forked from segmentio/kafka-go
-
Notifications
You must be signed in to change notification settings - Fork 0
/
consumergroup.go
1246 lines (1090 loc) · 40.3 KB
/
consumergroup.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
package kafka
import (
"bufio"
"bytes"
"context"
"errors"
"fmt"
"io"
"math"
"net"
"strconv"
"strings"
"sync"
"time"
)
// ErrGroupClosed is returned by ConsumerGroup.Next when the group has already
// been closed.
var ErrGroupClosed = errors.New("consumer group is closed")
// ErrGenerationEnded is returned by the context.Context issued by the
// Generation's Start function when the context has been closed.
var ErrGenerationEnded = errors.New("consumer group generation has ended")
const (
// defaultProtocolType holds the default protocol type documented in the
// kafka protocol
//
// See https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol#AGuideToTheKafkaProtocol-GroupMembershipAPI
defaultProtocolType = "consumer"
// defaultHeartbeatInterval contains the default time between heartbeats. If
// the coordinator does not receive a heartbeat within the session timeout interval,
// the consumer will be considered dead and the coordinator will rebalance the
// group.
//
// As a rule, the heartbeat interval should be no greater than 1/3 the session timeout
defaultHeartbeatInterval = 3 * time.Second
// defaultSessionTimeout contains the default interval the coordinator will wait
// for a heartbeat before marking a consumer as dead
defaultSessionTimeout = 30 * time.Second
// defaultRebalanceTimeout contains the amount of time the coordinator will wait
// for consumers to issue a join group once a rebalance has been requested
defaultRebalanceTimeout = 30 * time.Second
// defaultJoinGroupBackoff is the amount of time to wait after a failed
// consumer group generation before attempting to re-join.
defaultJoinGroupBackoff = 5 * time.Second
// defaultRetentionTime holds the length of time a the consumer group will be
// saved by kafka. This value tells the broker to use its configured value.
defaultRetentionTime = -1 * time.Millisecond
// defaultPartitionWatchTime contains the amount of time the kafka-go will wait to
// query the brokers looking for partition changes.
defaultPartitionWatchTime = 5 * time.Second
// defaultTimeout is the deadline to set when interacting with the
// consumer group coordinator.
defaultTimeout = 5 * time.Second
)
// ConsumerGroupConfig is a configuration object used to create new instances of
// ConsumerGroup.
type ConsumerGroupConfig struct {
// ID is the consumer group ID. It must not be empty.
ID string
// The list of broker addresses used to connect to the kafka cluster. It
// must not be empty.
Brokers []string
// An dialer used to open connections to the kafka server. This field is
// optional, if nil, the default dialer is used instead.
Dialer *Dialer
// Topics is the list of topics that will be consumed by this group. It
// will usually have a single value, but it is permitted to have multiple
// for more complex use cases.
Topics []string
// GroupBalancers is the priority-ordered list of client-side consumer group
// balancing strategies that will be offered to the coordinator. The first
// strategy that all group members support will be chosen by the leader.
//
// Default: [Range, RoundRobin]
GroupBalancers []GroupBalancer
// HeartbeatInterval sets the optional frequency at which the reader sends the consumer
// group heartbeat update.
//
// Default: 3s
HeartbeatInterval time.Duration
// PartitionWatchInterval indicates how often a reader checks for partition changes.
// If a reader sees a partition change (such as a partition add) it will rebalance the group
// picking up new partitions.
//
// Default: 5s
PartitionWatchInterval time.Duration
// WatchForPartitionChanges is used to inform kafka-go that a consumer group should be
// polling the brokers and rebalancing if any partition changes happen to the topic.
WatchPartitionChanges bool
// SessionTimeout optionally sets the length of time that may pass without a heartbeat
// before the coordinator considers the consumer dead and initiates a rebalance.
//
// Default: 30s
SessionTimeout time.Duration
// RebalanceTimeout optionally sets the length of time the coordinator will wait
// for members to join as part of a rebalance. For kafka servers under higher
// load, it may be useful to set this value higher.
//
// Default: 30s
RebalanceTimeout time.Duration
// JoinGroupBackoff optionally sets the length of time to wait before re-joining
// the consumer group after an error.
//
// Default: 5s
JoinGroupBackoff time.Duration
// RetentionTime optionally sets the length of time the consumer group will
// be saved by the broker. -1 will disable the setting and leave the
// retention up to the broker's offsets.retention.minutes property. By
// default, that setting is 1 day for kafka < 2.0 and 7 days for kafka >=
// 2.0.
//
// Default: -1
RetentionTime time.Duration
// StartOffset determines from whence the consumer group should begin
// consuming when it finds a partition without a committed offset. If
// non-zero, it must be set to one of FirstOffset or LastOffset.
//
// Default: FirstOffset
StartOffset int64
// If not nil, specifies a logger used to report internal changes within the
// reader.
Logger Logger
// ErrorLogger is the logger used to report errors. If nil, the reader falls
// back to using Logger instead.
ErrorLogger Logger
// Timeout is the network timeout used when communicating with the consumer
// group coordinator. This value should not be too small since errors
// communicating with the broker will generally cause a consumer group
// rebalance, and it's undesirable that a transient network error intoduce
// that overhead. Similarly, it should not be too large or the consumer
// group may be slow to respond to the coordinator failing over to another
// broker.
//
// Default: 5s
Timeout time.Duration
// connect is a function for dialing the coordinator. This is provided for
// unit testing to mock broker connections.
connect func(dialer *Dialer, brokers ...string) (coordinator, error)
}
// Validate method validates ConsumerGroupConfig properties and sets relevant
// defaults.
func (config *ConsumerGroupConfig) Validate() error {
if len(config.Brokers) == 0 {
return errors.New("cannot create a consumer group with an empty list of broker addresses")
}
if len(config.Topics) == 0 {
return errors.New("cannot create a consumer group without a topic")
}
if config.ID == "" {
return errors.New("cannot create a consumer group without an ID")
}
if config.Dialer == nil {
config.Dialer = DefaultDialer
}
if len(config.GroupBalancers) == 0 {
config.GroupBalancers = []GroupBalancer{
RangeGroupBalancer{},
RoundRobinGroupBalancer{},
}
}
if config.HeartbeatInterval == 0 {
config.HeartbeatInterval = defaultHeartbeatInterval
}
if config.SessionTimeout == 0 {
config.SessionTimeout = defaultSessionTimeout
}
if config.PartitionWatchInterval == 0 {
config.PartitionWatchInterval = defaultPartitionWatchTime
}
if config.RebalanceTimeout == 0 {
config.RebalanceTimeout = defaultRebalanceTimeout
}
if config.JoinGroupBackoff == 0 {
config.JoinGroupBackoff = defaultJoinGroupBackoff
}
if config.RetentionTime == 0 {
config.RetentionTime = defaultRetentionTime
}
if config.HeartbeatInterval < 0 || (config.HeartbeatInterval/time.Millisecond) >= math.MaxInt32 {
return errors.New(fmt.Sprintf("HeartbeatInterval out of bounds: %d", config.HeartbeatInterval))
}
if config.SessionTimeout < 0 || (config.SessionTimeout/time.Millisecond) >= math.MaxInt32 {
return errors.New(fmt.Sprintf("SessionTimeout out of bounds: %d", config.SessionTimeout))
}
if config.RebalanceTimeout < 0 || (config.RebalanceTimeout/time.Millisecond) >= math.MaxInt32 {
return errors.New(fmt.Sprintf("RebalanceTimeout out of bounds: %d", config.RebalanceTimeout))
}
if config.JoinGroupBackoff < 0 || (config.JoinGroupBackoff/time.Millisecond) >= math.MaxInt32 {
return errors.New(fmt.Sprintf("JoinGroupBackoff out of bounds: %d", config.JoinGroupBackoff))
}
if config.RetentionTime < 0 && config.RetentionTime != defaultRetentionTime {
return errors.New(fmt.Sprintf("RetentionTime out of bounds: %d", config.RetentionTime))
}
if config.PartitionWatchInterval < 0 || (config.PartitionWatchInterval/time.Millisecond) >= math.MaxInt32 {
return errors.New(fmt.Sprintf("PartitionWachInterval out of bounds %d", config.PartitionWatchInterval))
}
if config.StartOffset == 0 {
config.StartOffset = FirstOffset
}
if config.StartOffset != FirstOffset && config.StartOffset != LastOffset {
return errors.New(fmt.Sprintf("StartOffset is not valid %d", config.StartOffset))
}
if config.Timeout == 0 {
config.Timeout = defaultTimeout
}
if config.connect == nil {
config.connect = makeConnect(*config)
}
return nil
}
// PartitionAssignment represents the starting state of a partition that has
// been assigned to a consumer.
type PartitionAssignment struct {
// ID is the partition ID.
ID int
// Offset is the initial offset at which this assignment begins. It will
// either be an absolute offset if one has previously been committed for
// the consumer group or a relative offset such as FirstOffset when this
// is the first time the partition have been assigned to a member of the
// group.
Offset int64
}
// genCtx adapts the done channel of the generation to a context.Context. This
// is used by Generation.Start so that we can pass a context to go routines
// instead of passing around channels.
type genCtx struct {
gen *Generation
}
func (c genCtx) Done() <-chan struct{} {
return c.gen.done
}
func (c genCtx) Err() error {
select {
case <-c.gen.done:
return ErrGenerationEnded
default:
return nil
}
}
func (c genCtx) Deadline() (time.Time, bool) {
return time.Time{}, false
}
func (c genCtx) Value(interface{}) interface{} {
return nil
}
// Generation represents a single consumer group generation. The generation
// carries the topic+partition assignments for the given. It also provides
// facilities for committing offsets and for running functions whose lifecycles
// are bound to the generation.
type Generation struct {
// ID is the generation ID as assigned by the consumer group coordinator.
ID int32
// GroupID is the name of the consumer group.
GroupID string
// MemberID is the ID assigned to this consumer by the consumer group
// coordinator.
MemberID string
// Assignments is the initial state of this Generation. The partition
// assignments are grouped by topic.
Assignments map[string][]PartitionAssignment
conn coordinator
// the following fields are used for process accounting to synchronize
// between Start and close. lock protects all of them. done is closed
// when the generation is ending in order to signal that the generation
// should start self-desructing. closed protects against double-closing
// the done chan. routines is a count of runing go routines that have been
// launched by Start. joined will be closed by the last go routine to exit.
lock sync.Mutex
done chan struct{}
closed bool
routines int
joined chan struct{}
retentionMillis int64
log func(func(Logger))
logError func(func(Logger))
}
// close stops the generation and waits for all functions launched via Start to
// terminate.
func (g *Generation) close() {
g.lock.Lock()
if !g.closed {
close(g.done)
g.closed = true
}
// determine whether any go routines are running that we need to wait for.
// waiting needs to happen outside of the critical section.
r := g.routines
g.lock.Unlock()
// NOTE: r will be zero if no go routines were ever launched. no need to
// wait in that case.
if r > 0 {
<-g.joined
}
}
// Start launches the provided function in a go routine and adds accounting such
// that when the function exits, it stops the current generation (if not
// already in the process of doing so).
//
// The provided function MUST support cancellation via the ctx argument and exit
// in a timely manner once the ctx is complete. When the context is closed, the
// context's Error() function will return ErrGenerationEnded.
//
// When closing out a generation, the consumer group will wait for all functions
// launched by Start to exit before the group can move on and join the next
// generation. If the function does not exit promptly, it will stop forward
// progress for this consumer and potentially cause consumer group membership
// churn.
func (g *Generation) Start(fn func(ctx context.Context)) {
g.lock.Lock()
defer g.lock.Unlock()
// this is an edge case: if the generation has already closed, then it's
// possible that the close func has already waited on outstanding go
// routines and exited.
//
// nonetheless, it's important to honor that the fn is invoked in case the
// calling function is waiting e.g. on a channel send or a WaitGroup. in
// such a case, fn should immediately exit because ctx.Err() will return
// ErrGenerationEnded.
if g.closed {
go fn(genCtx{g})
return
}
// register that there is one more go routine that's part of this gen.
g.routines++
go func() {
fn(genCtx{g})
g.lock.Lock()
// shut down the generation as soon as one function exits. this is
// different from close() in that it doesn't wait for all go routines in
// the generation to exit.
if !g.closed {
close(g.done)
g.closed = true
}
g.routines--
// if this was the last go routine in the generation, close the joined
// chan so that close() can exit if it's waiting.
if g.routines == 0 {
close(g.joined)
}
g.lock.Unlock()
}()
}
// CommitOffsets commits the provided topic+partition+offset combos to the
// consumer group coordinator. This can be used to reset the consumer to
// explicit offsets.
func (g *Generation) CommitOffsets(offsets map[string]map[int]int64) error {
if len(offsets) == 0 {
return nil
}
topics := make([]offsetCommitRequestV2Topic, 0, len(offsets))
for topic, partitions := range offsets {
t := offsetCommitRequestV2Topic{Topic: topic}
for partition, offset := range partitions {
t.Partitions = append(t.Partitions, offsetCommitRequestV2Partition{
Partition: int32(partition),
Offset: offset,
})
}
topics = append(topics, t)
}
request := offsetCommitRequestV2{
GroupID: g.GroupID,
GenerationID: g.ID,
MemberID: g.MemberID,
RetentionTime: g.retentionMillis,
Topics: topics,
}
_, err := g.conn.offsetCommit(request)
if err == nil {
// if logging is enabled, print out the partitions that were committed.
g.log(func(l Logger) {
var report []string
for _, t := range request.Topics {
report = append(report, fmt.Sprintf("\ttopic: %s", t.Topic))
for _, p := range t.Partitions {
report = append(report, fmt.Sprintf("\t\tpartition %d: %d", p.Partition, p.Offset))
}
}
l.Printf("committed offsets for group %s: \n%s", g.GroupID, strings.Join(report, "\n"))
})
}
return err
}
// heartbeatLoop checks in with the consumer group coordinator at the provided
// interval. It exits if it ever encounters an error, which would signal the
// end of the generation.
func (g *Generation) heartbeatLoop(interval time.Duration) {
g.Start(func(ctx context.Context) {
g.log(func(l Logger) {
l.Printf("started heartbeat for group, %v [%v]", g.GroupID, interval)
})
defer g.log(func(l Logger) {
l.Printf("stopped heartbeat for group %s\n", g.GroupID)
})
ticker := time.NewTicker(interval)
defer ticker.Stop()
for {
select {
case <-ctx.Done():
return
case <-ticker.C:
_, err := g.conn.heartbeat(heartbeatRequestV0{
GroupID: g.GroupID,
GenerationID: g.ID,
MemberID: g.MemberID,
})
if err != nil {
return
}
}
}
})
}
// partitionWatcher queries kafka and watches for partition changes, triggering
// a rebalance if changes are found. Similar to heartbeat it's okay to return on
// error here as if you are unable to ask a broker for basic metadata you're in
// a bad spot and should rebalance. Commonly you will see an error here if there
// is a problem with the connection to the coordinator and a rebalance will
// establish a new connection to the coordinator.
func (g *Generation) partitionWatcher(interval time.Duration, topic string) {
g.Start(func(ctx context.Context) {
g.log(func(l Logger) {
l.Printf("started partition watcher for group, %v, topic %v [%v]", g.GroupID, topic, interval)
})
defer g.log(func(l Logger) {
l.Printf("stopped partition watcher for group, %v, topic %v", g.GroupID, topic)
})
ticker := time.NewTicker(interval)
defer ticker.Stop()
ops, err := g.conn.readPartitions(topic)
if err != nil {
g.logError(func(l Logger) {
l.Printf("Problem getting partitions during startup, %v\n, Returning and setting up nextGeneration", err)
})
return
}
oParts := len(ops)
for {
select {
case <-ctx.Done():
return
case <-ticker.C:
ops, err := g.conn.readPartitions(topic)
switch err {
case nil, UnknownTopicOrPartition:
if len(ops) != oParts {
g.log(func(l Logger) {
l.Printf("Partition changes found, reblancing group: %v.", g.GroupID)
})
return
}
default:
g.logError(func(l Logger) {
l.Printf("Problem getting partitions while checking for changes, %v", err)
})
if _, ok := err.(Error); ok {
continue
}
// other errors imply that we lost the connection to the coordinator, so we
// should abort and reconnect.
return
}
}
}
})
}
// coordinator is a subset of the functionality in Conn in order to facilitate
// testing the consumer group...especially for error conditions that are
// difficult to instigate with a live broker running in docker.
type coordinator interface {
io.Closer
findCoordinator(findCoordinatorRequestV0) (findCoordinatorResponseV0, error)
joinGroup(joinGroupRequestV1) (joinGroupResponseV1, error)
syncGroup(syncGroupRequestV0) (syncGroupResponseV0, error)
leaveGroup(leaveGroupRequestV0) (leaveGroupResponseV0, error)
heartbeat(heartbeatRequestV0) (heartbeatResponseV0, error)
offsetFetch(offsetFetchRequestV1) (offsetFetchResponseV1, error)
offsetCommit(offsetCommitRequestV2) (offsetCommitResponseV2, error)
readPartitions(...string) ([]Partition, error)
}
// timeoutCoordinator wraps the Conn to ensure that every operation has a
// deadline. Otherwise, it would be possible for requests to block indefinitely
// if the remote server never responds. There are many spots where the consumer
// group needs to interact with the broker, so it feels less error prone to
// factor all of the deadline management into this shared location as opposed to
// peppering it all through where the code actually interacts with the broker.
type timeoutCoordinator struct {
timeout time.Duration
sessionTimeout time.Duration
rebalanceTimeout time.Duration
conn *Conn
}
func (t *timeoutCoordinator) Close() error {
return t.conn.Close()
}
func (t *timeoutCoordinator) findCoordinator(req findCoordinatorRequestV0) (findCoordinatorResponseV0, error) {
if err := t.conn.SetDeadline(time.Now().Add(t.timeout)); err != nil {
return findCoordinatorResponseV0{}, err
}
return t.conn.findCoordinator(req)
}
func (t *timeoutCoordinator) joinGroup(req joinGroupRequestV1) (joinGroupResponseV1, error) {
// in the case of join group, the consumer group coordinator may wait up
// to rebalance timeout in order to wait for all members to join.
if err := t.conn.SetDeadline(time.Now().Add(t.timeout + t.rebalanceTimeout)); err != nil {
return joinGroupResponseV1{}, err
}
return t.conn.joinGroup(req)
}
func (t *timeoutCoordinator) syncGroup(req syncGroupRequestV0) (syncGroupResponseV0, error) {
// in the case of sync group, the consumer group leader is given up to
// the session timeout to respond before the coordinator will give up.
if err := t.conn.SetDeadline(time.Now().Add(t.timeout + t.sessionTimeout)); err != nil {
return syncGroupResponseV0{}, err
}
return t.conn.syncGroup(req)
}
func (t *timeoutCoordinator) leaveGroup(req leaveGroupRequestV0) (leaveGroupResponseV0, error) {
if err := t.conn.SetDeadline(time.Now().Add(t.timeout)); err != nil {
return leaveGroupResponseV0{}, err
}
return t.conn.leaveGroup(req)
}
func (t *timeoutCoordinator) heartbeat(req heartbeatRequestV0) (heartbeatResponseV0, error) {
if err := t.conn.SetDeadline(time.Now().Add(t.timeout)); err != nil {
return heartbeatResponseV0{}, err
}
return t.conn.heartbeat(req)
}
func (t *timeoutCoordinator) offsetFetch(req offsetFetchRequestV1) (offsetFetchResponseV1, error) {
if err := t.conn.SetDeadline(time.Now().Add(t.timeout)); err != nil {
return offsetFetchResponseV1{}, err
}
return t.conn.offsetFetch(req)
}
func (t *timeoutCoordinator) offsetCommit(req offsetCommitRequestV2) (offsetCommitResponseV2, error) {
if err := t.conn.SetDeadline(time.Now().Add(t.timeout)); err != nil {
return offsetCommitResponseV2{}, err
}
return t.conn.offsetCommit(req)
}
func (t *timeoutCoordinator) readPartitions(topics ...string) ([]Partition, error) {
if err := t.conn.SetDeadline(time.Now().Add(t.timeout)); err != nil {
return nil, err
}
return t.conn.ReadPartitions(topics...)
}
// NewConsumerGroup creates a new ConsumerGroup. It returns an error if the
// provided configuration is invalid. It does not attempt to connect to the
// Kafka cluster. That happens asynchronously, and any errors will be reported
// by Next.
func NewConsumerGroup(config ConsumerGroupConfig) (*ConsumerGroup, error) {
if err := config.Validate(); err != nil {
return nil, err
}
cg := &ConsumerGroup{
config: config,
next: make(chan *Generation),
errs: make(chan error),
done: make(chan struct{}),
}
cg.wg.Add(1)
go func() {
cg.run()
cg.wg.Done()
}()
return cg, nil
}
// ConsumerGroup models a Kafka consumer group. A caller doesn't interact with
// the group directly. Rather, they interact with a Generation. Every time a
// member enters or exits the group, it results in a new Generation. The
// Generation is where partition assignments and offset management occur.
// Callers will use Next to get a handle to the Generation.
type ConsumerGroup struct {
config ConsumerGroupConfig
next chan *Generation
errs chan error
closeOnce sync.Once
wg sync.WaitGroup
done chan struct{}
}
// Close terminates the current generation by causing this member to leave and
// releases all local resources used to participate in the consumer group.
// Close will also end the current generation if it is still active.
func (cg *ConsumerGroup) Close() error {
cg.closeOnce.Do(func() {
close(cg.done)
})
cg.wg.Wait()
return nil
}
// Next waits for the next consumer group generation. There will never be two
// active generations. Next will never return a new generation until the
// previous one has completed.
//
// If there are errors setting up the next generation, they will be surfaced
// here.
//
// If the ConsumerGroup has been closed, then Next will return ErrGroupClosed.
func (cg *ConsumerGroup) Next(ctx context.Context) (*Generation, error) {
select {
case <-ctx.Done():
return nil, ctx.Err()
case <-cg.done:
return nil, ErrGroupClosed
case err := <-cg.errs:
return nil, err
case next := <-cg.next:
return next, nil
}
}
func (cg *ConsumerGroup) run() {
// the memberID is the only piece of information that is maintained across
// generations. it starts empty and will be assigned on the first nextGeneration
// when the joinGroup request is processed. it may change again later if
// the CG coordinator fails over or if the member is evicted. otherwise, it
// will be constant for the lifetime of this group.
var memberID string
var err error
for {
memberID, err = cg.nextGeneration(memberID)
// backoff will be set if this go routine should sleep before continuing
// to the next generation. it will be non-nil in the case of an error
// joining or syncing the group.
var backoff <-chan time.Time
switch err {
case nil:
// no error...the previous generation finished normally.
continue
case ErrGroupClosed:
// the CG has been closed...leave the group and exit loop.
_ = cg.leaveGroup(memberID)
return
case RebalanceInProgress:
// in case of a RebalanceInProgress, don't leave the group or
// change the member ID, but report the error. the next attempt
// to join the group will then be subject to the rebalance
// timeout, so the broker will be responsible for throttling
// this loop.
default:
// leave the group and report the error if we had gotten far
// enough so as to have a member ID. also clear the member id
// so we don't attempt to use it again. in order to avoid
// a tight error loop, backoff before the next attempt to join
// the group.
_ = cg.leaveGroup(memberID)
memberID = ""
backoff = time.After(cg.config.JoinGroupBackoff)
}
// ensure that we exit cleanly in case the CG is done and no one is
// waiting to receive on the unbuffered error channel.
select {
case <-cg.done:
return
case cg.errs <- err:
}
// backoff if needed, being sure to exit cleanly if the CG is done.
if backoff != nil {
select {
case <-cg.done:
// exit cleanly if the group is closed.
return
case <-backoff:
}
}
}
}
func (cg *ConsumerGroup) nextGeneration(memberID string) (string, error) {
// get a new connection to the coordinator on each loop. the previous
// generation could have exited due to losing the connection, so this
// ensures that we always have a clean starting point. it means we will
// re-connect in certain cases, but that shouldn't be an issue given that
// rebalances are relatively infrequent under normal operating
// conditions.
conn, err := cg.coordinator()
if err != nil {
cg.withErrorLogger(func(log Logger) {
log.Printf("Unable to establish connection to consumer group coordinator for group %s: %v", cg.config.ID, err)
})
return memberID, err // a prior memberID may still be valid, so don't return ""
}
defer conn.Close()
var generationID int32
var groupAssignments GroupMemberAssignments
var assignments map[string][]int32
// join group. this will join the group and prepare assignments if our
// consumer is elected leader. it may also change or assign the member ID.
memberID, generationID, groupAssignments, err = cg.joinGroup(conn, memberID)
if err != nil {
cg.withErrorLogger(func(log Logger) {
log.Printf("Failed to join group %s: %v", cg.config.ID, err)
})
return memberID, err
}
cg.withLogger(func(log Logger) {
log.Printf("Joined group %s as member %s in generation %d", cg.config.ID, memberID, generationID)
})
// sync group
assignments, err = cg.syncGroup(conn, memberID, generationID, groupAssignments)
if err != nil {
cg.withErrorLogger(func(log Logger) {
log.Printf("Failed to sync group %s: %v", cg.config.ID, err)
})
return memberID, err
}
// fetch initial offsets.
var offsets map[string]map[int]int64
offsets, err = cg.fetchOffsets(conn, assignments)
if err != nil {
cg.withErrorLogger(func(log Logger) {
log.Printf("Failed to fetch offsets for group %s: %v", cg.config.ID, err)
})
return memberID, err
}
// create the generation.
gen := Generation{
ID: generationID,
GroupID: cg.config.ID,
MemberID: memberID,
Assignments: cg.makeAssignments(assignments, offsets),
conn: conn,
done: make(chan struct{}),
joined: make(chan struct{}),
retentionMillis: int64(cg.config.RetentionTime / time.Millisecond),
log: cg.withLogger,
logError: cg.withErrorLogger,
}
// spawn all of the go routines required to facilitate this generation. if
// any of these functions exit, then the generation is determined to be
// complete.
gen.heartbeatLoop(cg.config.HeartbeatInterval)
if cg.config.WatchPartitionChanges {
for _, topic := range cg.config.Topics {
gen.partitionWatcher(cg.config.PartitionWatchInterval, topic)
}
}
// make this generation available for retrieval. if the CG is closed before
// we can send it on the channel, exit. that case is required b/c the next
// channel is unbuffered. if the caller to Next has already bailed because
// it's own teardown logic has been invoked, this would deadlock otherwise.
select {
case <-cg.done:
gen.close()
return memberID, ErrGroupClosed // ErrGroupClosed will trigger leave logic.
case cg.next <- &gen:
}
// wait for generation to complete. if the CG is closed before the
// generation is finished, exit and leave the group.
select {
case <-cg.done:
gen.close()
return memberID, ErrGroupClosed // ErrGroupClosed will trigger leave logic.
case <-gen.done:
// time for next generation! make sure all the current go routines exit
// before continuing onward.
gen.close()
return memberID, nil
}
}
// connect returns a connection to ANY broker
func makeConnect(config ConsumerGroupConfig) func(dialer *Dialer, brokers ...string) (coordinator, error) {
return func(dialer *Dialer, brokers ...string) (coordinator, error) {
var err error
for _, broker := range brokers {
var conn *Conn
if conn, err = dialer.Dial("tcp", broker); err == nil {
return &timeoutCoordinator{
conn: conn,
timeout: config.Timeout,
sessionTimeout: config.SessionTimeout,
rebalanceTimeout: config.RebalanceTimeout,
}, nil
}
}
return nil, err // err will be non-nil
}
}
// coordinator establishes a connection to the coordinator for this consumer
// group.
func (cg *ConsumerGroup) coordinator() (coordinator, error) {
// NOTE : could try to cache the coordinator to avoid the double connect
// here. since consumer group balances happen infrequently and are
// an expensive operation, we're not currently optimizing that case
// in order to keep the code simpler.
conn, err := cg.config.connect(cg.config.Dialer, cg.config.Brokers...)
if err != nil {
return nil, err
}
defer conn.Close()
out, err := conn.findCoordinator(findCoordinatorRequestV0{
CoordinatorKey: cg.config.ID,
})
if err == nil && out.ErrorCode != 0 {
err = Error(out.ErrorCode)
}
if err != nil {
return nil, err
}
address := net.JoinHostPort(out.Coordinator.Host, strconv.Itoa(int(out.Coordinator.Port)))
return cg.config.connect(cg.config.Dialer, address)
}
// joinGroup attempts to join the reader to the consumer group.
// Returns GroupMemberAssignments is this Reader was selected as
// the leader. Otherwise, GroupMemberAssignments will be nil.
//
// Possible kafka error codes returned:
// * GroupLoadInProgress:
// * GroupCoordinatorNotAvailable:
// * NotCoordinatorForGroup:
// * InconsistentGroupProtocol:
// * InvalidSessionTimeout:
// * GroupAuthorizationFailed:
func (cg *ConsumerGroup) joinGroup(conn coordinator, memberID string) (string, int32, GroupMemberAssignments, error) {
request, err := cg.makeJoinGroupRequestV1(memberID)
if err != nil {
return "", 0, nil, err
}
response, err := conn.joinGroup(request)
if err == nil && response.ErrorCode != 0 {
err = Error(response.ErrorCode)
}
if err != nil {
return "", 0, nil, err
}
memberID = response.MemberID
generationID := response.GenerationID
cg.withLogger(func(l Logger) {
l.Printf("joined group %s as member %s in generation %d", cg.config.ID, memberID, generationID)
})
var assignments GroupMemberAssignments
if iAmLeader := response.MemberID == response.LeaderID; iAmLeader {
v, err := cg.assignTopicPartitions(conn, response)
if err != nil {
return memberID, 0, nil, err
}
assignments = v
cg.withLogger(func(l Logger) {
for memberID, assignment := range assignments {
for topic, partitions := range assignment {
l.Printf("assigned member/topic/partitions %v/%v/%v", memberID, topic, partitions)
}
}
})
}
cg.withLogger(func(l Logger) {
l.Printf("joinGroup succeeded for response, %v. generationID=%v, memberID=%v", cg.config.ID, response.GenerationID, response.MemberID)
})
return memberID, generationID, assignments, nil
}
// makeJoinGroupRequestV1 handles the logic of constructing a joinGroup
// request
func (cg *ConsumerGroup) makeJoinGroupRequestV1(memberID string) (joinGroupRequestV1, error) {
request := joinGroupRequestV1{
GroupID: cg.config.ID,
MemberID: memberID,
SessionTimeout: int32(cg.config.SessionTimeout / time.Millisecond),
RebalanceTimeout: int32(cg.config.RebalanceTimeout / time.Millisecond),
ProtocolType: defaultProtocolType,
}
for _, balancer := range cg.config.GroupBalancers {
userData, err := balancer.UserData()
if err != nil {
return joinGroupRequestV1{}, fmt.Errorf("unable to construct protocol metadata for member, %v: %v", balancer.ProtocolName(), err)
}
request.GroupProtocols = append(request.GroupProtocols, joinGroupRequestGroupProtocolV1{
ProtocolName: balancer.ProtocolName(),
ProtocolMetadata: groupMetadata{
Version: 1,
Topics: cg.config.Topics,
UserData: userData,
}.bytes(),
})
}
return request, nil
}