-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.sh
executable file
·67 lines (48 loc) · 1.64 KB
/
train.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#!/bin/bash
# Train a GT4HistOCR Calamari model
# (or rather 5 for voted prediction)
set -e
self=`realpath $0`
self_dir=`dirname "$self"`
cd $self_dir
DATA_SUBDIR=data
get_from_annex() {
annex_get 'GT4HistOCR/corpus/*.tar.bz2'
}
get_from_web() {
download_to 'https://zenodo.org/record/1344132/files/GT4HistOCR.tar?download=1' 'GT4HistOCR'
}
. $self_dir/qurator_data_lib.sh
handle_data
rm -rf /tmp/train-calamari-gt4histocr.*
TMPDIR=`mktemp -d /tmp/train-calamari-gt4histocr.XXXXX`
echo "Unpacking dataset tar files to $TMPDIR"
for tar in $DATA_SUBDIR/GT4HistOCR/corpus/*.tar.bz2; do
tar xf $tar -C $TMPDIR
done
echo "Removing dta19/1882-keller_sinngedicht/04970.nrm.png (Broken PNG)"
rm -f $TMPDIR/dta19/1882-keller_sinngedicht/04970.*
# If we're just testing, keep just some files
if [ "$TEST" = 1 ]; then
num_pngs_wanted=2000
num_pngs=`find "$TMPDIR" -path "$TMPDIR/*/*/*.png" | wc -l`
num_pngs_to_delete=$(($num_pngs-$num_pngs_wanted))
echo "TEST = 1, Reducing dataset from $num_pngs to $num_pngs_wanted PNG files"
find "$TMPDIR" -path "$TMPDIR/*/*/*.png" | shuf -n $num_pngs_to_delete | xargs rm
fi
export PYTHONUNBUFFERED=1 # For python + tee
training_id=`date -Iminutes | sed 's/:/_/g'`
outdir=$DATA_SUBDIR/calamari-models/GT4HistOCR/$training_id
mkdir -p $outdir
export TF_FORCE_GPU_ALLOW_GROWTH=true # To prevent TF from taking all GPU memory
calamari-cross-fold-train \
--files \
"$TMPDIR/*/*/*.png" \
--best_models_dir $outdir \
--early_stopping_frequency=0.25 \
--early_stopping_nbest=5 \
--batch_size=128 \
--n_folds=5 \
--max_parallel_models=1 \
--display=0.01 \
2>&1 | tee $outdir/train.${training_id}.log