-
Notifications
You must be signed in to change notification settings - Fork 30
/
MFE-2_group 5_cse-1
51 lines (44 loc) · 1.65 KB
/
MFE-2_group 5_cse-1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
Codes for Graphs:
1) library(ggplot2)
v<-c(5.65,5.66,5.67,5.60,5.61,5.55,5.41,5.33,5.27,7.11)
x<-c(2011,2012,2013,2014,2015,2016,2017,2018,2019,2020)
data <- data.frame(x,v)
ggplot(data, aes(x=x, y=v)) +geom_line()
2) x <- c(2016,2017,2018,2019,2020)
y <- c(8.29169,4.50833,6.03333,7.325,10.225)
df<-data.frame(x,y)
colnames(df)<-c("YEAR","Mean")
df
barplot(height=df$"Mean ",main="Mean ",col="yellow")
3) x <- c(2016,2017,2018,2019,2020)
y <- c(5.51,5.41,5.33,5.27,7.11)
df<-data.frame(x,y)
colnames(df)<-c("YEAR","UN-EMPLOYEEMENT RATE")
df
barplot(height=df$"UN-EMPLOYEEMENT RATE",main="UN-EMPLOYEEMENT RATE",col="red")
4) x <- c(2016,2017,2018,2019,2020)
y <- c(1.0874,0.62777,0.61689,0.46211,5.62911)
df<-data.frame(x,y)
colnames(df)<-c("YEAR","Standard Deviation")
df
barplot(height=df$" Standard Deviation ",main="Standard Deviation",col="green")
T-test analysis Code :
rate2020<-c(7.2,7.8,8.8,23.5,21.7,10.2,7.4,8.3,6.7,7.0,6.5,9.1)
rate2021<-c(6.5,6.9,6.5,8.0,11.8,9.2,7.0,8.3,6.9,7.7,7.0,7.9)
# null hypothesis
# Ho : mean of rate2020 = mean of rate2021
# alternating hyphotesis
# Ha : mean of rate2020 < mean of rate2021
# t testing
t.test(rate2020,alternative = 'less', mu=mean(rate2021)
Data Set
India Unemployment Rate - Historical Data
Year Unemployment Rate (%) Annual Change
2020 7.11% 1.84%
2019 5.27% -0.06%
2018 5.33% -0.08%
2017 5.41% -0.10%
2016 5.51% -0.05%
2015 5.56% -0.04%
montly dataset of unemployment rate in in india:
https://unemploymentinindia.cmie.com/kommon/bin/sr.php?kall=wsttimeseries&index_code=050050000000&dtype=total