-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset.py
61 lines (48 loc) · 1.87 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
""" train and test dataset """
import os
import sys
import pickle
from skimage import io
import matplotlib.pyplot as plt
import numpy
import torch
from torch.utils.data import Dataset
class CIFAR100Train(Dataset):
"""cifar100 test dataset, derived from
torch.utils.data.DataSet
"""
def __init__(self, path, transform=None):
#if transform is given, we transoform data using
with open(os.path.join(path, 'train'), 'rb') as cifar100:
self.data = pickle.load(cifar100, encoding='bytes')
self.transform = transform
def __len__(self):
return len(self.data['fine_labels'.encode()])
def __getitem__(self, index):
label = self.data['fine_labels'.encode()][index]
r = self.data['data'.encode()][index, :1024].reshape(32, 32)
g = self.data['data'.encode()][index, 1024:2048].reshape(32, 32)
b = self.data['data'.encode()][index, 2048:].reshape(32, 32)
image = numpy.dstack((r, g, b))
if self.transform:
image = self.transform(image)
return label, image
class CIFAR100Test(Dataset):
"""cifar100 test dataset, derived from
torch.utils.data.DataSet
"""
def __init__(self, path, transform=None):
with open(os.path.join(path, 'test'), 'rb') as cifar100:
self.data = pickle.load(cifar100, encoding='bytes')
self.transform = transform
def __len__(self):
return len(self.data['data'.encode()])
def __getitem__(self, index):
label = self.data['fine_labels'.encode()][index]
r = self.data['data'.encode()][index, :1024].reshape(32, 32)
g = self.data['data'.encode()][index, 1024:2048].reshape(32, 32)
b = self.data['data'.encode()][index, 2048:].reshape(32, 32)
image = numpy.dstack((r, g, b))
if self.transform:
image = self.transform(image)
return label, image