-
Notifications
You must be signed in to change notification settings - Fork 0
/
classifier.py
29 lines (26 loc) · 1008 Bytes
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import torch.nn as nn
import torch.nn.functional as F
class Classifier(nn.Module):
def __init__(self):
super(Classifier, self).__init__()
self.conv1 = nn.Conv2d(3, 96, 5)
self.batchNorm1 = nn.BatchNorm2d(96)
self.conv2 = nn.Conv2d(96, 48, 3)
self.batchNorm2 = nn.BatchNorm2d(48)
self.conv3 = nn.Conv2d(48, 24, 3)
self.batchNorm3 = nn.BatchNorm2d(24)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(24 * 26 * 26, 189)
self.fc2 = nn.Linear(189, 126)
self.fc3 = nn.Linear(126, 84)
self.fc4 = nn.Linear(84, 2)
def forward(self, x):
x = self.pool(F.relu(self.batchNorm1(self.conv1(x))))
x = self.pool(F.relu(self.batchNorm2(self.conv2(x))))
x = self.pool(F.relu(self.batchNorm3(self.conv3(x))))
x = x.view(x.size()[0], 24 * 26 * 26)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
x = self.fc4(x)
return x