Skip to content

Latest commit

 

History

History
166 lines (150 loc) · 5.89 KB

README.md

File metadata and controls

166 lines (150 loc) · 5.89 KB

Fit2Form: 3D Generative Model for Robot Gripper Form Design

Huy Ha*, Shubham Agrawal*, Shuran Song
Columbia University
CoRL 2020
*denotes equal contribution

Setup

We've prepared a conda YAML file that contains all the necessary dependencies. To use it, run

conda env create -f environment.yml
conda activate fit2form

Evaluate a pretrained finger generator

In the repo's root, download the pretrained weights and processed test dataset:

wget -qO- https://fit2form.cs.columbia.edu/downloads/checkpoints/loss-ablation-checkpoints.tar.xz | tar xvfJ -
mkdir -p downloads/checkpoints; mv *.pth downloads/checkpoints/
wget -qO- https://fit2form.cs.columbia.edu/downloads/data/test.tar.xz | tar xvfJ -

Run the following command for evaluation:

python evaluate_generator.py --evaluate_config configs/evaluate.json --objects test/ --name evaluation_results 

Train a fit2form finger generator

For training a fit2form finger generator, you will need to do the following:

  1. Download train-val-test split files
  2. Generate dataset
  3. Pretrain an AutoEncoder
  4. Pretrain the Generator Network
  5. Pretrain the Fitness Network
  6. Cotrain Generator and Fitness Network

1. Download train-val-test split files

wget -P data/ https://fit2form.cs.columbia.edu/downloads/data/train_categories.txt
wget -P data/ https://fit2form.cs.columbia.edu/downloads/data/val_categories.txt
wget -P data/ https://fit2form.cs.columbia.edu/downloads/data/test_categories.txt

2. Generating Datsets

  1. Download the ShapeNetCore dataset and place it in the data/ShapeNetCore.v2 folder at root. Your data folder should have shapenet category directories like:
data/
    ShapeNetCore.v2/
        02691156/
        03046257/
        03928116/
        ...
  1. Generate grasp objects (each object in Shapenet will be dropped from a height, allowed to settle, and then readjusted to our geometry bounds). The generated objects will be stored in the same directory as the original object.
# - generate collision meshes
python main.py --mode collision_mesh
# - wrap those collision meshes inside urdf files for simulation
python main.py --mode urdf
# - process objects (rescale to bounds) after dropping them from a random orientation
python main.py --mode grasp_objects
  1. Generate the shapenet-grasp-dataset:
# Training dataset:
python main.py\
    --name "data/shapenet_grasp_dataset/"\
    --mode pretrain_dataset\
    --split train\
    --train data/train_categories.txt
# Val dataset:
python main.py\
    --name "data/shapenet_grasp_dataset/"\
    --mode pretrain_dataset\
    --split val
    --val data/val_categories.txt
  1. Generate the imprint-grasp-dataset:
# - generate imprint fingers
python main.py --mode imprint_baseline
# - simulate grasping using (obj, imprint-left, imprint-right) and store grasping results
#   (a) Training dataset
python main.py\
    --name "data/imprint_grasp_dataset/"\
    --mode pretrain_imprint_dataset 
    --split train\
    --train data/train_categories.txt
#   (b) Val dataset
python main.py\
    --name "data/imprint_grasp_dataset/"\
    --mode pretrain_imprint_dataset 
    --split val\
    --val data/val_categories.txt

Note that both modes pretrain_dataset and pretrain_imprint_dataset produces one million grasp-results by default. You can change this number by passing argument --num_pretrain_dataset with desired value.

3. Pretrain autoencoder

python main.py\
    --name train_ae\
    --mode vae\
    --shapenet_train_hdf data/shapenet_grasp_dataset/grasp_results_train.hdf5\
    --shapenet_val_hdf data/shapenet_grasp_dataset/grasp_results_val.hdf5\
    --imprint_train_hdf data/imprint_grasp_dataset/grasp_results_train.hdf5\
    --imprint_val_hdf data/imprint_grasp_dataset/grasp_results_val.hdf5

4. Pretrain generator network

Replace <epoch_num> in the command below:

python main.py\
    --name pretrain_gn\
    --mode pretrain_gn\
    --ae_checkpoint_path runs/train_ae/vae_<epoch_num>.pth\
    --shapenet_train_hdf data/shapenet_grasp_dataset/grasp_results_train.hdf5\
    --shapenet_val_hdf data/shapenet_grasp_dataset/grasp_results_val.hdf5\
    --imprint_train_hdf data/imprint_grasp_dataset/grasp_results_train.hdf5\
    --imprint_val_hdf data/imprint_grasp_dataset/grasp_results_val.hdf5

5. Pretrain fitness network

python main.py\
    --name pretrain_fn\
    --mode pretrain\
    --shapenet_train_hdf data/shapenet_grasp_dataset/grasp_results_train.hdf5\
    --shapenet_val_hdf data/shapenet_grasp_dataset/grasp_results_val.hdf5\
    --imprint_train_hdf data/imprint_grasp_dataset/grasp_results_train.hdf5\
    --imprint_val_hdf data/imprint_grasp_dataset/grasp_results_val.hdf5

6. Cotraining generator and fitness network

Replace <epoch_num>s in the command below:

python main.py\
    --name cotrain\
    --mode cotrain\
    --gn_checkpoint_path runs/pretrain_gn/imprint_pretrain_gn_<epoch_num>.pth\
    --fn_checkpoint_path runs/pretrain_fn/pretrain_<epoch_num>.pth\
    --shapenet_train_hdf data/shapenet_grasp_dataset/grasp_results_train.hdf5\
    --shapenet_val_hdf data/shapenet_grasp_dataset/grasp_results_val.hdf5\
    --imprint_train_hdf data/imprint_grasp_dataset/grasp_results_train.hdf5\
    --imprint_val_hdf data/imprint_grasp_dataset/grasp_results_val.hdf5

Citation

@inproceedings{ha2020fit2form,
    title={{Fit2Form}: 3{D} Generative Model for Robot Gripper Form Design},
    author={Ha, Huy and Agrawal, Shubham and Song, Shuran},
    booktitle={Conference on Robotic Learning (CoRL)},
    year={2020} 
}