-
Notifications
You must be signed in to change notification settings - Fork 0
/
testing_counts_1.html
2669 lines (2610 loc) · 188 KB
/
testing_counts_1.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
<meta charset="utf-8">
<meta name="generator" content="quarto-1.6.1">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<title>21 Hypothesis-Testing with Counted Data, Part 1 – Resampling statistics</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
width: 0.8em;
margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */
vertical-align: middle;
}
/* CSS for syntax highlighting */
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
}
pre.numberSource { margin-left: 3em; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
/* CSS for citations */
div.csl-bib-body { }
div.csl-entry {
clear: both;
margin-bottom: 0em;
}
.hanging-indent div.csl-entry {
margin-left:2em;
text-indent:-2em;
}
div.csl-left-margin {
min-width:2em;
float:left;
}
div.csl-right-inline {
margin-left:2em;
padding-left:1em;
}
div.csl-indent {
margin-left: 2em;
}</style>
<script src="site_libs/quarto-nav/quarto-nav.js"></script>
<script src="site_libs/quarto-nav/headroom.min.js"></script>
<script src="site_libs/clipboard/clipboard.min.js"></script>
<script src="site_libs/quarto-search/autocomplete.umd.js"></script>
<script src="site_libs/quarto-search/fuse.min.js"></script>
<script src="site_libs/quarto-search/quarto-search.js"></script>
<meta name="quarto:offset" content="./">
<link href="./significance.html" rel="next">
<link href="./framing_questions.html" rel="prev">
<script src="site_libs/quarto-html/quarto.js"></script>
<script src="site_libs/quarto-html/popper.min.js"></script>
<script src="site_libs/quarto-html/tippy.umd.min.js"></script>
<script src="site_libs/quarto-html/anchor.min.js"></script>
<link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
<script src="site_libs/bootstrap/bootstrap.min.js"></script>
<link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
<script id="quarto-search-options" type="application/json">{
"location": "sidebar",
"copy-button": false,
"collapse-after": 3,
"panel-placement": "start",
"type": "textbox",
"limit": 50,
"keyboard-shortcut": [
"f",
"/",
"s"
],
"show-item-context": false,
"language": {
"search-no-results-text": "No results",
"search-matching-documents-text": "matching documents",
"search-copy-link-title": "Copy link to search",
"search-hide-matches-text": "Hide additional matches",
"search-more-match-text": "more match in this document",
"search-more-matches-text": "more matches in this document",
"search-clear-button-title": "Clear",
"search-text-placeholder": "",
"search-detached-cancel-button-title": "Cancel",
"search-submit-button-title": "Submit",
"search-label": "Search"
}
}</script>
<script type="text/javascript">
$(document).ready(function() {
$("table").addClass('lightable-paper lightable-striped lightable-hover')
});
</script>
<script src="site_libs/kePrint-0.0.1/kePrint.js"></script>
<link href="site_libs/lightable-0.0.1/lightable.css" rel="stylesheet">
<link rel="stylesheet" href="style.css">
<link rel="stylesheet" href="font-awesome.min.css">
</head>
<body class="nav-sidebar floating">
<div id="quarto-search-results"></div>
<header id="quarto-header" class="headroom fixed-top">
<nav class="quarto-secondary-nav">
<div class="container-fluid d-flex">
<button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="Toggle sidebar navigation" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
<i class="bi bi-layout-text-sidebar-reverse"></i>
</button>
<nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./testing_counts_1.html"><span class="chapter-number">21</span> <span class="chapter-title">Hypothesis-Testing with Counted Data, Part 1</span></a></li></ol></nav>
<a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="Toggle sidebar navigation" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
</a>
<button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
<i class="bi bi-search"></i>
</button>
</div>
</nav>
</header>
<!-- content -->
<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
<!-- sidebar -->
<nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
<div class="pt-lg-2 mt-2 text-left sidebar-header">
<div class="sidebar-title mb-0 py-0">
<a href="./">Resampling statistics</a>
</div>
</div>
<div class="mt-2 flex-shrink-0 align-items-center">
<div class="sidebar-search">
<div id="quarto-search" class="" title="Search"></div>
</div>
</div>
<div class="sidebar-menu-container">
<ul class="list-unstyled mt-1">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./index.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">Python version</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./preface_third.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">Preface to the third edition</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./preface_second.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">Preface to the second edition</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./intro.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">1</span> <span class="chapter-title">Introduction</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./resampling_method.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">2</span> <span class="chapter-title">The resampling method</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./what_is_probability.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">3</span> <span class="chapter-title">What is probability?</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./about_technology.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">4</span> <span class="chapter-title">Introducing Python and the Jupyter notebook</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./resampling_with_code.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">5</span> <span class="chapter-title">Resampling with code</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./resampling_with_code2.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">6</span> <span class="chapter-title">More resampling with code</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./sampling_tools.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">7</span> <span class="chapter-title">Tools for samples and sampling</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./probability_theory_1a.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">8</span> <span class="chapter-title">Probability Theory, Part 1</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./probability_theory_1b.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">9</span> <span class="chapter-title">Probability Theory Part I (continued)</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./more_sampling_tools.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">10</span> <span class="chapter-title">Two puzzles and more tools</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./probability_theory_2_compound.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">11</span> <span class="chapter-title">Probability Theory, Part 2: Compound Probability</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./probability_theory_3.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">12</span> <span class="chapter-title">Probability Theory, Part 3</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./probability_theory_4_finite.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">13</span> <span class="chapter-title">Probability Theory, Part 4: Estimating Probabilities from Finite Universes</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./sampling_variability.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">14</span> <span class="chapter-title">On Variability in Sampling</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./monte_carlo.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">15</span> <span class="chapter-title">The Procedures of Monte Carlo Simulation (and Resampling)</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./standard_scores.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">16</span> <span class="chapter-title">Ranks, Quantiles and Standard Scores</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./inference_ideas.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">17</span> <span class="chapter-title">The Basic Ideas in Statistical Inference</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./inference_intro.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">18</span> <span class="chapter-title">Introduction to Statistical Inference</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./point_estimation.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">19</span> <span class="chapter-title">Point Estimation</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./framing_questions.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">20</span> <span class="chapter-title">Framing Statistical Questions</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./testing_counts_1.html" class="sidebar-item-text sidebar-link active">
<span class="menu-text"><span class="chapter-number">21</span> <span class="chapter-title">Hypothesis-Testing with Counted Data, Part 1</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./significance.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">22</span> <span class="chapter-title">The Concept of Statistical Significance in Testing Hypotheses</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./testing_counts_2.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">23</span> <span class="chapter-title">The Statistics of Hypothesis-Testing with Counted Data, Part 2</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./testing_measured.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">24</span> <span class="chapter-title">The Statistics of Hypothesis-Testing With Measured Data</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./testing_procedures.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">25</span> <span class="chapter-title">General Procedures for Testing Hypotheses</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./confidence_1.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">26</span> <span class="chapter-title">Confidence Intervals, Part 1: Assessing the Accuracy of Samples</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./confidence_2.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">27</span> <span class="chapter-title">Confidence Intervals, Part 2: The Two Approaches to Estimating Confidence Intervals</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./reliability_average.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">28</span> <span class="chapter-title">Some Last Words About the Reliability of Sample Averages</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./correlation_causation.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">29</span> <span class="chapter-title">Correlation and Causation</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./how_big_sample.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">30</span> <span class="chapter-title">How Large a Sample?</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./bayes_simulation.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">31</span> <span class="chapter-title">Bayesian Analysis by Simulation</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./references.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">References</span></a>
</div>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
<span class="menu-text">Appendices</span></a>
<a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="Toggle section">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./exercise_solutions.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">A</span> <span class="chapter-title">Exercise Solutions</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./technical_note.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">B</span> <span class="chapter-title">Technical Note to the Professional Reader</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./acknowlegements.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">C</span> <span class="chapter-title">Acknowledgements</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./code_topics.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">D</span> <span class="chapter-title">Code topics</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./errors_suggestions.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">E</span> <span class="chapter-title">Errors and suggestions</span></span></a>
</div>
</li>
</ul>
</li>
</ul>
</div>
</nav>
<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
<!-- margin-sidebar -->
<div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
<nav id="TOC" role="doc-toc" class="toc-active">
<h2 id="toc-title">Table of contents</h2>
<ul>
<li><a href="#introduction" id="toc-introduction" class="nav-link active" data-scroll-target="#introduction"><span class="header-section-number">21.1</span> Introduction</a>
<ul class="collapse">
<li><a href="#sec-building-strings" id="toc-sec-building-strings" class="nav-link" data-scroll-target="#sec-building-strings"><span class="header-section-number">21.1.1</span> Building strings for labels and messages</a></li>
</ul></li>
<li><a href="#should-a-single-sample-of-counted-data-be-considered-different-from-a-benchmark-universe" id="toc-should-a-single-sample-of-counted-data-be-considered-different-from-a-benchmark-universe" class="nav-link" data-scroll-target="#should-a-single-sample-of-counted-data-be-considered-different-from-a-benchmark-universe"><span class="header-section-number">21.2</span> Should a single sample of counted data be considered different from a benchmark universe?</a>
<ul class="collapse">
<li><a href="#sec-fruitfly" id="toc-sec-fruitfly" class="nav-link" data-scroll-target="#sec-fruitfly"><span class="header-section-number">21.2.1</span> Example: Does irradiation affect the sex ratio in fruit flies?</a></li>
<li><a href="#sec-female-calves" id="toc-sec-female-calves" class="nav-link" data-scroll-target="#sec-female-calves"><span class="header-section-number">21.2.2</span> Example: Does a treatment increase the female calf rate?</a></li>
<li><a href="#sec-contract-poll" id="toc-sec-contract-poll" class="nav-link" data-scroll-target="#sec-contract-poll"><span class="header-section-number">21.2.3</span> Example: A public-opinion poll</a></li>
<li><a href="#example-did-the-trump-clinton-poll-indicate-that-trump-would-win" id="toc-example-did-the-trump-clinton-poll-indicate-that-trump-would-win" class="nav-link" data-scroll-target="#example-did-the-trump-clinton-poll-indicate-that-trump-would-win"><span class="header-section-number">21.2.4</span> Example: Did the Trump-Clinton poll indicate that Trump would win?</a></li>
<li><a href="#sec-cancer-cures" id="toc-sec-cancer-cures" class="nav-link" data-scroll-target="#sec-cancer-cures"><span class="header-section-number">21.2.5</span> Example: Comparison of possible cancer cure to placebo</a></li>
<li><a href="#example-did-attitudes-about-marijuana-change" id="toc-example-did-attitudes-about-marijuana-change" class="nav-link" data-scroll-target="#example-did-attitudes-about-marijuana-change"><span class="header-section-number">21.2.6</span> Example: Did attitudes about marijuana change?</a></li>
<li><a href="#sec-framingham-example" id="toc-sec-framingham-example" class="nav-link" data-scroll-target="#sec-framingham-example"><span class="header-section-number">21.2.7</span> Example: Infarction and cholesterol: Framingham study</a></li>
<li><a href="#sec-pig-rations" id="toc-sec-pig-rations" class="nav-link" data-scroll-target="#sec-pig-rations"><span class="header-section-number">21.2.8</span> Example: Is one pig ration more effective than the other?</a></li>
<li><a href="#example-do-planet-densities-differ" id="toc-example-do-planet-densities-differ" class="nav-link" data-scroll-target="#example-do-planet-densities-differ"><span class="header-section-number">21.2.9</span> Example: Do planet densities differ?</a></li>
</ul></li>
<li><a href="#conclusion" id="toc-conclusion" class="nav-link" data-scroll-target="#conclusion"><span class="header-section-number">21.3</span> Conclusion</a></li>
</ul>
</nav>
</div>
<!-- main -->
<main class="content" id="quarto-document-content">
<header id="title-block-header" class="quarto-title-block default">
<div class="quarto-title">
<h1 class="title"><span id="sec-testing-counts-one" class="quarto-section-identifier"><span class="chapter-number">21</span> <span class="chapter-title">Hypothesis-Testing with Counted Data, Part 1</span></span></h1>
</div>
<div class="quarto-title-meta">
</div>
</header>
<section id="introduction" class="level2" data-number="21.1">
<h2 data-number="21.1" class="anchored" data-anchor-id="introduction"><span class="header-section-number">21.1</span> Introduction</h2>
<p>The first task in inferential statistics is to make one or more <em>point estimates</em> — that is, to make one or more statements about <em>how much</em> there is of something we are interested in — including especially the mean and the dispersion. (That work goes under the label “estimation” and is discussed in <a href="point_estimation.html" class="quarto-xref"><span>Chapter 19</span></a>.) Frequently the next step, after making such quantitative estimation of the universe from which a sample has been drawn, is to consider whether two or more samples are different from each other, or whether the single sample is different from a specified value; this work goes under the label “hypothesis testing.” We ask: Did something happen? Or: Is there a difference between two universes? These are yes-no questions.</p>
<p>In other cases, the next step is to inquire into the reliability of the estimates; this goes under the label “confidence intervals.” (Some writers include assessing reliability under the rubric of estimation, but I judge it better not to do so).</p>
<p>So: Having reviewed how to convert hypothesis-testing problems into statistically testable questions in <a href="framing_questions.html" class="quarto-xref"><span>Chapter 20</span></a>, we now must ask: How does one employ resampling methods to make the statistical test? As is always the case when using resampling techniques, there is no unique series of steps by which to proceed. The crucial criterion in assessing the model is whether it accurately simulates the actual event. With hypothesis-testing problems, any number of models may be correct. Generally speaking, though, the model that makes fullest use of the quantitative information available from the data is the best model.</p>
<p>When attempting to deduce the characteristics of a universe from sample data, or when asking whether a sample was drawn from a particular universe, a crucial issue is whether a “one-tailed test” or a “two-tailed test” should be applied. That is, in examining the results of our resampling experiment based on the benchmark universe, do we examine both ends of the frequency distribution, or just one? If there is strong reason to believe <em>a priori</em> that the difference between the benchmark (null) universe and the sample will be in a given direction — for example if you hypothesize that the sample mean will be <em>smaller</em> than the mean of the benchmark universe — you should then employ a <em>one-tailed test</em>. If you do <em>not</em> have strong basis for such a prediction, use the <em>two-tailed</em> test. As an example, when a scientist tests a new medication, his/her hypothesis would be that the number of patients who get well will be higher in the treated group than in the control group. Thus, s/he applies the one-tailed test. See the text below for more detail on one- and two-tailed tests.</p>
<p>Some language first:</p>
<p><strong>Hypothesis:</strong> In inferential statistics, a statement or claim about a universe that can be tested and that you wish to investigate.</p>
<p><strong>Testing:</strong> The process of investigating the validity of a hypothesis.</p>
<p><strong>Benchmark (or null) hypothesis:</strong> A particular hypothesis chosen for convenience when testing hypotheses in inferential statistics. For example, we could test the hypothesis that there is <em>no difference</em> between a sample and a given universe, or between two samples, or that a parameter is less than or greater than a certain value. The benchmark universe refers to this hypothesis. (The concept of the benchmark or null hypothesis was discussed in <a href="probability_theory_1b.html" class="quarto-xref"><span>Chapter 9</span></a> and <a href="framing_questions.html" class="quarto-xref"><span>Chapter 20</span></a>.)</p>
<p>Soon we will begin the actual statistical testing of various sorts of hypotheses about samples and populations.</p>
<p>But, before we get there, we will take a short technical detour.</p>
<section id="sec-building-strings" class="level3" data-number="21.1.1">
<h3 data-number="21.1.1" class="anchored" data-anchor-id="sec-building-strings"><span class="header-section-number">21.1.1</span> Building strings for labels and messages</h3>
<div id="nte-building_strings" class="callout callout-style-default callout-note callout-titled">
<div class="callout-header d-flex align-content-center">
<div class="callout-icon-container">
<i class="callout-icon"></i>
</div>
<div class="callout-title-container flex-fill">
Note 21.1: Notebook: Building strings for labels
</div>
</div>
<div class="callout-body-container callout-body">
<div class="nb-links">
<p><a class="notebook-link" href="notebooks/building_strings.ipynb">Download notebook</a> <a class="interact-button" href="./interact/lab/index.html?path=building_strings.ipynb">Interact</a></p>
</div>
</div>
</div>
<div class="nb-start" name="building_strings" title="Building strings for labels">
</div>
<p>As the examples in this book proceed, we will use more code techniques to write the examples in a more concise and efficient way.</p>
<p>One task that we often have, is to build up helpful strings to use as labels on plots, or to print out as messages. These strings will often mix numbers and text. For example, we may want to print out a helpful message such as: <code>Simulation using 10000 trials</code>, where the number 10000 in the message comes from some variable, such as <code>n_trials</code>. Let’s set that variable now:</p>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a>n_trials <span class="op">=</span> <span class="dv">10000</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>Building the useful string above would involve taking the string <code>'Simulation using '</code>, then appending a string to represent the number 10,000 — as in:</p>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Convert the number (integer) to a string representing the number.</span></span>
<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="bu">str</span>(n_trials)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>'10000'</code></pre>
</div>
</div>
<p>Finally we need to append another string to the result — <code>' trials.'</code>. So our task will be to <em>concatenate</em> (stick together) these three strings.</p>
<!---
End of R section.
-->
<div class="python">
<p>There are several ways to concatenate strings in Python. For example, Python interprets <code>+</code>, between strings, to mean <em>concatenate</em>. One way to make a new string that concatenates the strings <code>'resampling '</code>, <code>'is '</code> and <code>'better'</code> is to use <code>+</code>, like this:</p>
<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="co"># + between strings means "concatenate".</span></span>
<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a><span class="co">'resampling '</span> <span class="op">+</span> <span class="st">'is '</span> <span class="op">+</span> <span class="st">'better'</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p>We could always insert a number as a string, by converting the number to a string, and concatenating, like this:</p>
<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="co">'resampling '</span> <span class="op">+</span> <span class="st">'is '</span> <span class="op">+</span> <span class="bu">str</span>(<span class="dv">100</span>) <span class="op">+</span> <span class="st">' times '</span> <span class="op">+</span> <span class="st">'better'</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p>However, as you can see, this starts looking rather ugly and verbose. It’s easy to forget to append spaces to the strings to concatenate, and end up with messages like:</p>
<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="co">'resampling'</span> <span class="op">+</span> <span class="st">'is'</span> <span class="op">+</span> <span class="bu">str</span>(<span class="dv">100</span>) <span class="op">+</span> <span class="st">'times'</span> <span class="op">+</span> <span class="st">'better'</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p>One of the most flexible ways to solve problems like this, is to use Python “f” (Format) strings. Format strings start with an <code>f</code> and can include values inside the string, enclosed in curly brackets. This is best explained by example:</p>
<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Our first Python format string.</span></span>
<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a><span class="co"># Notice the "f" prefix before the quotes, to tell Python this is a Format</span></span>
<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a><span class="co"># string, and may include values to interpolate, inside curly brackets.</span></span>
<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a><span class="ss">f'resampling is </span><span class="sc">{</span><span class="dv">100</span><span class="sc">}</span><span class="ss"> times better'</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p>The Format string expects Python values to appear inside the string, enclosed in curly brackets. When Python see a Format (“f” string) like this, it gets the value named or typed inside the curly brackets, converts it to a string, and inserts that string into the result at the relevant place.</p>
<p>Format strings take a little getting used to, but once you are used to them, they are a flexible and concise way of assembling useful messages.</p>
<p>For example, to create the string we started this section with, we could write:</p>
<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="ss">f'Simulation using </span><span class="sc">{</span>n_trials<span class="sc">}</span><span class="ss"> trials.'</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<p>Don’t forget the <code>f</code> prefix to the string, if you do want to insert values like this, otherwise you’ll get a standard (not-Format) string, and Python won’t insert the value.</p>
<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Oops! We forgot the "f" prefix to the string. Python won't put in</span></span>
<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a><span class="co"># (interpolate) the string representation of the value.</span></span>
<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a><span class="co">'Simulation using {n_trials} trials.'</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<!---
End of Python section.
-->
<div class="nb-end">
</div>
<div class="callout callout-style-default callout-note callout-titled">
<div class="callout-header d-flex align-content-center">
<div class="callout-icon-container">
<i class="callout-icon"></i>
</div>
<div class="callout-title-container flex-fill">
End of notebook: Building strings for labels
</div>
</div>
<div class="callout-body-container callout-body">
<p><code>building_strings</code> starts at <a href="#nte-building_strings" class="quarto-xref">Note <span>21.1</span></a>.</p>
</div>
</div>
<!---
End of building_strings notebook.
-->
<p>Now we begin with statistical testing for hypotheses on samples and populations.</p>
</section>
</section>
<section id="should-a-single-sample-of-counted-data-be-considered-different-from-a-benchmark-universe" class="level2" data-number="21.2">
<h2 data-number="21.2" class="anchored" data-anchor-id="should-a-single-sample-of-counted-data-be-considered-different-from-a-benchmark-universe"><span class="header-section-number">21.2</span> Should a single sample of counted data be considered different from a benchmark universe?</h2>
<section id="sec-fruitfly" class="level3" data-number="21.2.1">
<h3 data-number="21.2.1" class="anchored" data-anchor-id="sec-fruitfly"><span class="header-section-number">21.2.1</span> Example: Does irradiation affect the sex ratio in fruit flies?</h3>
<p><strong>Where the Benchmark Universe Mean (in this case, the Proportion) is Known, is the Mean (Proportion) of the Population Affected by the Treatment?)</strong></p>
<p>You think you have developed a technique for irradiating the genes of fruit flies so that the sex ratio of the offspring will <em>not</em> be half males and half females. In the first twenty cases you treat, there are fourteen males and six females. Does this experimental result confirm that the irradiation does work?</p>
<p>First convert the scientific question — whether or not the treatment affects the sex distribution — into a probability-statistical question: Is the observed sample likely to have come from a benchmark universe in which the sex ratio is one male to one female? The benchmark (null) hypothesis, then, is that the treatment makes no difference and the sample comes from the one-male-to-one-female universe. Therefore, we investigate <em>how likely a one-to-one universe is to produce a distribution of fourteen or more of just one sex</em>.</p>
<p>A coin has a one-to-one (one out of two) chance of coming up tails. Therefore, we might flip a coin in groups of twenty flips, and count the number of tails in each twenty flips. Or we can use a random number table. The following steps will produce a sound estimate:</p>
<ul>
<li><strong>Step 1.</strong> Let tails = male, heads = female.</li>
<li><strong>Step 2.</strong> Flip twenty coins and count the number of males. If 14 or more males occur, record “yes.” Also, if 6 or fewer males occur, record “yes” because this means we have gotten 14 or more females. Otherwise, record “no.”</li>
<li><strong>Step 3.</strong> Repeat step 2 perhaps 100 times.</li>
<li><strong>Step 4.</strong> Calculate the proportion “yes” in the 100 trials. This proportion estimates the probability that a fruit-fly population with a propensity to produce 50 percent males will by chance produce as many as 14 or as few as 6 males in a sample of 20 flies.</li>
</ul>
<div class="cell" data-layout-align="center">
<div class="cell-output-display">
<div id="tbl-fruitfly-trials" class="lightable-paper lightable-striped lightable-hover quarto-float quarto-figure quarto-figure-center anchored" data-quarto-postprocess="true" style="font-family: "Arial Narrow", arial, helvetica, sans-serif; width: auto !important; margin-left: auto; margin-right: auto;">
<figure class="quarto-float quarto-float-tbl figure">
<figcaption class="quarto-float-caption-top quarto-float-caption quarto-float-tbl" id="tbl-fruitfly-trials-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
Table 21.1: Results from 25 random trials for Fruitfly problem
</figcaption>
<div aria-describedby="tbl-fruitfly-trials-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
<table class="lightable-paper lightable-striped lightable-hover caption-top table table-sm table-striped small" data-quarto-postprocess="true">
<thead>
<tr class="header">
<th style="text-align: right;" data-quarto-table-cell-role="th">Trial no</th>
<th style="text-align: right;" data-quarto-table-cell-role="th"># of tails</th>
<th style="text-align: left;" data-quarto-table-cell-role="th">>=14 or <=6</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td style="text-align: right;">1</td>
<td style="text-align: right;">12</td>
<td style="text-align: left;">No</td>
</tr>
<tr class="even">
<td style="text-align: right;">2</td>
<td style="text-align: right;">12</td>
<td style="text-align: left;">No</td>
</tr>
<tr class="odd">
<td style="text-align: right;">3</td>
<td style="text-align: right;">8</td>
<td style="text-align: left;">No</td>
</tr>
<tr class="even">
<td style="text-align: right;">4</td>
<td style="text-align: right;">11</td>
<td style="text-align: left;">No</td>
</tr>
<tr class="odd">
<td style="text-align: right;">5</td>
<td style="text-align: right;">8</td>
<td style="text-align: left;">No</td>
</tr>
<tr class="even">
<td style="text-align: right;">6</td>
<td style="text-align: right;">10</td>
<td style="text-align: left;">No</td>
</tr>
<tr class="odd">
<td style="text-align: right;">7</td>
<td style="text-align: right;">11</td>
<td style="text-align: left;">No</td>
</tr>
<tr class="even">
<td style="text-align: right;">8</td>
<td style="text-align: right;">6</td>
<td style="text-align: left;">Yes</td>
</tr>
<tr class="odd">
<td style="text-align: right;">9</td>
<td style="text-align: right;">6</td>
<td style="text-align: left;">Yes</td>
</tr>
<tr class="even">
<td style="text-align: right;">10</td>
<td style="text-align: right;">10</td>
<td style="text-align: left;">No</td>
</tr>
<tr class="odd">
<td style="text-align: right;">11</td>
<td style="text-align: right;">11</td>
<td style="text-align: left;">No</td>
</tr>
<tr class="even">
<td style="text-align: right;">12</td>
<td style="text-align: right;">12</td>
<td style="text-align: left;">No</td>
</tr>
<tr class="odd">
<td style="text-align: right;">13</td>
<td style="text-align: right;">7</td>
<td style="text-align: left;">No</td>
</tr>
<tr class="even">
<td style="text-align: right;">14</td>
<td style="text-align: right;">15</td>
<td style="text-align: left;">Yes</td>
</tr>
<tr class="odd">
<td style="text-align: right;">15</td>
<td style="text-align: right;">13</td>
<td style="text-align: left;">No</td>
</tr>
<tr class="even">
<td style="text-align: right;">16</td>
<td style="text-align: right;">9</td>
<td style="text-align: left;">No</td>
</tr>
<tr class="odd">
<td style="text-align: right;">17</td>
<td style="text-align: right;">9</td>
<td style="text-align: left;">No</td>
</tr>
<tr class="even">
<td style="text-align: right;">18</td>
<td style="text-align: right;">10</td>
<td style="text-align: left;">No</td>
</tr>
<tr class="odd">
<td style="text-align: right;">19</td>
<td style="text-align: right;">10</td>
<td style="text-align: left;">No</td>
</tr>
<tr class="even">
<td style="text-align: right;">20</td>
<td style="text-align: right;">9</td>
<td style="text-align: left;">No</td>
</tr>
<tr class="odd">
<td style="text-align: right;">21</td>
<td style="text-align: right;">12</td>
<td style="text-align: left;">No</td>
</tr>
<tr class="even">
<td style="text-align: right;">22</td>
<td style="text-align: right;">11</td>
<td style="text-align: left;">No</td>
</tr>
<tr class="odd">
<td style="text-align: right;">23</td>
<td style="text-align: right;">4</td>
<td style="text-align: left;">Yes</td>
</tr>
<tr class="even">
<td style="text-align: right;">24</td>
<td style="text-align: right;">16</td>
<td style="text-align: left;">Yes</td>
</tr>
<tr class="odd">
<td style="text-align: right;">25</td>
<td style="text-align: right;">7</td>
<td style="text-align: left;">No</td>
</tr>
</tbody>
</table>
</div>
</figure>
</div>
</div>
</div>
<p><a href="#tbl-fruitfly-trials" class="quarto-xref">Table <span>21.1</span></a> shows the results obtained in 25 trials of twenty flips each. In two of the twenty-five trials (8 percent) there were fourteen or more tails, which we call “males,” and in three of the 25 trials (12 percent) there six or fewer tails, meaning there were fourteen or more heads (“females”). We can therefore estimate that, even if the treatment does <em>not</em> affect the sex and the births over a long period really are one to one, five out of twenty-five times (20 percent) we would get fourteen or more of one sex or the other. Therefore, finding fourteen males out of 20 births is not overwhelming evidence that the treatment has any effect, even though the result is suggestive.</p>
<p>How accurate is the estimate? Seventy-five more trials were made, and of the 100 trials nine contained fourteen or more “males” (9 percent), and 8 trials contained fourteen or more “females” (8 percent), a total of 17 percent. So the first twenty-five trials gave a fairly reliable indication. As a matter of fact, analytically-based computation (not explained here) shows that the probability of getting fourteen or more females out of twenty births is .057 and, of course, the same for fourteen or more males from a one-to-one universe, implying a total probability of .114 of getting fourteen or more males <em>or</em> females.</p>
<p>Now let us obtain larger and more accurate simulation samples with the computer. The key step in the Python notebook below represents male fruit flies with the string <code>'male'</code> and female fruit flies with the string <code>'female'</code>. The <span class="python"><code>rnd.choice</code></span> function is then used to generate 20 of these strings with an equal probability that either string is selected. This simulates randomly choosing 20 fruit flies on the benchmark assumption — the “null hypothesis” — that each fruit fly has an equal chance of being a male or female. Now we want to discover the chances of getting more than 13 (i.e., 14 or more) males or more than 13 females under these conditions. So we use <span class="python"><code>np.sum</code></span> to count the number of males in each random sample and then store this value in the <code>scores</code> array of this number for each sample. We repeat these steps 10,000 times.</p>
<p>After ten thousand samples have been drawn, we count (<code>sum</code>) how often there were more than 13 males and then count the number of times there were fewer than 7 males (because if there were fewer than 7 males there must have been more than 13 females). When we add the two results together we have the probability that the results obtained from the sample of irradiated fruit flies would be obtained from a random sample of fruit flies.</p>
<div id="nte-fruit_fly" class="callout callout-style-default callout-note callout-titled">
<div class="callout-header d-flex align-content-center">
<div class="callout-icon-container">
<i class="callout-icon"></i>
</div>
<div class="callout-title-container flex-fill">
Note 21.2: Notebook: Fruit fly simulation
</div>
</div>
<div class="callout-body-container callout-body">
<div class="nb-links">
<p><a class="notebook-link" href="notebooks/fruit_fly.ipynb">Download notebook</a> <a class="interact-button" href="./interact/lab/index.html?path=fruit_fly.ipynb">Interact</a></p>
</div>
</div>
</div>
<div class="nb-start" name="fruit_fly" title="Fruit fly simulation">
</div>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="im">import</span> numpy <span class="im">as</span> np</span>
<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a><span class="im">import</span> matplotlib.pyplot <span class="im">as</span> plt</span>
<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a><span class="co"># set up the random number generator</span></span>
<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a>rnd <span class="op">=</span> np.random.default_rng()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Set the number of trials</span></span>
<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a>n_trials <span class="op">=</span> <span class="dv">10000</span></span>
<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a><span class="co"># set the sample size for each trial</span></span>
<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a>sample_size <span class="op">=</span> <span class="dv">20</span></span>
<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb11-7"><a href="#cb11-7" aria-hidden="true" tabindex="-1"></a><span class="co"># An empty array to store the trials</span></span>
<span id="cb11-8"><a href="#cb11-8" aria-hidden="true" tabindex="-1"></a>scores <span class="op">=</span> np.zeros(n_trials)</span>
<span id="cb11-9"><a href="#cb11-9" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb11-10"><a href="#cb11-10" aria-hidden="true" tabindex="-1"></a><span class="co"># Do 10000 trials</span></span>
<span id="cb11-11"><a href="#cb11-11" aria-hidden="true" tabindex="-1"></a><span class="cf">for</span> i <span class="kw">in</span> <span class="bu">range</span>(n_trials):</span>
<span id="cb11-12"><a href="#cb11-12" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb11-13"><a href="#cb11-13" aria-hidden="true" tabindex="-1"></a> <span class="co"># Generate 20 simulated fruit flies, where each has an equal chance of</span></span>
<span id="cb11-14"><a href="#cb11-14" aria-hidden="true" tabindex="-1"></a> <span class="co"># being male or female</span></span>
<span id="cb11-15"><a href="#cb11-15" aria-hidden="true" tabindex="-1"></a> a <span class="op">=</span> rnd.choice([<span class="st">'male'</span>, <span class="st">'female'</span>],</span>
<span id="cb11-16"><a href="#cb11-16" aria-hidden="true" tabindex="-1"></a> size<span class="op">=</span>sample_size,</span>
<span id="cb11-17"><a href="#cb11-17" aria-hidden="true" tabindex="-1"></a> p<span class="op">=</span>[<span class="fl">0.5</span>, <span class="fl">0.5</span>],</span>
<span id="cb11-18"><a href="#cb11-18" aria-hidden="true" tabindex="-1"></a> replace <span class="op">=</span> <span class="va">True</span>)</span>
<span id="cb11-19"><a href="#cb11-19" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb11-20"><a href="#cb11-20" aria-hidden="true" tabindex="-1"></a> <span class="co"># count the number of males in the sample</span></span>
<span id="cb11-21"><a href="#cb11-21" aria-hidden="true" tabindex="-1"></a> b <span class="op">=</span> np.<span class="bu">sum</span>(a <span class="op">==</span> <span class="st">'male'</span>)</span>
<span id="cb11-22"><a href="#cb11-22" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb11-23"><a href="#cb11-23" aria-hidden="true" tabindex="-1"></a> <span class="co"># store the result of this trial</span></span>
<span id="cb11-24"><a href="#cb11-24" aria-hidden="true" tabindex="-1"></a> scores[i] <span class="op">=</span> b</span>
<span id="cb11-25"><a href="#cb11-25" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb11-26"><a href="#cb11-26" aria-hidden="true" tabindex="-1"></a><span class="co"># Produce a histogram of the trial results</span></span>
<span id="cb11-27"><a href="#cb11-27" aria-hidden="true" tabindex="-1"></a>plt.title(<span class="ss">f"Number of males in </span><span class="sc">{</span>n_trials<span class="sc">}</span><span class="ss"> samples of </span><span class="ch">\n</span><span class="sc">{</span>sample_size<span class="sc">}</span><span class="ss"> simulated fruit flies"</span>)</span>
<span id="cb11-28"><a href="#cb11-28" aria-hidden="true" tabindex="-1"></a>plt.hist(scores)</span>
<span id="cb11-29"><a href="#cb11-29" aria-hidden="true" tabindex="-1"></a>plt.xlabel(<span class="st">'Number of Males'</span>)</span>
<span id="cb11-30"><a href="#cb11-30" aria-hidden="true" tabindex="-1"></a>plt.ylabel(<span class="st">'Frequency'</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output-display">
<div class="quarto-figure quarto-figure-center">
<figure class="figure">
<p><img src="testing_counts_1_files/figure-html/unnamed-chunk-17-1.png" class="img-fluid quarto-figure quarto-figure-center figure-img" style="width:70.0%"></p>
</figure>
</div>
</div>
</div>
<p>In the histogram above, we see that in about 12 percent of the trials, the number of males was 14 or more, or 6 or fewer. Or instead of reading the results from the histogram, we can calculate the result by tacking on the following commands to the above program:</p>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Determine the number of trials in which we had 14 or more males.</span></span>
<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a>j <span class="op">=</span> np.<span class="bu">sum</span>(scores <span class="op">>=</span> <span class="dv">14</span>)</span>
<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a><span class="co"># Determine the number of trials in which we had 6 or fewer males.</span></span>
<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a>k <span class="op">=</span> np.<span class="bu">sum</span>(scores <span class="op"><=</span> <span class="dv">6</span>)</span>
<span id="cb12-6"><a href="#cb12-6" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb12-7"><a href="#cb12-7" aria-hidden="true" tabindex="-1"></a><span class="co"># Add the two results together.</span></span>
<span id="cb12-8"><a href="#cb12-8" aria-hidden="true" tabindex="-1"></a>m <span class="op">=</span> j <span class="op">+</span> k</span>
<span id="cb12-9"><a href="#cb12-9" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb12-10"><a href="#cb12-10" aria-hidden="true" tabindex="-1"></a><span class="co"># Convert to a proportion.</span></span>
<span id="cb12-11"><a href="#cb12-11" aria-hidden="true" tabindex="-1"></a>mm <span class="op">=</span> m <span class="op">/</span> n_trials</span>
<span id="cb12-12"><a href="#cb12-12" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb12-13"><a href="#cb12-13" aria-hidden="true" tabindex="-1"></a><span class="co"># Print the results.</span></span>
<span id="cb12-14"><a href="#cb12-14" aria-hidden="true" tabindex="-1"></a><span class="bu">print</span>(mm)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>0.1191</code></pre>
</div>
</div>
<div class="nb-end">
</div>
<div class="callout callout-style-default callout-note callout-titled">
<div class="callout-header d-flex align-content-center">
<div class="callout-icon-container">
<i class="callout-icon"></i>
</div>
<div class="callout-title-container flex-fill">
End of notebook: Fruit fly simulation
</div>
</div>
<div class="callout-body-container callout-body">
<p><code>fruit_fly</code> starts at <a href="#nte-fruit_fly" class="quarto-xref">Note <span>21.2</span></a>.</p>
</div>
</div>
<!---
End of notebook
-->
<p>Notice that the strength of the evidence for the effectiveness of the radiation treatment depends upon the original question: whether or not the treatment had <em>any</em> effect on the sex of the fruit fly, which is a two-tailed question. If there were reason to believe at the start that the treatment could increase <em>only</em> the number of <em>males</em>, then we would focus our attention on the result that in only two of the twenty-five trials were fourteen or more males. There would then be only a 2/25 = 0.08 probability of getting the observed results by chance if the treatment really has no effect, rather than the weaker odds against obtaining fourteen or more of <em>either</em> males or females.</p>
<p>Therefore, whether you decide to figure the odds of just fourteen or more males (what is called a “one-tail test”) or the odds for fourteen or more males <em>plus</em> fourteen or more females (a “two-tail test”), depends upon your advance knowledge of the subject. If you have no reason to believe that the treatment will have an effect <em>only</em> in the direction of creating more males and if you figure the odds for the one-tail test anyway, then you will be kidding yourself. Theory comes to bear here. If you have a strong hypothesis, deduced from a strong theory, that there will be more males, then you should figure one-tail odds, but if you have no such theory you should figure the weaker two-tail odds.<a href="#fn1" class="footnote-ref" id="fnref1" role="doc-noteref"><sup>1</sup></a></p>
<p>In the case of the next problem concerning calves, we shall see that a one-tail test is appropriate because we have no interest in producing more male calves. Before leaving this example, let us review our intellectual strategy in handling the problem. First we observe a result (14 males in 20 flies) which differs from the proportion of the benchmark population (50 percent males). Because we have treated this sample with irradiation and observed a result that differs from the untreated benchmark-population’s mean, we speculate that the irradiation caused the sample to differ from the untreated population. We wish to check on whether this speculation is correct.</p>
<p>When asking whether this speculation is correct, we are implicitly asking whether future irradiation would also produce a proportion of males higher than 50 percent. That is, we are implicitly asking whether irradiated flies would produce more samples with male proportions as high as 14/20 than would occur by chance in the absence of irradiation.</p>
<p>If samples as far away as 14/20 from the benchmark population mean of 10/20 would occur frequently by chance, then we would not be impressed with that experimental evidence as proof that irradiation does affect the sex ratio. Hence we set up a model that will tell us the frequency with which samples of 14 or more males out of 20 births would be observed by chance. Carrying out the resampling procedure tells us that perhaps a tenth of the time such samples would be observed by chance. That is not extremely frequent, but it is not infrequent either. Hence we would probably conclude that the evidence is provocative enough to justify further experimentation, but not so strong that we should immediately believe in the truth of this speculation.</p>
<p>The logic of attaching meaning to the probabilistic outcome of a test of a hypothesis is discussed in <a href="significance.html" class="quarto-xref"><span>Chapter 22</span></a>. There also is more about the concept of the level of significance in <a href="significance.html" class="quarto-xref"><span>Chapter 22</span></a>.</p>
<p>Because of the great importance of this sort of case, which brings out the basic principles particularly clearly, let us consider another example:</p>
</section>
<section id="sec-female-calves" class="level3" data-number="21.2.2">
<h3 data-number="21.2.2" class="anchored" data-anchor-id="sec-female-calves"><span class="header-section-number">21.2.2</span> Example: Does a treatment increase the female calf rate?</h3>
<p><strong>What is the probability that among 10 calves born, 9 or more will be female?</strong></p>
<p>Let’s consider this question in the context of a set of queries for performing statistical inference that will be discussed further in <a href="testing_procedures.html" class="quarto-xref"><span>Chapter 25</span></a>.</p>
<p><strong><em>The question</em></strong>: (From <span class="citation" data-cites="hodges1970basic">Hodges Jr and Lehmann (<a href="references.html#ref-hodges1970basic" role="doc-biblioref">1970</a>)</span>): Female calves are more valuable than males. A bio-engineer claims to be able to cause more females to be born than the expected 50 percent rate. He conducts his procedure, and nine females are born out of the next 10 pregnancies among the treated cows. Should you believe his claim? That is, what is the probability of a result this (or more) surprising occurring by chance if his procedure has no effect? In this problem, we assume that on average 100 of 206 births are female, in contrast to the 50-50 benchmark universe in the previous problem.</p>
<p><strong><em>What is the purpose of the work?</em></strong>: Female calves are more valuable than male calves.</p>
<p><strong><em>Statistical inference?</em></strong>: Yes.</p>
<p><strong><em>Confidence interval or Test of hypothesis?</em></strong>: Test of hypothesis.</p>
<p><strong><em>Will you state the costs and benefits of various outcomes, or a loss function?</em></strong>: Yes. One need only say that the benefits are very large, and if the results are promising, it is worth gathering more data to confirm results.</p>
<p><strong><em>How many samples of data are part of the hypothesis test?</em></strong>: One.</p>
<p><strong><em>What is the size of the first sample about which you wish to make significance statements?</em></strong>: Ten.</p>
<p><strong><em>What comparison(s) to make?</em></strong>: Compare the sample to the benchmark universe.</p>
<p><strong><em>What is the benchmark universe</em></strong>: <strong>that embodies the null hypothesis?</strong> 100/206 female.</p>
<p><strong><em>Which symbols for the observed entities?</em></strong>: Balls in bucket, or numbers.</p>
<p><strong><em>What values or ranges of values?</em></strong>: We could write numbers 1 through 206 on pieces of paper, and take numbers 1-100 as “male” and 101-206 as “female”. Or we could use some other mechanism to give us a 100/206 chance of any one calf being female.</p>
<p><strong><em>Finite or infinite universe?</em></strong>: Infinite.</p>
<p><strong><em>Which sample(s) do you wish to compare to which, or to the null universe (and perhaps to the alternative universe)?</em></strong>: Ten calves.</p>
<p><strong><em>What procedure to produce the sample entities?</em></strong>: Sampling with replacement.</p>
<p><strong><em>Simple (single step) or complex (multiple “if” drawings)?</em></strong>: Can think of it either way.</p>
<p><strong><em>What to record as the outcome of each resample trial?</em></strong>: The proportion (or number) of females.</p>
<p><strong><em>What is the criterion to be used in the test?</em></strong>: The probability that in a sample of ten calves, nine (or more) females would be drawn by chance from the benchmark universe of 100/206 females.</p>
<p><strong><em>“One tail” or “two tail” test?</em></strong>: One tail, because the farmer is only interested in females. Finding a large proportion of males would not be of interest; it would not cause rejecting the null hypothesis.</p>
<p>The actual computation of probability may be done in several ways, as discussed earlier for four children and for ten cows. Conventional methods are discussed for comparison in <a href="testing_procedures.html" class="quarto-xref"><span>Chapter 25</span></a>. Here is the resampling solution in Python.</p>
<div id="nte-female_calves" class="callout callout-style-default callout-note callout-titled">
<div class="callout-header d-flex align-content-center">
<div class="callout-icon-container">
<i class="callout-icon"></i>
</div>
<div class="callout-title-container flex-fill">
Note 21.3: Notebook: Female calf numbers simulation
</div>
</div>
<div class="callout-body-container callout-body">
<div class="nb-links">
<p><a class="notebook-link" href="notebooks/female_calves.ipynb">Download notebook</a> <a class="interact-button" href="./interact/lab/index.html?path=female_calves.ipynb">Interact</a></p>
</div>
</div>
</div>
<div class="nb-start" name="female_calves" title="Female calf numbers simulation">
</div>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a><span class="im">import</span> numpy <span class="im">as</span> np</span>
<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a><span class="im">import</span> matplotlib.pyplot <span class="im">as</span> plt</span>
<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a>rnd <span class="op">=</span> np.random.default_rng()</span>
<span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb14-6"><a href="#cb14-6" aria-hidden="true" tabindex="-1"></a><span class="co"># Set the number of trials.</span></span>
<span id="cb14-7"><a href="#cb14-7" aria-hidden="true" tabindex="-1"></a>n_trials <span class="op">=</span> <span class="dv">10000</span></span>
<span id="cb14-8"><a href="#cb14-8" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb14-9"><a href="#cb14-9" aria-hidden="true" tabindex="-1"></a><span class="co"># Set the size of each sample.</span></span>
<span id="cb14-10"><a href="#cb14-10" aria-hidden="true" tabindex="-1"></a>sample_size <span class="op">=</span> <span class="dv">10</span></span>
<span id="cb14-11"><a href="#cb14-11" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb14-12"><a href="#cb14-12" aria-hidden="true" tabindex="-1"></a><span class="co"># Probability of any one calf being female.</span></span>
<span id="cb14-13"><a href="#cb14-13" aria-hidden="true" tabindex="-1"></a>p_female <span class="op">=</span> <span class="dv">100</span> <span class="op">/</span> <span class="dv">206</span></span>
<span id="cb14-14"><a href="#cb14-14" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb14-15"><a href="#cb14-15" aria-hidden="true" tabindex="-1"></a><span class="co"># An array to store the results.</span></span>
<span id="cb14-16"><a href="#cb14-16" aria-hidden="true" tabindex="-1"></a>scores <span class="op">=</span> np.zeros(n_trials)</span>
<span id="cb14-17"><a href="#cb14-17" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb14-18"><a href="#cb14-18" aria-hidden="true" tabindex="-1"></a><span class="co"># For 10000 repeats.</span></span>
<span id="cb14-19"><a href="#cb14-19" aria-hidden="true" tabindex="-1"></a><span class="cf">for</span> i <span class="kw">in</span> <span class="bu">range</span>(n_trials):</span>
<span id="cb14-20"><a href="#cb14-20" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb14-21"><a href="#cb14-21" aria-hidden="true" tabindex="-1"></a> a <span class="op">=</span> rnd.choice([<span class="st">'female'</span>, <span class="st">'male'</span>],</span>
<span id="cb14-22"><a href="#cb14-22" aria-hidden="true" tabindex="-1"></a> p<span class="op">=</span>[p_female, <span class="dv">1</span> <span class="op">-</span> p_female],</span>
<span id="cb14-23"><a href="#cb14-23" aria-hidden="true" tabindex="-1"></a> size<span class="op">=</span>sample_size)</span>
<span id="cb14-24"><a href="#cb14-24" aria-hidden="true" tabindex="-1"></a> b <span class="op">=</span> np.<span class="bu">sum</span>(a <span class="op">==</span> <span class="st">'female'</span>)</span>
<span id="cb14-25"><a href="#cb14-25" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb14-26"><a href="#cb14-26" aria-hidden="true" tabindex="-1"></a> <span class="co"># Store the result of the current trial.</span></span>
<span id="cb14-27"><a href="#cb14-27" aria-hidden="true" tabindex="-1"></a> scores[i] <span class="op">=</span> b</span>
<span id="cb14-28"><a href="#cb14-28" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb14-29"><a href="#cb14-29" aria-hidden="true" tabindex="-1"></a><span class="co"># Plot a histogram of the scores.</span></span>
<span id="cb14-30"><a href="#cb14-30" aria-hidden="true" tabindex="-1"></a>plt.title(<span class="ss">f"Number of females in </span><span class="sc">{</span>n_trials<span class="sc">}</span><span class="ss"> samples of </span><span class="ch">\n</span><span class="sc">{</span>sample_size<span class="sc">}</span><span class="ss"> simulated calves"</span>)</span>
<span id="cb14-31"><a href="#cb14-31" aria-hidden="true" tabindex="-1"></a>plt.hist(scores)</span>
<span id="cb14-32"><a href="#cb14-32" aria-hidden="true" tabindex="-1"></a>plt.xlabel(<span class="st">'Number of Females'</span>)</span>
<span id="cb14-33"><a href="#cb14-33" aria-hidden="true" tabindex="-1"></a>plt.ylabel(<span class="st">'Frequency'</span>)</span>
<span id="cb14-34"><a href="#cb14-34" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb14-35"><a href="#cb14-35" aria-hidden="true" tabindex="-1"></a><span class="co"># Count the number of scores that were greater than or equal to 9.</span></span>
<span id="cb14-36"><a href="#cb14-36" aria-hidden="true" tabindex="-1"></a>k <span class="op">=</span> np.<span class="bu">sum</span>(scores <span class="op">>=</span> <span class="dv">9</span>)</span>
<span id="cb14-37"><a href="#cb14-37" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb14-38"><a href="#cb14-38" aria-hidden="true" tabindex="-1"></a><span class="co"># Express as a proportion.</span></span>
<span id="cb14-39"><a href="#cb14-39" aria-hidden="true" tabindex="-1"></a>kk <span class="op">=</span> k <span class="op">/</span> n_trials</span>
<span id="cb14-40"><a href="#cb14-40" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb14-41"><a href="#cb14-41" aria-hidden="true" tabindex="-1"></a><span class="co"># Show the proportion.</span></span>
<span id="cb14-42"><a href="#cb14-42" aria-hidden="true" tabindex="-1"></a><span class="bu">print</span>(<span class="st">"Probability of 9 or 10 females occurring by chance:"</span>, kk)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>Probability of 9 or 10 females occurring by chance: 0.009</code></pre>
</div>
<div class="cell-output-display">
<div class="quarto-figure quarto-figure-center">
<figure class="figure">
<p><img src="testing_counts_1_files/figure-html/unnamed-chunk-22-1.png" class="img-fluid quarto-figure quarto-figure-center figure-img" style="width:70.0%"></p>
</figure>
</div>
</div>
</div>
<p>We read from the result in variable <code>kk</code> that the probability of 9 or 10 females occurring by chance is a bit more than one percent.</p>
<div class="nb-end">
</div>
<div class="callout callout-style-default callout-note callout-titled">
<div class="callout-header d-flex align-content-center">
<div class="callout-icon-container">
<i class="callout-icon"></i>
</div>
<div class="callout-title-container flex-fill">
End of notebook: Female calf numbers simulation
</div>
</div>
<div class="callout-body-container callout-body">
<p><code>female_calves</code> starts at <a href="#nte-female_calves" class="quarto-xref">Note <span>21.3</span></a>.</p>
</div>
</div>
<!---
End of calves notebook.
-->
</section>
<section id="sec-contract-poll" class="level3" data-number="21.2.3">
<h3 data-number="21.2.3" class="anchored" data-anchor-id="sec-contract-poll"><span class="header-section-number">21.2.3</span> Example: A public-opinion poll</h3>
<p><strong>Is the Proportion of a Population Greater Than a Given Value?</strong></p>
<p>A municipal official wants to determine whether a majority of the town’s residents are for or against the awarding of a high-speed internet contract, and she asks you to take a poll. You judge that the voter registration records are a fair representation of the universe in which the politician was interested, and you therefore decided to interview a random selection of registered voters. Of a sample of fifty people who expressed opinions, thirty said “yes” they were for the plan and twenty said “no,” they were against it. How conclusively do the results show that the people in town want this internet contract?</p>
<p>Now comes some necessary subtle thinking in the interpretation of what seems like a simple problem. Notice that our aim in the analysis is to avoid the mistake of saying that the town favors the plan when in fact it does not favor the plan. Our chance of making this mistake is greatest when the voters are evenly split, so we choose as the benchmark (null) hypothesis that 50 percent of the town does not want the plan. This statement really means that “50 percent or more do not want the plan.” We could assess the probability of obtaining our result from a population that is split (say) 52-48 against, but such a probability would necessarily be even smaller, and we are primarily interested in assessing the maximum probability of being wrong. If the maximum probability of error turns out to be inconsequential, then we need not worry about less likely errors.</p>
<p>This problem is very much like the one-group fruit fly irradiation problem above. The only difference is that now we are comparing the observed sample against an arbitrary value of 50 percent (because that is the break-point in a situation where the majority decides) whereas in <a href="#sec-fruitfly" class="quarto-xref"><span>Section 21.2.1</span></a> we compared the observed sample against the normal population proportion (also 50 percent, because that is the normal proportion of males). But it really does not matter <em>why</em> we are comparing the observed sample to the figure of 50 percent; the procedure is the same in both cases. (Please notice that there is nothing special about the 50 percent figure; the same procedure would be followed for 20 percent or 85 percent.)</p>
<p>In brief, we a) take two pieces of paper, write “Yes” on one and “No” on the other, put them in a bucket b) draw a piece of paper from the bucket, record whether it was “Yes” or “No”, replace, and repeat 50 times c) count the number of “yeses” and “noes” in the fifty draws, c) repeat for perhaps a hundred trials, then d) count the proportion of the trials in which a 50-50 universe would produce thirty or more “yes” answers.</p>
<p>In operational steps, the procedure is as follows:</p>
<ul>
<li><strong>Step 1.</strong> “1-5” = no, “6-0” = yes.</li>
<li><strong>Step 2.</strong> In 50 random numbers, count the “yeses,” and record “false positive” if 30 or more “yeses.”</li>
<li><strong>Step 3.</strong> Repeat step 2 perhaps 100 times.</li>
<li><strong>Step 4.</strong> Calculate the proportion of experimental trials showing “false positive.” This estimates the probability that as many as 30 “yeses” would be observed by chance in a sample of 50 people <em>if</em> half (or more) are really against the plan.</li>
</ul>
<div class="cell" data-layout-align="center">
<div class="cell-output-display">
<div id="tbl-contract-trials" class="lightable-paper lightable-striped lightable-hover quarto-float quarto-figure quarto-figure-center anchored" data-quarto-postprocess="true" style="font-family: "Arial Narrow", arial, helvetica, sans-serif; width: auto !important; margin-left: auto; margin-right: auto;">
<figure class="quarto-float quarto-float-tbl figure">
<figcaption class="quarto-float-caption-top quarto-float-caption quarto-float-tbl" id="tbl-contract-trials-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
Table 21.2: Results from 20 random trials for contract poll problem
</figcaption>
<div aria-describedby="tbl-contract-trials-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
<table class="lightable-paper lightable-striped lightable-hover caption-top table table-sm table-striped small" data-quarto-postprocess="true">
<thead>
<tr class="header">
<th style="text-align: right;" data-quarto-table-cell-role="th">Trial no</th>
<th style="text-align: right;" data-quarto-table-cell-role="th"># of "Noes"</th>
<th style="text-align: right;" data-quarto-table-cell-role="th"># of "Yeses"</th>
<th style="text-align: left;" data-quarto-table-cell-role="th">>= 30 "Yeses"</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td style="text-align: right;">1</td>