-
Notifications
You must be signed in to change notification settings - Fork 5
/
metrology.py
420 lines (365 loc) · 12.1 KB
/
metrology.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import numpy as np
import matplotlib.pyplot as plt
import utilities.imaging.man as man
import utilities.imaging.fitting as fit
import scipy.ndimage as nd
from linecache import getline
import astropy.io.fits as pyfits
import pdb
def readCylScript(fn,rotate=np.linspace(.75,1.5,50),interp=None):
"""
Load in data from 4D measurement of cylindrical mirror.
File is assumed to have been saved with Ryan's scripting function.
Scale to microns, remove misalignments,
strip NaNs.
If rotate is set to an array of angles, the rotation angle
which minimizes the number of NaNs in the image after
stripping perimeter nans is selected.
Distortion is bump positive looking at concave surface.
Imshow will present distortion in proper orientation as if
viewing the concave surface.
"""
#Read in values from header
f = open(fn+'.hdr','r')
l = f.readlines()
f.close()
#Wavelength should never change
wave = float(l[0].split()[0])*.001 #in microns
#Ensure wedge factor is 0.5
wedge = float(l[1])
if wedge!=0.5:
print 'Wedge factor is ' + str(wedge)
pdb.set_trace()
#Get pixel scale size
dx = float(l[-1])
#Remove NaNs and rescale
d = np.fromfile(fn+'.bin',dtype=np.float32)
try:
d = d.reshape((1002,981))
except:
d = d.reshape((1003,982))
d[d>1e10] = np.nan
d = man.stripnans(d)
d = d *wave
d = d - np.nanmean(d)
#Remove cylindrical misalignment terms
d = d - fit.fitCylMisalign(d)[0]
#Rotate out CGH roll misalignment?
if rotate is not None:
b = [np.sum(np.isnan(\
man.stripnans(\
nd.rotate(d,a,order=1,cval=np.nan)))) for a in rotate]
d = man.stripnans(\
nd.rotate(d,rotate[np.argmin(b)],order=1,cval=np.nan))
#Interpolate over NaNs
if interp is not None:
d = man.nearestNaN(d,method=interp)
return d,dx
def readCyl4D(fn,rotate=np.linspace(.75,1.5,50),interp=None):
"""
Load in data from 4D measurement of cylindrical mirror.
Scale to microns, remove misalignments,
strip NaNs.
If rotate is set to an array of angles, the rotation angle
which minimizes the number of NaNs in the image after
stripping perimeter nans is selected.
Distortion is bump positive looking at concave surface.
Imshow will present distortion in proper orientation as if
viewing the concave surface.
"""
#Get xpix value in mm
l = getline(fn,9)
dx = float(l.split()[1])*1000.
#Remove NaNs and rescale
d = np.genfromtxt(fn,skip_header=12,delimiter=',')
d = man.stripnans(d)
d = d *.6328
d = d - np.nanmean(d)
#d = np.rot90(d,k = 2)
#Remove cylindrical misalignment terms
d = d - fit.fitCylMisalign(d)[0]
#Rotate out CGH roll misalignment?
if rotate is not None:
b = [np.sum(np.isnan(\
man.stripnans(\
nd.rotate(d,a,order=1,cval=np.nan)))) for a in rotate]
d = man.stripnans(\
nd.rotate(d,rotate[np.argmin(b)],order=1,cval=np.nan))
#Interpolate over NaNs
if interp is not None:
d = man.nearestNaN(d,method=interp)
return d,dx
def readConic4D(fn,rotate=None,interp=None):
"""
Load in data from 4D measurement of cylindrical mirror.
Scale to microns, remove misalignments,
strip NaNs.
If rotate is set to an array of angles, the rotation angle
which minimizes the number of NaNs in the image after
stripping perimeter nans is selected.
Distortion is bump positive looking at concave surface.
Imshow will present distortion in proper orientation as if
viewing the concave surface.
"""
#Get xpix value in mm
l = getline(fn,9)
dx = float(l.split()[1])*1000.
#Remove NaNs and rescale
d = np.genfromtxt(fn,skip_header=12,delimiter=',')
d = man.stripnans(d)
d = d *.6328
d = d - np.nanmean(d)
#d = np.rot90(d,k = 2)
#Remove cylindrical misalignment terms
conic_fit = fit.fitConic(d)
d = d - conic_fit[0]
#Rotate out CGH roll misalignment?
if rotate is not None:
b = [np.sum(np.isnan(\
man.stripnans(\
nd.rotate(d,a,order=1,cval=np.nan)))) for a in rotate]
d = man.stripnans(\
nd.rotate(d,rotate[np.argmin(b)],order=1,cval=np.nan))
#Interpolate over NaNs
if interp is not None:
d = man.nearestNaN(d,method=interp)
return d,dx,conic_fit[1]
def readFlatScript(fn,interp=None):
"""
Load in data from 4D measurement of flat mirror.
File is assumed to have been saved with Ryan's scripting function.
Scale to microns, remove misalignments,
strip NaNs.
Distortion is bump positive looking at surface from 4D.
Imshow will present distortion in proper orientation as if
viewing the surface.
"""
#Read in values from header
f = open(fn+'.hdr','r')
l = f.readlines()
f.close()
#Wavelength should never change
wave = float(l[0].split()[0])*.001 #in microns
#Ensure wedge factor is 0.5
wedge = float(l[1])
if wedge!=0.5:
print 'Wedge factor is ' + str(wedge)
pdb.set_trace()
#Get pixel scale size
dx = float(l[-1])
#Remove NaNs and rescale
d = np.fromfile(fn+'.bin',dtype=np.float32)
try:
d = d.reshape((1002,981))
except:
d = d.reshape((1003,982))
d[d>1e10] = np.nan
d = man.stripnans(d)
d = d *.6328
d = d - np.nanmean(d)
d = np.fliplr(d)
#Interpolate over NaNs
if interp is not None:
d = man.nearestNaN(d,method=interp)
return d,dx
def readFlat4D(fn,interp=None):
"""
Load in data from 4D measurement of flat mirror.
Scale to microns, remove misalignments,
strip NaNs.
Distortion is bump positive looking at surface from 4D.
Imshow will present distortion in proper orientation as if
viewing the surface.
"""
#Get xpix value in mm
l = getline(fn,9)
dx = float(l.split()[1])*1000.
#Remove NaNs and rescale
d = np.genfromtxt(fn,skip_header=12,delimiter=',')
d = man.stripnans(d)
d = d *.6328
d = d - np.nanmean(d)
d = np.fliplr(d)
#Interpolate over NaNs
if interp is not None:
d = man.nearestNaN(d,method=interp)
return d,dx
def write4DFits(filename,img,dx,dx2=None):
"""
Write processed 4D data into a FITS file.
Axial pixel size is given by dx.
Azimuthal pixel size is given by dx2 - default to none
"""
hdr = pyfits.Header()
hdr['DX'] = dx
hdu = pyfits.PrimaryHDU(data=img,header=hdr)
hdu.writeto(filename,clobber=True)
return
def read4DFits(filename):
"""
Write FITS file of processed 4D data.
Returns img,dx in list
"""
dx = pyfits.getval(filename,'DX')
img = pyfits.getdata(filename)
return [img,dx]
def readCylWFS(fn,rotate=np.linspace(.75,1.5,50),interp=None):
"""
Load in data from WFS measurement of cylindrical mirror.
Assumes that data was processed using processHAS, and loaded into
a .fits file.
Scale to microns, remove misalignments,
strip NaNs.
If rotate is set to an array of angles, the rotation angle
which minimizes the number of NaNs in the image after
stripping perimeter nans is selected.
Distortion is bump positive looking at concave surface.
Imshow will present distortion in proper orientation as if
viewing the concave surface.
"""
#Remove NaNs and rescale
d = pyfits.getdata(fn)
d = man.stripnans(d)
d = d - np.nanmean(d)
#Remove cylindrical misalignment terms
d = d - fit.fitCylMisalign(d)[0]
# Negate to make bump positive and rotate to be consistent with looking at the part beamside.
#d = -d
d = -np.fliplr(d) #np.rot90(d,k = 2)
#Interpolate over NaNs
if interp is not None:
d = man.nearestNaN(d,method=interp)
return d
def readConicWFS(fn,interp=None):
"""
Load in data from WFS measurement of cylindrical mirror.
Assumes that data was processed using processHAS, and loaded into
a .fits file.
Scale to microns, remove misalignments,
strip NaNs.
If rotate is set to an array of angles, the rotation angle
which minimizes the number of NaNs in the image after
stripping perimeter nans is selected.
Distortion is bump positive looking at concave surface.
Imshow will present distortion in proper orientation as if
viewing the concave surface.
Returns the data with best fit conic removed, as well as the
coefficients in the conic fit.
"""
#Remove NaNs and rescale
d = pyfits.getdata(fn)
d = man.stripnans(d)
d = d - np.nanmean(d)
# Negate to make bump positive and rotate to be consistent with looking at the part beamside.
#d = -d
d = -np.fliplr(d) #np.rot90(d,k = 2)
#Remove cylindrical misalignment terms
conic_fit = fit.fitConic(d)
d = d - conic_fit[0]
#Interpolate over NaNs
if interp is not None:
d = man.nearestNaN(d,method=interp)
return d,conic_fit[1]
def readFlatWFS(fn,interp=None):
"""
Load in data from WFS measurement of flat mirror.
Assumes that data was processed using processHAS, and loaded into
a .fits file.
Scale to microns, strip NaNs.
If rotate is set to an array of angles, the rotation angle
which minimizes the number of NaNs in the image after
stripping perimeter nans is selected.
Distortion is bump positive looking at concave surface.
Imshow will present distortion in proper orientation as if
viewing the concave surface.
"""
#Remove NaNs and rescale
d = pyfits.getdata(fn)
d = man.stripnans(d)
d = -d
#Interpolate over NaNs
if interp is not None:
d = man.nearestNaN(d,method=interp)
return d
#Read in Zygo ASCII file
def readzygo(filename):
#Open file
f = open(filename,'r')
#Read third line to get intensity shape
for i in range(3):
l = f.readline()
l = l.split(' ')
iwidth = int(l[2])
iheight = int(l[3])
#Read fourth line to get phase shape
l = f.readline()
l = l.split(' ')
pwidth = int(l[2])
pheight = int(l[3])
#Read eighth line to get scale factors
for i in range(4):
l = f.readline()
l = l.split(' ')
scale = float(l[1])
wave = float(l[2])
o = float(l[4])
latscale = float(l[6])
#Read eleventh line to get phase resolution
f.readline()
f.readline()
l = f.readline()
l = l.split(' ')
phaseres = l[0]
if phaseres is 0:
phaseres = 4096
else:
phaseres = 32768
#Read through to first '#' to signify intensity
while (l[0]!='#'):
l = f.readline()
#Read intensity array
#If no intensity, l will be '#' below
l = f.readline()
while (l[0]!='#'):
#Convert to array of floats
l = np.array(l.split(' '))
l = l[:-1].astype('float')
#Merge into intensity array
try:
intensity = np.concatenate((intensity,l))
except:
intensity = l
#Read next line
l = f.readline()
#Reshape into proper array
try:
intensity = np.reshape(intensity,(iheight,iwidth))
except:
intensity = np.nan
#Read phase array
l = f.readline()
while (l!=''):
#Convert to array of floats
l = np.array(l.split(' '))
l = l[:-1].astype('float')
#Merge into intensity array
try:
phase = np.concatenate((phase,l))
except:
phase = l
#Read next line
l = f.readline()
phase = np.reshape(phase,(pheight,pwidth))
phase[np.where(phase==phase.max())] = np.nan
phase = phase*scale*o*wave/phaseres
f.close()
print wave, scale, o, phaseres
return intensity, phase, latscale
#Convert Zygo ASCII to easily readable ASCII format
def convertzygo(filename):
#read in zygo data
intensity,phase,latscale = readzygo(filename)
np.savetxt(filename.split('.')[0]+'.txt',phase,header='Lat scale: '+\
str(latscale)+'\n'+'Units: meters')
def make_extent(data,dx):
return [-float(np.shape(data)[1])/2*dx,float(np.shape(data)[1])/2*dx,-float(np.shape(data)[0])/2*dx,float(np.shape(data)[0])/2*dx]