chapter-title">Probability Theory, Part 3</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./probability_theory_4_finite.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">13</span> <span class="chapter-title">Probability Theory, Part 4: Estimating Probabilities from Finite Universes</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./sampling_variability.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">14</span> <span class="chapter-title">On Variability in Sampling</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./monte_carlo.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">15</span> <span class="chapter-title">The Procedures of Monte Carlo Simulation (and Resampling)</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./standard_scores.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">16</span> <span class="chapter-title">Ranks, Quantiles and Standard Scores</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./inference_ideas.html" class="sidebar-item-text sidebar-link active">
<span class="menu-text"><span class="chapter-number">17</span> <span class="chapter-title">The Basic Ideas in Statistical Inference</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./inference_intro.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">18</span> <span class="chapter-title">Introduction to Statistical Inference</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./point_estimation.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">19</span> <span class="chapter-title">Point Estimation</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./framing_questions.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">20</span> <span class="chapter-title">Framing Statistical Questions</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./testing_counts_1.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">21</span> <span class="chapter-title">Hypothesis-Testing with Counted Data, Part 1</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./significance.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">22</span> <span class="chapter-title">The Concept of Statistical Significance in Testing Hypotheses</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./testing_counts_2.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">23</span> <span class="chapter-title">The Statistics of Hypothesis-Testing with Counted Data, Part 2</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./testing_measured.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">24</span> <span class="chapter-title">The Statistics of Hypothesis-Testing With Measured Data</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./testing_procedures.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">25</span> <span class="chapter-title">General Procedures for Testing Hypotheses</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./confidence_1.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">26</span> <span class="chapter-title">Confidence Intervals, Part 1: Assessing the Accuracy of Samples</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./confidence_2.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">27</span> <span class="chapter-title">Confidence Intervals, Part 2: The Two Approaches to Estimating Confidence Intervals</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./reliability_average.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">28</span> <span class="chapter-title">Some Last Words About the Reliability of Sample Averages</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./correlation_causation.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">29</span> <span class="chapter-title">Correlation and Causation</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./how_big_sample.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">30</span> <span class="chapter-title">How Large a Sample?</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./bayes_simulation.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">31</span> <span class="chapter-title">Bayesian Analysis by Simulation</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./references.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">References</span></a>
</div>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
<span class="menu-text">Appendices</span></a>
<a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="Toggle section">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./exercise_solutions.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">A</span> <span class="chapter-title">Exercise Solutions</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./technical_note.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">B</span> <span class="chapter-title">Technical Note to the Professional Reader</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./acknowlegements.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">C</span> <span class="chapter-title">Acknowledgements</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./code_topics.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">D</span> <span class="chapter-title">Code topics</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./errors_suggestions.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">E</span> <span class="chapter-title">Errors and suggestions</span></span></a>
</div>
</li>
</ul>
</li>
</ul>
</div>
</nav>
<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
<!-- margin-sidebar -->
<div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
<nav id="TOC" role="doc-toc" class="toc-active">
<h2 id="toc-title">Table of contents</h2>
<ul>
<li><a href="#knowledge-without-probabilistic-statistical-inference" id="toc-knowledge-without-probabilistic-statistical-inference" class="nav-link active" data-scroll-target="#knowledge-without-probabilistic-statistical-inference"><span class="header-section-number">17.1</span> Knowledge without probabilistic statistical inference</a></li>
<li><a href="#the-treatment-of-uncertainty" id="toc-the-treatment-of-uncertainty" class="nav-link" data-scroll-target="#the-treatment-of-uncertainty"><span class="header-section-number">17.2</span> The treatment of uncertainty</a></li>
<li><a href="#where-statistical-inference-becomes-crucial" id="toc-where-statistical-inference-becomes-crucial" class="nav-link" data-scroll-target="#where-statistical-inference-becomes-crucial"><span class="header-section-number">17.3</span> Where statistical inference becomes crucial</a></li>
<li><a href="#conclusions" id="toc-conclusions" class="nav-link" data-scroll-target="#conclusions"><span class="header-section-number">17.4</span> Conclusions</a></li>
</ul>
</nav>
</div>
<!-- main -->
<main class="content" id="quarto-document-content">
<header id="title-block-header" class="quarto-title-block default">
<div class="quarto-title">
<h1 class="title"><span id="sec-inference-ideas" class="quarto-section-identifier"><span class="chapter-number">17</span> <span class="chapter-title">The Basic Ideas in Statistical Inference</span></span></h1>
</div>
<div class="quarto-title-meta">
</div>
</header>
<p>Probabilistic statistical inference is a crucial part of the process of informing ourselves about the world around us. Statistics and statistical inference help us understand our world and make sound decisions about how to act.</p>
<p>More specifically, statistical inference is the process of drawing conclusions about populations or other collections of objects about which we have only partial knowledge from samples. Technically, inference may be defined as the selection of a probabilistic model to resemble the process you wish to investigate, investigation of that model’s behavior, and interpretation of the results. Fuller understanding of the nature of statistical inference comes with practice in handling a variety of problems.</p>
<p>Until the 18<sup>th</sup> century, humanity’s extensive knowledge of nature and technology was not based on formal probabilistic statistical inference. But now that we have already dealt with many of the big questions that are easy to answer without probabilistic statistics, and now that we live in a more ramified world than in earlier centuries, the methods of inferential statistics become ever more important.</p>
<p>Furthermore, statistical inference will surely become ever more important in the future as we voyage into realms that are increasingly difficult to comprehend. The development of an accurate chronometer to tell time on sea voyages became a crucial need when Europeans sought to travel to the New World. Similarly, probability and statistical inference become crucial as we voyage out into space and down into the depths of the ocean and the earth, as well as probe into the secrets of the microcosm and of the human mind and soul.</p>
<p>Where probabilistic statistical inference is employed, the inferential procedures may well not be the crucial element. For example, the wording of the questions asked in a public-opinion poll may be more critical than the statistical-inferential procedures used to discern the reliability of the poll results. Yet we dare not disregard the role of the statistical procedures.</p>
<section id="knowledge-without-probabilistic-statistical-inference" class="level2" data-number="17.1">
<h2 data-number="17.1" class="anchored" data-anchor-id="knowledge-without-probabilistic-statistical-inference"><span class="header-section-number">17.1</span> Knowledge without probabilistic statistical inference</h2>
<p>Let us distinguish two kinds of knowledge with which inference at large (that is, not just probabilistic statistical inference) is mainly concerned: a) one or more <em>absolute</em> measurements on one or more dimensions of a collection of one or more items — for example, your income, or the mean income of the people in your country; and b) <em>comparative</em> measurements and evaluations of two or more collections of items (especially whether they are equal or unequal)—for example, the mean income in Brazil compared to the mean income in Argentina. Types (a) and (b) both include asking whether there has been a <em>change</em> between one observation and another.</p>
<p>What is the conceptual basis for gathering these types of knowledge about the world? I believe that our rock bottom conceptual tool is the assumption of what we may call <em>sameness</em>, or <em>continuity</em>, or <em>constancy</em>, or <em>repetition</em>, or <em>equality</em>, or <em>persistence</em> ; “constancy” and “continuity” will be the terms used most frequently here, and I shall use them interchangeably.</p>
<p>Continuity is a non-statistical concept. It is a best guess about the next point beyond the known observations, without any idea of the accuracy of the estimate. It is like testing the ground ahead when walking in a marsh. It is local rather than global. We’ll talk a bit later about why continuity seems to be present in much of the world that we encounter.</p>
<p>The other great concept in statistical inference, and perhaps in all inference taken together, is <em>representative (usually random) sampling</em>, to be discussed in <a href="inference_intro.html" class="quarto-xref"><span>Chapter 18</span></a>. Representative sampling — which depends upon the assumption of sameness (homogeneity) throughout the universe to be investigated — is quite different than continuity; representative sampling assumes that there is <em>no greater chance</em> of a connection between any two elements that might be drawn into the sample than between any other two elements; the order of drawing is immaterial. In contrast, continuity assumes that <em>there is a greater chance</em> of connection between two contiguous elements than between either one of the elements and any of the many other elements that are not contiguous to either. Indeed, the process of randomizing is a device for doing away with continuity and autocorrelation within some bounded closed system — the sample “frame.” It is an attempt to map (describe) the entire area ahead using the device of the systematic survey. Random representative sampling enables us to make probabilistic inferences about a population based on the evidence of a sample.</p>
<!---
Define autocorrelation or avoid.
More on idea of using sample to tell us about a population.
-->
<p>To return now to the concept of sameness: Examples of the principle are that we assume: a) our house will be in the same place tomorrow as today; b) a hammer will break an egg every time you hit the latter with the former (or even the former with the latter); c) if you observe that the first fifteen persons you see walking out of a door at the airport are male, the sixteenth probably will be male also; d) paths in the village stay much the same through a person’s life; e) religious ritual changes little through the decades; f) your best guess about tomorrow’s temperature or stock price is that will be the same as today’s. This principle of constancy is related to David Hume’s concept of <em>constant conjunction</em>. When my children were young, I would point to a tree on our lawn and ask: “Do you think that tree will be there tomorrow?” And when they would answer “Yes,” I’d ask, “Why doesn’t the tree fall?” That’s a tough question to answer.</p>
<p>There are two reasonable bases for predicting that the tree will be standing tomorrow. First and most compelling for most of us is that almost all trees continue standing from day to day, and this particular one has never fallen; hence, what has been in the past is likely to continue. This assessment requires no scientific knowledge of trees, yet it is a very functional way to approach most questions concerning the trees — such as whether to hang a clothesline from it, or whether to worry that it will fall on the house tonight. That is, we can predict the outcome in this case with very high likelihood of being correct even though we do not utilize anything that would be called either science or statistical inference. (But what do you reply when your child says: “Why should I wear a seat belt? I’ve never been in an accident”?)</p>
<p>A second possible basis for prediction that the tree will be standing is scientific analysis of the tree’s roots — how the tree’s weight is distributed, its sickness or health, and so on. Let’s put aside this sort of scientific-engineering analysis for now.</p>
<p>The first basis for predicting that the tree will be standing tomorrow — sameness — is the most important heuristic device in all of knowledge-gathering. It is often a weak heuristic; certainly the prediction about the tree would be better grounded (!) after a skilled forester examines the tree. But persistence alone might be a better heuristic in a particular case than an engineering-scientific analysis alone.</p>
<p>This heuristic appears more obvious if the child — or the adult — were to respond to the question about the tree with another question: Why should I expect it to <em>fall</em> ? In the absence of some reason to expect change, it is quite reasonable to expect no change. And the child’s new question does not duck the central question we have asked about the tree, any more than one ducks a probability estimate by estimating the complementary probability (that is, unity minus the probability sought); indeed, this is a very sound strategy in many situations.</p>
<!---
Examples, chance of tails is 1 minus chance of heads, chance of < 6 = 1 minus chance of 6, for die.
-->
<p>Constancy can refer to location, time, relationship to another variable, or yet another dimension. Constancy may also be cyclical. Some cyclical changes can be charted or mapped with relative certainty — for example the life-cycles of persons, plants, and animals; the diurnal cycle of dark and light; and the yearly cycle of seasons. The courses of some diseases can also be charted. Hence these kinds of knowledge have long been well known.</p>
<p>Consider driving along a road. One can predict that the price of the next gasoline station will be within a few cents of the gasoline station that you just passed. But as you drive further and further, the dispersion increases as you cross state lines and taxes differ. This illustrates continuity.</p>
<p>The attention to constancy can focus on a single event, such as leaves of similar shape appearing on the same plant. Or attention can focus on single sequences of “production,” as in the process by which a seed produces a tree. For example, let’s say you see two puppies — one that looks like a low-slung dachshund, and the other a huge mastiff. You also see two grown male dogs, also apparently dachshund and mastiff. If asked about the parentage of the small ones, you are likely — using the principle of sameness — to point — quickly and with surety — to the adult dogs of the same breed. (Here it is important to notice that this answer implicitly assumes that the fathers of the puppies are among these dogs. But the fathers might be somewhere else entirely; it is in these ways that the principle of sameness can lead you astray.)</p>
<p>When applying the concept of sameness, the object of interest may be collections of data, as in Semmelweiss’s <span class="citation" data-cites="semmelweis1983etiology">(<a href="references.html#ref-semmelweis1983etiology" role="doc-biblioref">1983, 64</a>)</span> data on the consistent differences in rates of maternal deaths from childbed fever in two clinics with different conditions (see <a href="#tbl-childbed-deaths" class="quarto-xref">Table <span>17.1</span></a>), or the similarities in sex ratios from year to year in Graunt’s <span class="citation" data-cites="graunt1663collection">(<a href="references.html#ref-graunt1663collection" role="doc-biblioref">1759, 304</a>)</span> data on christenings in London (<a href="#tbl-graunt" class="quarto-xref">Table <span>17.2</span></a>), or the stark effect in John Snow’s <span class="citation" data-cites="winslow1980conquest">(<a href="references.html#ref-winslow1980conquest" role="doc-biblioref">Winslow 1980, 276</a>)</span> data on the numbers of cholera cases associated with two London water suppliers (<a href="#tbl-snows-suppliers" class="quarto-xref">Table <span>17.3</span></a>), or Kanehiro Takaki’s <span class="citation" data-cites="kornberg1991love_enzymes">(<a href="references.html#ref-kornberg1991love_enzymes" role="doc-biblioref">Kornberg 1991, 9</a>)</span> discovery of the reduction in beriberi among Japanese sailors as a result of a change in diet (<a href="#tbl-beri-beri" class="quarto-xref">Table <span>17.4</span></a>). These data seem so overwhelmingly clear cut that our naive statistical sense makes the relationships seem deterministic, and the conclusions seems straightforward. (But the same statistical sense frequently misleads us when considering sports and stock market data.)</p>
<div id="tbl-childbed-deaths" class="quarto-float quarto-figure quarto-figure-center anchored">
<figure class="quarto-float quarto-float-tbl figure">
<figcaption class="quarto-float-caption-top quarto-float-caption quarto-float-tbl" id="tbl-childbed-deaths-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
Table 17.1: Deaths of Mothers from childbed fever in two clinics
</figcaption>
<div aria-describedby="tbl-childbed-deaths-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
<table class="caption-top table">
<colgroup>
<col style="width: 19%">
<col style="width: 12%">
<col style="width: 12%">
<col style="width: 12%">
<col style="width: 12%">
<col style="width: 12%">
<col style="width: 12%">
</colgroup>
<thead>
<tr class="header">
<th></th>
<th colspan="3">First clinic</th>
<th colspan="3">Second clinic</th>
</tr>
<tr class="odd">
<th></th>
<th>Births</th>
<th>Deaths</th>
<th>Rate</th>
<th>Births</th>
<th>Deaths</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>1841</td>
<td>3,036</td>
<td>237</td>
<td>7.7</td>
<td>2,442</td>
<td>86</td>
<td>3.5</td>
</tr>
<tr class="even">
<td>1842</td>
<td>3,287</td>
<td>518</td>
<td>15.8</td>
<td>2,659</td>
<td>202</td>
<td>7.5</td>
</tr>
<tr class="odd">
<td>1843</td>
<td>3,060</td>
<td>274</td>
<td>8.9</td>
<td>2,739</td>
<td>164</td>
<td>5.9</td>
</tr>
<tr class="even">
<td>1844</td>
<td>3,157</td>
<td>260</td>
<td>8.2</td>
<td>2,956</td>
<td>68</td>
<td>2.3</td>
</tr>
<tr class="odd">
<td>1845</td>
<td>3,492</td>
<td>241</td>
<td>6.8</td>
<td>3,241</td>
<td>66</td>
<td>2.03</td>
</tr>
<tr class="even">
<td>1845</td>
<td>4,010</td>
<td>459</td>
<td>11.4</td>
<td>3,754</td>
<td>105</td>
<td>2.7</td>
</tr>
</tbody><tfoot>
<tr class="even">
<td><strong>Total</strong></td>
<td>20,042</td>
<td>1,989</td>
<td></td>
<td>17,791</td>
<td>691</td>
<td></td>
</tr>
<tr class="odd">
<td><strong>Average</strong></td>
<td></td>
<td></td>
<td>9.92</td>
<td></td>
<td></td>
<td>3.38</td>
</tr>
</tfoot>
</table>
</div>
</figure>
</div>
<div id="tbl-graunt" class="quarto-float quarto-figure quarto-figure-center anchored">
<figure class="quarto-float quarto-float-tbl figure">
<figcaption class="quarto-float-caption-top quarto-float-caption quarto-float-tbl" id="tbl-graunt-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
Table 17.2: Ratio of number of male to number of female christenings in London
</figcaption>
<div aria-describedby="tbl-graunt-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
<table class="caption-top table">
<thead>
<tr class="header">
<th>Period</th>
<th>Male / Female ratio</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>1629-1636</td>
<td>1.072</td>
</tr>
<tr class="even">
<td>1637-1640</td>
<td>1.073</td>
</tr>
<tr class="odd">
<td>1641-1648</td>
<td>1.063</td>
</tr>
<tr class="even">
<td>1649-1656</td>
<td>1.095</td>
</tr>
<tr class="odd">
<td>1657-1660</td>
<td>1.069</td>
</tr>
</tbody>
</table>
</div>
</figure>
</div>
<div id="tbl-snows-suppliers" class="quarto-float quarto-figure quarto-figure-center anchored">
<figure class="quarto-float quarto-float-tbl figure">
<figcaption class="quarto-float-caption-top quarto-float-caption quarto-float-tbl" id="tbl-snows-suppliers-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
Table 17.3: Rates of death from cholera for three water suppliers
</figcaption>
<div aria-describedby="tbl-snows-suppliers-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
<table class="caption-top table">
<thead>
<tr class="header">
<th>Water supplier</th>
<th>Cholera deaths per 10,000 houses</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>Southwark and Vauxhall</td>
<td>71</td>
</tr>
<tr class="even">
<td>Lambeth</td>
<td>5</td>
</tr>
<tr class="odd">
<td>Rest of London</td>
<td>9</td>
</tr>
</tbody>
</table>
</div>
</figure>
</div>
<div id="tbl-beri-beri" class="quarto-float quarto-figure quarto-figure-center anchored">
<figure class="quarto-float quarto-float-tbl figure">
<figcaption class="quarto-float-caption-top quarto-float-caption quarto-float-tbl" id="tbl-beri-beri-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
Table 17.4: Takaki’s Japanese Naval Records of Deaths from Beriberi
</figcaption>
<div aria-describedby="tbl-beri-beri-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
<table class="caption-top table">
<colgroup>
<col style="width: 8%">
<col style="width: 28%">
<col style="width: 31%">
<col style="width: 31%">
</colgroup>
<thead>
<tr class="header">
<th>Year</th>
<th>Diet</th>
<th>Total Navy Personnel</th>
<th>Deaths from Beriberi</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>1880</td>
<td>Rice diet</td>
<td>4,956</td>
<td>1,725</td>
</tr>
<tr class="even">
<td>1881</td>
<td>Rice diet</td>
<td>4,641</td>
<td>1,165</td>
</tr>
<tr class="odd">
<td>1882</td>
<td>Rice diet</td>
<td>4,769</td>
<td>1,929</td>
</tr>
<tr class="even">
<td>1883</td>
<td>Rice Diet</td>
<td>5,346</td>
<td>1,236</td>
</tr>
<tr class="odd">
<td>1884</td>
<td>Change to new diet</td>
<td>5,638</td>
<td>718</td>
</tr>
<tr class="even">
<td>1885</td>
<td>New diet</td>
<td>6,918</td>
<td>41</td>
</tr>
<tr class="odd">
<td>1886</td>
<td>New diet</td>
<td>8,475</td>
<td>3</td>
</tr>
<tr class="even">
<td>1887</td>
<td>New diet</td>
<td>9,106</td>
<td>0</td>
</tr>
<tr class="odd">
<td>1888</td>
<td>New diet</td>
<td>9,184</td>
<td>0</td>
</tr>
</tbody>
</table>
</div>
</figure>
</div>
<p>Constancy and sameness can be seen in macro structures; consider, for example, the constant location of your house. Constancy can also be seen in micro aggregations — for example, the raindrops and rain that account for the predictably fluctuating height of the Nile, or the ratio of boys to girls born in London, cases in which we can <em>average</em> to see the “statistical” sameness. The total sum of the raindrops produces the level of a reservoir or a river from year to year, and the sum of the behaviors of collections of persons causes the birth rates in the various years.</p>
<p>Statistical inference is only needed when a person thinks that s/he <em>might</em> have found a pattern but the pattern is not completely obvious to all. Probabilistic inference works to test — either to confirm or discount — the belief in the pattern’s existence. We will see such cases in the following chapter.</p>
<p>People have always been forced to think about and act in situations that have not been constant — that is, situations where the amount of variability in the phenomenon makes it impossible to draw clear cut, sensible conclusions. For example, the appearance of game animals in given places and at given times has always been uncertain to hunters, and therefore it has always been difficult to know which target to hunt in which place at what time. And of course variability of the weather has always made it a very uncertain element. The behavior of one’s enemies and friends has always been uncertain, too, though uncertain in a manner different from the behavior of wild animals; there often is a gaming element in interactions with other humans. But in earlier times, data and techniques did not exist to enable us to bring statistical inference to bear.</p>
</section>
<section id="the-treatment-of-uncertainty" class="level2" data-number="17.2">
<h2 data-number="17.2" class="anchored" data-anchor-id="the-treatment-of-uncertainty"><span class="header-section-number">17.2</span> The treatment of uncertainty</h2>
<p>The purpose of <em>statistical</em> inference is to help us peer through the veil of variability when it obscures the main thrust of the data, so as to improve the decisions we make. Statistical inference (or in most cases, simply probabilistic estimation) can help:</p>
<ul>
<li>a gambler deciding on the appropriate odds in a betting game when there seems to be little or no difference between two or more outcomes;</li>
<li>an astronomer deciding upon one or another value as the central estimate for the location of a star when there is considerable variation in the observations s/he has made of the star;</li>
<li>a basketball coach pondering whether to remove from the game her best shooter who has heretofore done poorly tonight;</li>
<li>an oil-drilling firm debating whether to follow up a test-well drilling with a full-bore drilling when the probability of success is not overwhelming but the payoff to a gusher could be large.</li>
</ul>
<p>Returning to the tree near the Simon house: Let’s change the facts. Assume now that one major part of the tree is mostly dead, and we expect a big winter storm tonight. What is the danger that the tree will fall on the house? Should we spend $1500 to have the mostly-dead third of it cut down? We know that last year a good many trees fell on houses in the neighborhood during such a storm.</p>
<p>We can gather some data on the proportion of old trees this size that fell on houses — about 5 in 100, so far as we can tell. Now it is no longer an open-and-shut case about whether the tree will be standing tomorrow, and we are using statistical inference to help us with our thinking. We proceed to find a set of trees <em>that we consider similar to this one</em>, and study the variation in the outcomes of such trees. So far we have estimated that the <em>average</em> for this group of trees — the mean (proportion) that fell in the last big storm — is 5 percent. Averages are much more “stable” — that is, more similar to each other — than are individual cases.</p>
<p>Notice how we use the crucial concept of sameness: We assume that our tree is like the others we observed, or at least that it is not systematically different from most of them and it is more-or-less average.</p>
<p>How would our thinking be different if our data were that one tree in 10 had fallen instead of 5 in 100? This is a question in statistical inference.</p>
<!---
Not sure what the above means.
-->
<p>How about if we investigate further and find that 4 of 40 <em>elms</em> fell, but only one of 60 <em>oaks</em>, and ours is an oak tree. Should we consider that oaks and elms have different chances of falling? Proceeding a bit further, we can think of the question as: Should we or should we not consider oaks and elms as different? This is the type of statistical inference called “hypothesis testing”: We apply statistical procedures to help us decide whether to treat the two classes of trees as the same or different. If we should consider them the same, our worries about the tree falling are greater than if we consider them different with respect to the chance of damage.<a href="#fn1" class="footnote-ref" id="fnref1" role="doc-noteref"><sup>1</sup></a></p>
<p>Notice that statistical inference was not necessary for accurate prediction when I asked the kids about the likelihood of a live tree falling on a day when there would be no storm. So it is with most situations we encounter. But when the assumption of constancy becomes shaky for one reason or another, as with the sick tree falling in a storm, we need a more refined form of thinking. We collect data on a large number of instances, inquire into whether the instances in which we are interested (our tree and the chance of it falling) are representative — that is, whether it resembles what we would get if we drew a sample randomly — and we then investigate the behavior of this large class of instances to see what light it throws on the instances(s) in which we are interested.</p>
<p>The procedure in this case — which we shall discuss in greater detail later on — is to ask: If oaks and elms are <em>not</em> different, how likely is it that only one of 60 oaks would fall whereas 4 of 40 elms would fall? Again, notice the assumption that our tree is “representative” of the other trees about which we have information — that it is not systematically different from most of them, but rather that it is more-or-less average. Our tree certainly was not chosen randomly from the set of trees we are considering. But for purposes of our analysis, we proceed <em>as if</em> it had been chosen randomly — because we deem it “representative.”</p>
<p>This is the first of two roles that the concept of randomness plays in statistical thinking. Here is an example of the second use of the concept of randomness: We conduct an experiment — plant elm and oak trees at <em>randomly-selected</em> locations on a plot of land, and then try to blow them down with a wind-making machine. (The random selection of planting spots is important because some locations on a plot of ground have different growing characteristics than do others.) Some purists object that <em>only</em> this sort of experimental sampling is a valid subject of statistical inference; it can never be appropriate, they say, to simply <em>assume</em> on the basis of other knowledge that the tree is representative. I regard that purist view as a helpful discipline on our thinking. But accepting its conclusion — that one should not apply statistical inference except to randomly-drawn or randomly-constituted samples — would take from us a tool that has proven useful in a variety of activities.</p>
<p>As discussed earlier in this chapter, the data in some (probably most) scientific situations are so overwhelming that one can proceed without probabilistic inference. Historical examples include those shown above of Semmelweiss and puerperal fever, and John Snow and cholera.<a href="#fn2" class="footnote-ref" id="fnref2" role="doc-noteref"><sup>2</sup></a> But where there was lack of overwhelming evidence, the causation of many diseases long remained unclear for lack of statistical procedures. This led to superstitious beliefs and counter-productive behavior, such as quarantines against plague often were. Some effective practices also arose despite the lack of sound theory, however — the waxed costumes of doctors, and the burning of mattresses, despite the wrong theory about the causation of plague; see <span class="citation" data-cites="cipolla1981fighting">(<a href="references.html#ref-cipolla1981fighting" role="doc-biblioref">Cipolla 1981</a>)</span>.</p>
<p>So far I have spoken only of <em>predictability</em> and not of other elements of statistical knowledge such as <em>understanding</em> and <em>control</em>. This is simply because statistical <em>correlation</em> is the bed rock of most scientific understanding, and predictability. Later we will expand the discussion beyond predictability; it holds no sacred place here.</p>
</section>
<section id="where-statistical-inference-becomes-crucial" class="level2" data-number="17.3">
<h2 data-number="17.3" class="anchored" data-anchor-id="where-statistical-inference-becomes-crucial"><span class="header-section-number">17.3</span> Where statistical inference becomes crucial</h2>
<p>There was little role for statistical inference until about three centuries ago because there existed very few scientific data. When scientific data began to appear, the need emerged for statistical inference to improve the interpretation of the data. As we saw, statistical inference is not needed when the evidence is overwhelming. A thousand cholera cases at one well and zero at another obviously does not require a statistical test. Neither would 999 cases to one, or even 700 cases to 300, because our inbred and learned statistical senses can detect that the two situations are different. But probabilistic inference is needed when the number of cases is relatively small or where for other reasons the data are somewhat ambiguous.</p>
<p>For example, when working with the 17th century data on births and deaths, John Graunt — great statistician though he was — drew wrong conclusions about some matters because he lacked modern knowledge of statistical inference. For example, he found that in the rural parish of Romsey “there were born 15 Females for 16 Males, whereas in London there were 13 for 14, which shows, that London is somewhat more apt to produce Males, then the country” (p. 71). He suggests that the “curious” inquire into the causes of this phenomenon, apparently not recognizing — and at that time he had no way to test — that the difference might be due solely to chance. He also notices (p. 94) that the variations in deaths among years in Romsey were greater than in London, and he attempted to explain this apparent fact (which is just a statistical artifact) rather than understanding that this is almost inevitable because Romsey is so much smaller than London. Because we have available to us the modern understanding of variability, we can now reach sound conclusions on these matters.<a href="#fn3" class="footnote-ref" id="fnref3" role="doc-noteref"><sup>3</sup></a></p>
<p>Summary statistics — such as the simple mean — are devices for reducing a large mass of data (inevitably confusing unless they are absolutely clear cut) to something one can manage to understand. And probabilistic inference is a device for determining whether patterns should be considered as facts or artifacts.</p>
<p>Here is another example that illustrates the state of early quantitative research in medicine:</p>
<blockquote class="blockquote">
<p>Exploring the effect of a common medicinal substance, Bőcker examined the effect of sasparilla on the nitrogenous and other constituents of the urine. An individual receiving a controlled diet was given a decoction of sasparilla for a period of twelve days, and the volume of urine passed daily was carefully measured. For a further twelve days that same individual, on the same diet, was given only distilled water, and the daily quantity of urine was again determined. The first series of researches gave the following figures (in cubic centimeters): 1,467, 1,744, 1,665, 1,220, 1,161, 1,369, 1,675, 2,199, 887, 1,634, 943, and 2,093 (mean = 1,499); the second series: 1,263, 1,740, 1,538, 1,526, 1,387, 1,422, 1,754, 1,320, 1,809, 2,139, 1,574, and 1,114 (mean = 1,549). Much uncertainty surrounded the exactitude of these measurements, but this played little role in the ensuing discussion. The fundamental issue was not the quality of the experimental data but how inferences were drawn from those data <span class="citation" data-cites="coleman1987experimental">(<a href="references.html#ref-coleman1987experimental" role="doc-biblioref">Coleman 1987, 207</a>)</span>.</p>
</blockquote>
<p>The experimenter Böcker had no reliable way of judging whether the data for the two groups were or were not meaningfully different, and therefore he arrived at the unsound conclusion that there was indeed a difference. (Gustav Radicke used this example as the basis for early work on statistical significance <span class="citation" data-cites="stovring1999radicke">(<a href="references.html#ref-stovring1999radicke" role="doc-biblioref">Støvring 1999</a>)</span>.)</p>
<p>Another example: Joseph Lister convinced the scientific world of the germ theory of infection, and the possibility of preventing death with a disinfectant, with these data: Prior to the use of antiseptics — 16 post-operative deaths in 35 amputations; subsequent to the use of antiseptics — 6 deaths in 40 amputations <span class="citation" data-cites="winslow1980conquest">(<a href="references.html#ref-winslow1980conquest" role="doc-biblioref">Winslow 1980, 303</a>)</span>. But how sure could one be that a difference of that size might not occur just by chance? No one then could say, nor did anyone inquire, apparently.</p>
<p>Here’s another example of great scientists falling into error because of a too-primitive approach to data <span class="citation" data-cites="feller1968introduction">(<a href="references.html#ref-feller1968introduction" role="doc-biblioref">Feller 1968, 1:69–70</a>)</span>: Charles Darwin wanted to compare two sets of measured data, each containing 16 observations. At Darwin’s request, Francis Galton compared the two sets of data by ranking each, and then comparing them pairwise. The a’s were ahead 13 times. Without knowledge of the actual probabilities Galton concluded that the treatment was effective. But, assuming perfect randomness, the probability that the a’s beat [the others] 13 times or more equals 3/16. This means that in three out of sixteen cases a perfectly ineffectual treatment would appear as good or better than the treatment classified as effective by Galton.</p>
<p>That is, Galton and Darwin reached an unsound conclusion. As Feller <span class="citation" data-cites="feller1968introduction">(<a href="references.html#ref-feller1968introduction" role="doc-biblioref">1968, 1:70</a>)</span> says, “This shows that a quantitative analysis may be a valuable supplement to our rather shaky intuition”.</p>
<p>Looking ahead, the key tool in situations like Graunt’s and Böcker’s and Lister’s is creating <em>ceteris paribus</em> — making “everything else the same” — with random selection in experiments, or at least with statistical controls in non-experimental situations.</p>
</section>
<section id="conclusions" class="level2" data-number="17.4">
<h2 data-number="17.4" class="anchored" data-anchor-id="conclusions"><span class="header-section-number">17.4</span> Conclusions</h2>
<p>In all knowledge-seeking and decision-making, our aim is to peer into the unknown and reduce our uncertainty a bit. The two main concepts that we use — the two great concepts in all of scientific knowledge-seeking, and perhaps in all practical thinking and decision-making — are a) continuity (or non-randomness) and the extent to which it applies in given situation, and b) random sampling, and the extent to which we can assume that our observations are indeed chosen by a random process.</p>
<div id="refs" class="references csl-bib-body hanging-indent" data-entry-spacing="0" role="list" style="display: none">
<div id="ref-cipolla1981fighting" class="csl-entry" role="listitem">
Cipolla, C. M. 1981. <em>Fighting the Plague in Seventeenth-Century Italy</em>. Merle Curti Lectures. Madison, Wisconsin: University of Wisconsin Press. <a href="https://books.google.co.uk/books?id=Ct\_OJYgnKCsC">https://books.google.co.uk/books?id=Ct\_OJYgnKCsC</a>.
</div>
<div id="ref-coleman1987experimental" class="csl-entry" role="listitem">
Coleman, William. 1987. <span>“Experimental Physiology and Statistical Inference: The Therapeutic Trial in Nineteenth Century <span>G</span>ermany.”</span> In <em>The Probabilistic Revolution: Volume 2: Ideas in the Sciences</em>, edited by Lorenz Krüger, Gerd Gigerenzer, and Mary S. Morgan. An MIT Press Classic. MIT Press. <a href="https://books.google.co.uk/books?id=SLftmgEACAAJ">https://books.google.co.uk/books?id=SLftmgEACAAJ</a>.
</div>
<div id="ref-feller1968introduction" class="csl-entry" role="listitem">
Feller, William. 1968. <em>An Introduction to Probability Theory and Its Applications: Volume i</em>. 3rd ed. Vol. 1. New York: John Wiley & Sons. <a href="https://www.google.co.uk/books/edition/An_Introduction_to_Probability_Theory_an/jbkdAQAAMAAJ">https://www.google.co.uk/books/edition/An_Introduction_to_Probability_Theory_an/jbkdAQAAMAAJ</a>.
</div>
<div id="ref-graunt1663collection" class="csl-entry" role="listitem">
Graunt, John. 1759. <span>“Natural and Political Observations Mentioned in a Following Index and Made Upon the Bills of Mortality.”</span> In <em>Collection of Yearly Bills of Mortality, from 1657 to 1758 Inclusive</em>, edited by Thomas Birch. London: A. Miller. <a href="https://archive.org/details/collectionyearl00hebegoog">https://archive.org/details/collectionyearl00hebegoog</a>.
</div>
<div id="ref-hald1990history" class="csl-entry" role="listitem">
Hald, Anders. 1990. <em>A History of Probability and Statistics and Their Applications Before 1750</em>. New York: John Wiley & Sons. <a href="https://archive.org/details/historyofprobabi0000hald">https://archive.org/details/historyofprobabi0000hald</a>.
</div>
<div id="ref-kornberg1991love_enzymes" class="csl-entry" role="listitem">
Kornberg, Arthur. 1991. <em>For the Love of Enzymes: The Odyssey of a Biochemist</em>. Cambridge, Massachusetts: Harvard University Press. <a href="https://archive.org/details/forloveofenzymes00arth">https://archive.org/details/forloveofenzymes00arth</a>.
</div>
<div id="ref-semmelweis1983etiology" class="csl-entry" role="listitem">
Semmelweis, Ignác Fülöp. 1983. <em>The Etiology, Concept, and Prophylaxis of Childbed Fever</em>. Translated by K. Codell Carter. Madison, Wisconsin: University of Wisconsin Press. <a href="https://archive.org/details/etiologyconcepta0000unse">https://archive.org/details/etiologyconcepta0000unse</a>.
</div>
<div id="ref-stovring1999radicke" class="csl-entry" role="listitem">
Støvring, H. 1999. <span>“On Radicke and His Method for Testing Mean Differences.”</span> <em>Journal of the Royal Statistical Society: Series D (The Statistician)</em> 48 (2): 189–201. <a href="https://www.jstor.org/stable/pdf/2681185.pdf">https://www.jstor.org/stable/pdf/2681185.pdf</a>.
</div>
<div id="ref-winslow1980conquest" class="csl-entry" role="listitem">
Winslow, Charles-Edward Amory. 1980. <em>The Conquest of Epidemic Disease: A Chapter in the History of Ideas</em>. Madison, Wisconsin: University of Wisconsin Press. <a href="https://archive.org/details/conquestofepidem0000wins_p3k0">https://archive.org/details/conquestofepidem0000wins_p3k0</a>.
</div>
</div>
</section>
<section id="footnotes" class="footnotes footnotes-end-of-document" role="doc-endnotes">
<hr>
<ol>
<li id="fn1"><p>It is because hypothesis testing focuses on this most basic of inferential processes — deciding “same” or “different” — that I believe it to be a more basic technique than estimating confidence intervals, which focus on the accuracy of estimates.<a href="#fnref1" class="footnote-back" role="doc-backlink">↩︎</a></p></li>
<li id="fn2"><p>A peculiar perverseness associated with the knowledge of statistical inference is that very strong findings, which require little or no formal inference to demonstrate and which are so powerful that they can be shown with a simple graph or table, are very hard to publish in social science literature because they do not meet the tests of “rigor,” and “elegance.” Editors view them as detracting from the “technical level” of their journals. A good many of the greatest discoveries of the past would nowadays fall in this category of being difficult or impossible to publish.<a href="#fnref2" class="footnote-back" role="doc-backlink">↩︎</a></p></li>
<li id="fn3"><p>I (JLS) benefited from the discussion of this matter by Hald <span class="citation" data-cites="hald1990history">(<a href="references.html#ref-hald1990history" role="doc-biblioref">1990, 93ff</a>)</span>.<a href="#fnref3" class="footnote-back" role="doc-backlink">↩︎</a></p></li>
</ol>
</section>
</main> <!-- /main -->
<script id="quarto-html-after-body" type="application/javascript">
window.document.addEventListener("DOMContentLoaded", function (event) {
const toggleBodyColorMode = (bsSheetEl) => {
const mode = bsSheetEl.getAttribute("data-mode");
const bodyEl = window.document.querySelector("body");
if (mode === "dark") {
bodyEl.classList.add("quarto-dark");
bodyEl.classList.remove("quarto-light");
} else {
bodyEl.classList.add("quarto-light");
bodyEl.classList.remove("quarto-dark");
}
}
const toggleBodyColorPrimary = () => {
const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
if (bsSheetEl) {
toggleBodyColorMode(bsSheetEl);
}
}
toggleBodyColorPrimary();
const icon = "";
const anchorJS = new window.AnchorJS();
anchorJS.options = {
placement: 'right',
icon: icon
};
anchorJS.add('.anchored');
const isCodeAnnotation = (el) => {
for (const clz of el.classList) {
if (clz.startsWith('code-annotation-')) {
return true;
}
}
return false;
}
const onCopySuccess = function(e) {
// button target
const button = e.trigger;
// don't keep focus
button.blur();
// flash "checked"
button.classList.add('code-copy-button-checked');
var currentTitle = button.getAttribute("title");
button.setAttribute("title", "Copied!");
let tooltip;
if (window.bootstrap) {
button.setAttribute("data-bs-toggle", "tooltip");
button.setAttribute("data-bs-placement", "left");
button.setAttribute("data-bs-title", "Copied!");
tooltip = new bootstrap.Tooltip(button,
{ trigger: "manual",
customClass: "code-copy-button-tooltip",
offset: [0, -8]});
tooltip.show();
}
setTimeout(function() {
if (tooltip) {
tooltip.hide();
button.removeAttribute("data-bs-title");
button.removeAttribute("data-bs-toggle");
button.removeAttribute("data-bs-placement");
}
button.setAttribute("title", currentTitle);
button.classList.remove('code-copy-button-checked');
}, 1000);
// clear code selection
e.clearSelection();
}
const getTextToCopy = function(trigger) {
const codeEl = trigger.previousElementSibling.cloneNode(true);
for (const childEl of codeEl.children) {
if (isCodeAnnotation(childEl)) {
childEl.remove();
}
}
return codeEl.innerText;
}
const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
text: getTextToCopy
});
clipboard.on('success', onCopySuccess);
if (window.document.getElementById('quarto-embedded-source-code-modal')) {
// For code content inside modals, clipBoardJS needs to be initialized with a container option
// TODO: Check when it could be a function (https://github.com/zenorocha/clipboard.js/issues/860)
const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
text: getTextToCopy,
container: window.document.getElementById('quarto-embedded-source-code-modal')
});
clipboardModal.on('success', onCopySuccess);
}
var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
var mailtoRegex = new RegExp(/^mailto:/);
var filterRegex = new RegExp('/' + window.location.host + '/');
var isInternal = (href) => {
return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
}
// Inspect non-navigation links and adorn them if external
var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
for (var i=0; i<links.length; i++) {
const link = links[i];
if (!isInternal(link.href)) {
// undo the damage that might have been done by quarto-nav.js in the case of
// links that we want to consider external
if (link.dataset.originalHref !== undefined) {
link.href = link.dataset.originalHref;
}
}
}
function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
const config = {
allowHTML: true,
maxWidth: 500,
delay: 100,
arrow: false,
appendTo: function(el) {
return el.parentElement;
},
interactive: true,
interactiveBorder: 10,
theme: 'quarto',
placement: 'bottom-start',
};
if (contentFn) {
config.content = contentFn;
}
if (onTriggerFn) {
config.onTrigger = onTriggerFn;
}
if (onUntriggerFn) {
config.onUntrigger = onUntriggerFn;
}
window.tippy(el, config);
}
const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
for (var i=0; i<noterefs.length; i++) {
const ref = noterefs[i];
tippyHover(ref, function() {
// use id or data attribute instead here
let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
try { href = new URL(href).hash; } catch {}
const id = href.replace(/^#\/?/, "");
const note = window.document.getElementById(id);
if (note) {
return note.innerHTML;
} else {
return "";
}
});
}
const xrefs = window.document.querySelectorAll('a.quarto-xref');
const processXRef = (id, note) => {
// Strip column container classes
const stripColumnClz = (el) => {
el.classList.remove("page-full", "page-columns");
if (el.children) {
for (const child of el.children) {
stripColumnClz(child);
}
}
}
stripColumnClz(note)
if (id === null || id.startsWith('sec-')) {
// Special case sections, only their first couple elements
const container = document.createElement("div");
if (note.children && note.children.length > 2) {
container.appendChild(note.children[0].cloneNode(true));
for (let i = 1; i < note.children.length; i++) {
const child = note.children[i];
if (child.tagName === "P" && child.innerText === "") {
continue;
} else {
container.appendChild(child.cloneNode(true));
break;
}
}
if (window.Quarto?.typesetMath) {
window.Quarto.typesetMath(container);
}
return container.innerHTML
} else {
if (window.Quarto?.typesetMath) {
window.Quarto.typesetMath(note);
}
return note.innerHTML;
}
} else {
// Remove any anchor links if they are present
const anchorLink = note.querySelector('a.anchorjs-link');
if (anchorLink) {
anchorLink.remove();
}
if (window.Quarto?.typesetMath) {
window.Quarto.typesetMath(note);
}
// TODO in 1.5, we should make sure this works without a callout special case
if (note.classList.contains("callout")) {
return note.outerHTML;