diff --git a/dsp/tests/lockin_low_pass.rs b/dsp/tests/lockin_low_pass.rs new file mode 100644 index 0000000000..361c187258 --- /dev/null +++ b/dsp/tests/lockin_low_pass.rs @@ -0,0 +1,1129 @@ +use dsp::iir::IIR; +use dsp::lockin::{ + decimate, magnitude_phase, Lockin, ADC_SAMPLE_BUFFER_SIZE, + DECIMATED_BUFFER_SIZE, TIMESTAMP_BUFFER_SIZE, +}; + +use std::f64::consts::PI; +use std::vec::Vec; + +const ADC_MAX: f64 = 1.; +const ADC_MAX_COUNT: f64 = (1 << 15) as f64; + +/// Single-frequency sinusoid. +#[derive(Copy, Clone)] +struct PureSine { + // Frequency (in Hz). + frequency: f64, + // Amplitude in dBFS (decibels relative to full-scale). A 16-bit + // ADC has a minimum dBFS for each sample of -90. + amplitude_dbfs: f64, + // Phase offset (in radians). + phase_offset: f64, +} + +/// Convert a dBFS voltage ratio to a linear ratio. +/// +/// # Arguments +/// +/// * `dbfs` - dB ratio relative to full scale. +/// +/// # Returns +/// +/// Linear value. +fn linear(dbfs: f64) -> f64 { + let base = 10_f64; + ADC_MAX * base.powf(dbfs / 20.) +} + +/// Convert a linear voltage ratio to a dBFS ratio. +/// +/// # Arguments +/// +/// * `linear` - Linear voltage ratio. +/// +/// # Returns +/// +/// dBFS value. +fn dbfs(linear: f64) -> f64 { + 20. * (linear / ADC_MAX).log10() +} + +/// Convert a real ADC input value in the range `-ADC_MAX` to +/// `+ADC_MAX` to an equivalent 16-bit ADC sampled value. This models +/// the ideal ADC transfer function. +/// +/// # Arguments +/// +/// * `x` - Real ADC input value. +/// +/// # Returns +/// +/// Sampled ADC value. +fn real_to_adc_sample(x: f64) -> i16 { + let max: i32 = i16::MAX as i32; + let min: i32 = i16::MIN as i32; + + let xi: i32 = (x / ADC_MAX * ADC_MAX_COUNT) as i32; + + // It's difficult to characterize the correct output result when + // the inputs are clipped, so panic instead. + if xi > max { + panic!("Input clipped to maximum, result is unlikely to be correct."); + } else if xi < min { + panic!("Input clipped to minimum, result is unlikely to be correct."); + } + + xi as i16 +} + +/// Generate `ADC_SAMPLE_BUFFER_SIZE` values of an ADC-sampled signal +/// starting at `timestamp_start`. +/// +/// # Arguments +/// +/// * `pure_signals` - Pure sinusoidal components of the ADC-sampled +/// signal. +/// * `timestamp_start` - Starting time of ADC-sampled signal in terms +/// of the internal clock count. +/// * `internal_frequency` - Internal clock frequency (in Hz). +/// * `adc_frequency` - ADC sampling frequency (in Hz). +/// +/// # Returns +/// +/// The sampled signal at the ADC input. +fn adc_sampled_signal( + pure_signals: &Vec, + timestamp_start: u64, + internal_frequency: f64, + adc_frequency: f64, +) -> [i16; ADC_SAMPLE_BUFFER_SIZE] { + // amplitude of each pure signal + let mut amplitude: Vec = Vec::::new(); + // initial phase value for each pure signal + let mut initial_phase: Vec = Vec::::new(); + // phase increment at each ADC sample for each pure signal + let mut phase_increment: Vec = Vec::::new(); + let adc_period = internal_frequency / adc_frequency; + + // For each pure sinusoid, compute the amplitude, phase + // corresponding to the first ADC sample, and phase increment for + // each subsequent ADC sample. + for pure_signal in pure_signals.iter() { + let signal_period = internal_frequency / pure_signal.frequency; + let phase_offset_count = + pure_signal.phase_offset / (2. * PI) * signal_period; + let initial_phase_count = + (phase_offset_count + timestamp_start as f64) % signal_period; + + amplitude.push(linear(pure_signal.amplitude_dbfs)); + initial_phase.push(2. * PI * initial_phase_count / signal_period); + phase_increment.push(2. * PI * adc_period / signal_period); + } + + // Compute the input signal corresponding to each ADC sample by + // summing the contributions from each pure sinusoid. + let mut signal: [i16; ADC_SAMPLE_BUFFER_SIZE] = [0; ADC_SAMPLE_BUFFER_SIZE]; + signal.iter_mut().enumerate().for_each(|(n, s)| { + *s = real_to_adc_sample( + amplitude + .iter() + .zip(initial_phase.iter()) + .zip(phase_increment.iter()) + .fold(0., |acc, ((a, phi), theta)| { + acc + a * (phi + theta * n as f64).sin() + }), + ); + }); + + signal +} + +/// Reference clock timestamp values in one ADC batch period starting +/// at `timestamp_start`. Also returns the number of valid timestamps. +/// +/// # Arguments +/// +/// * `reference_frequency` - External reference signal frequency (in +/// Hz). +/// * `timestamp_start` - Start time in terms of the internal clock +/// count. This is the start time of the current processing sequence +/// (i.e., for the current `ADC_SAMPLE_BUFFER_SIZE` ADC samples). +/// * `timestamp_stop` - Stop time in terms of the internal clock +/// count. +/// * `internal_frequency` - Internal clock frequency (in Hz). +/// +/// # Returns +/// +/// Tuple consisting of the number of valid timestamps in the ADC +/// batch period, followed by an array of the timestamp values. +fn adc_batch_timestamps( + reference_frequency: f64, + timestamp_start: u64, + timestamp_stop: u64, + internal_frequency: f64, +) -> (usize, [u16; TIMESTAMP_BUFFER_SIZE]) { + let reference_period = internal_frequency / reference_frequency; + let start_count = timestamp_start as f64 % reference_period; + let mut valid_timestamps: usize = 0; + let mut timestamps: [u16; TIMESTAMP_BUFFER_SIZE] = + [0; TIMESTAMP_BUFFER_SIZE]; + + let mut timestamp = (reference_period - start_count) % reference_period; + while timestamp < (timestamp_stop - timestamp_start) as f64 { + timestamps[valid_timestamps] = timestamp as u16; + timestamp += reference_period; + valid_timestamps += 1; + } + + (valid_timestamps, timestamps) +} + +/// Lowpass biquad filter using cutoff and sampling frequencies. +/// Taken from: +/// https://webaudio.github.io/Audio-EQ-Cookbook/audio-eq-cookbook.html +/// +/// # Arguments +/// +/// * `corner_frequency` - Corner frequency, or 3dB cutoff frequency +/// (in Hz). +/// * `sampling_frequency` - Sampling frequency (in Hz). +/// +/// # Returns +/// +/// 2nd-order IIR filter coefficients in the form [b0,b1,b2,a1,a2]. a0 +/// is set to -1. +fn lowpass_iir_coefficients( + corner_frequency: f64, + sampling_frequency: f64, +) -> [f32; 5] { + let normalized_angular_frequency: f64 = + 2. * PI * corner_frequency / sampling_frequency; + let quality_factor: f64 = 1. / 2f64.sqrt(); + let alpha: f64 = normalized_angular_frequency.sin() / (2. * quality_factor); + // All b coefficients have been multiplied by a factor of 2 in + // comparison with the link above in order to set the passband + // gain to 2. + let mut b0: f64 = 1. - normalized_angular_frequency.cos(); + let mut b1: f64 = 2. * (1. - normalized_angular_frequency.cos()); + let mut b2: f64 = b0; + let a0: f64 = 1. + alpha; + let mut a1: f64 = -2. * normalized_angular_frequency.cos(); + let mut a2: f64 = 1. - alpha; + b0 /= a0; + b1 /= a0; + b2 /= a0; + a1 /= -a0; + a2 /= -a0; + + [b0 as f32, b1 as f32, b2 as f32, a1 as f32, a2 as f32] +} + +/// Check that a measured value is within some tolerance of the actual +/// value. This allows setting both fixed and relative tolerances. +/// +/// # Arguments +/// +/// * `actual` - Actual value with respect to which the magnitude of +/// the relative tolerance is computed. +/// * `computed` - Computed value. This is compared with the actual +/// value, `actual`. +/// * `fixed_tolerance` - Fixed tolerance. +/// * `relative_tolerance` - Relative tolerance. +/// `relative_tolerance`*`actual` gives the total contribution of the +/// relative tolerance. +/// +/// # Returns +/// +/// `true` if the `actual` and `computed` values are within the +/// specified tolerance of one another, and `false` otherwise. +fn tolerance_check( + actual: f32, + computed: f32, + fixed_tolerance: f32, + relative_tolerance: f32, +) -> bool { + (actual - computed).abs() + < max_error(actual, fixed_tolerance, relative_tolerance) +} + +/// Maximum acceptable error from an actual value given fixed and +/// relative tolerances. +/// +/// # Arguments +/// +/// * `actual` - Actual value with respect to which the magnitude of the +/// relative tolerance is computed. +/// * `fixed_tolerance` - Fixed tolerance. +/// * `relative_tolerance` - Relative tolerance. +/// `relative_tolerance`*`actual` gives the total contribution of the +/// relative tolerance. +/// +/// # Returns +/// +/// Maximum acceptable error. +fn max_error( + actual: f32, + fixed_tolerance: f32, + relative_tolerance: f32, +) -> f32 { + relative_tolerance * actual.abs() + fixed_tolerance +} + +/// Total noise amplitude of the input signal after sampling by the +/// ADC. This computes an upper bound of the total noise amplitude, +/// rather than its actual value. +/// +/// # Arguments +/// +/// * `noise_inputs` - Noise sources at the ADC input. +/// * `demodulation_frequency` - Frequency of the demodulation signal +/// (in Hz). +/// * `corner_frequency` - Low-pass filter 3dB corner (cutoff) +/// frequency. +/// +/// # Returns +/// +/// Upper bound of the total amplitude of all noise sources. +fn sampled_noise_amplitude( + noise_inputs: &Vec, + demodulation_frequency: f64, + corner_frequency: f64, +) -> f64 { + // There is not a simple way to compute the amplitude of a + // superpostition of sinusoids with different frequencies and + // phases. Although we can compute the amplitude in special cases + // (e.g., two signals whose periods have a common multiple), these + // do not help us in the general case. However, we can say that + // the total amplitude will not be greater than the sum of the + // amplitudes of the individual noise sources. We treat this as an + // upper bound. + + let mut noise: f64 = noise_inputs + .iter() + .map(|n| { + // Noise inputs create an oscillation at the output, where the + // oscillation magnitude is determined by the strength of the + // noise and its attenuation (attenuation is determined by its + // proximity to the demodulation frequency and filter + // rolloff). + let octaves = ((n.frequency - demodulation_frequency).abs() + / corner_frequency) + .log2(); + // 2nd-order filter. Approximately 12dB/octave rolloff. + let attenuation = -2. * 20. * 2_f64.log10() * octaves; + linear(n.amplitude_dbfs + attenuation) + }) + .sum(); + + // Add in 1/2 LSB for the maximum amplitude deviation resulting + // from quantization. + noise += 1. / ADC_MAX_COUNT / 2.; + + noise +} + +/// Compute the maximum effect of input noise on the lock-in magnitude +/// computation. +/// +/// The maximum effect of noise on the magnitude computation is given +/// by: +/// +/// | sqrt((I+n*sin(x))**2 + (Q+n*cos(x))**2) - sqrt(I**2 + Q**2) | +/// +/// * I is the in-phase component of the part of the input signal we +/// care about (component of the input signal with the same frequency +/// as the demodulation signal). +/// * Q is the quadrature component. +/// * n is the total noise amplitude (from all contributions, after +/// attenuation from filtering). +/// * x is the phase of the demodulation signal and can be chosen to +/// be anywhere in the range [0, 2pi) to maximize this expression. +/// +/// We need to find the demodulation phase (x) that maximizes this +/// expression. We could compute this, because we know I, Q, and n, +/// but that's a fairly expensive computation and probably +/// overkill. Instead, we can employ the heuristic that when |I|>>|Q|, +/// sin(x)=+-1 (+- denotes plus or minus) will maximize the error, +/// when |Q|>>|I|, cos(x)=+-1 will maximize the error and when +/// |I|~|Q|, max,min(sin(x)+cos(x)) will maximize the error (this +/// occurs when sin(x)=cos(x)=+-1/sqrt(2)). Whether a positive or +/// negative noise term maximizes the error depends on the values and +/// signs of I and Q (for instance, when I,Q>0, negative noise terms +/// will maximize the error since the sqrt function is concave down), +/// but the difference should be modest in each case so we should be +/// able to get a reasonably good approximation by using the positive +/// noise case. We can use the maximum of all 3 cases as a rough +/// approximation of the real maximum. +/// +/// # Arguments +/// +/// * `total_noise_amplitude` - Combined amplitude of all noise +/// sources sampled by the ADC. +/// * `in_phase_actual` - Value of the in-phase component if no noise +/// were present at the ADC input. +/// * `quadrature_actual` - Value of the quadrature component if no +/// noise were present at the ADC input. +/// * `desired_input_amplitude` - Amplitude of the desired input +/// signal. That is, the input signal component with the same +/// frequency as the demodulation signal. +/// +/// # Returns +/// +/// Approximation of the maximum effect on the magnitude computation +/// due to noise sources at the ADC input. +fn magnitude_noise( + total_noise_amplitude: f64, + in_phase_actual: f64, + quadrature_actual: f64, + desired_input_amplitude: f64, +) -> f64 { + // See function documentation for explanation. + let noise = |in_phase_delta: f64, quadrature_delta: f64| -> f64 { + (((in_phase_actual + in_phase_delta).powf(2.) + + (quadrature_actual + quadrature_delta).powf(2.)) + .sqrt() + - desired_input_amplitude) + .abs() + }; + + let mut max_noise: f64 = 0.; + for (in_phase_delta, quadrature_delta) in [ + (total_noise_amplitude, 0.), + (0., total_noise_amplitude), + ( + total_noise_amplitude / 2_f64.sqrt(), + total_noise_amplitude / 2_f64.sqrt(), + ), + ] + .iter() + { + max_noise = max_noise.max(noise(*in_phase_delta, *quadrature_delta)); + } + + max_noise +} + +/// Compute the maximum phase deviation from the correct value due to +/// the input noise sources. +/// +/// The maximum effect of noise on the phase computation is given by: +/// +/// | atan2(Q+n*cos(x), I+n*sin(x)) - atan2(Q, I) | +/// +/// See `magnitude_noise` for an explanation of the terms in this +/// mathematical expression. +/// +/// Similar to the heuristic used when computing the error in +/// `magnitude_noise`, we can use (sin(x)=+-1,cos(x)=0), +/// (sin(x)=0,cos(x)=+-1), and the value of x that maximizes +/// |sin(x)-cos(x)| (when sin(x)=1/sqrt(2) and cos(x)=-1/sqrt(2), or +/// when the signs are flipped) as cases to test as an approximation +/// for the actual maximum value of this expression. +/// +/// # Arguments +/// +/// * `total_noise_amplitude` - Total amplitude of all input noise +/// sources. +/// * `in_phase_actual` - Value of the in-phase component if no noise +/// were present at the input. +/// * `quadrature_actual` - Value of the quadrature component if no +/// noise were present at the input. +/// +/// # Returns +/// +/// Approximation of the maximum effect on the phase computation due +/// to noise sources at the ADC input. +fn phase_noise( + total_noise_amplitude: f64, + in_phase_actual: f64, + quadrature_actual: f64, +) -> f64 { + // See function documentation for explanation. + let noise = |in_phase_delta: f64, quadrature_delta: f64| -> f64 { + ((quadrature_actual + quadrature_delta) + .atan2(in_phase_actual + in_phase_delta) + - quadrature_actual.atan2(in_phase_actual)) + .abs() + }; + + let mut max_noise: f64 = 0.; + for (in_phase_delta, quadrature_delta) in [ + ( + total_noise_amplitude / 2_f64.sqrt(), + total_noise_amplitude / -2_f64.sqrt(), + ), + ( + total_noise_amplitude / -2_f64.sqrt(), + total_noise_amplitude / 2_f64.sqrt(), + ), + (total_noise_amplitude, 0.), + (-total_noise_amplitude, 0.), + (0., total_noise_amplitude), + (0., -total_noise_amplitude), + ] + .iter() + { + max_noise = max_noise.max(noise(*in_phase_delta, *quadrature_delta)); + } + + max_noise +} + +/// Lowpass filter test for in-phase/quadrature and magnitude/phase +/// computations. +/// +/// This attempts to "intelligently" model acceptable tolerance ranges +/// for the measured in-phase, quadrature, magnitude and phase results +/// of lock-in processing for a typical low-pass filter +/// application. So, instead of testing whether the lock-in processing +/// extracts the true magnitude and phase (or in-phase and quadrature +/// components) of the input signal, it attempts to calculate what the +/// lock-in processing should compute given any set of input noise +/// sources. For example, if a noise source of sufficient strength +/// differs in frequency by 1kHz from the reference frequency and the +/// filter cutoff frequency is also 1kHz, testing if the lock-in +/// amplifier extracts the amplitude and phase of the input signal +/// whose frequency is equal to the demodulation frequency is doomed +/// to failure. Instead, this function tests whether the lock-in +/// correctly adheres to its actual transfer function, whether or not +/// it was given reasonable inputs. The logic for computing acceptable +/// tolerance ranges is performed in `sampled_noise_amplitude`, +/// `magnitude_noise`, and `phase_noise`. +/// +/// # Arguments +/// +/// * `internal_frequency` - Internal clock frequency (Hz). The +/// internal clock increments timestamp counter values used to +/// record the edges of the external reference. +/// * `adc_frequency` - ADC sampling frequency (in Hz). +/// * `reference_frequency` - External reference frequency (in Hz). +/// * `demodulation_phase_offset` - Phase offset applied to the +/// in-phase and quadrature demodulation signals. +/// * `harmonic` - Scaling factor for the demodulation +/// frequency. E.g., 2 would demodulate with the first harmonic of the +/// reference frequency. +/// * `corner_frequency` - Lowpass filter 3dB cutoff frequency. +/// * `desired_input` - `PureSine` giving the frequency, amplitude and +/// phase of the desired result. +/// * `noise_inputs` - Vector of `PureSine` for any noise inputs on top +/// of `desired_input`. +/// * `time_constant_factor` - Number of time constants after which +/// the output is considered valid. +/// * `tolerance` - Acceptable relative tolerance for the magnitude +/// and angle outputs. The outputs must remain within this tolerance +/// between `time_constant_factor` and `time_constant_factor+1` time +/// constants. +fn lowpass_test( + internal_frequency: f64, + adc_frequency: f64, + reference_frequency: f64, + demodulation_phase_offset: f64, + harmonic: u32, + corner_frequency: f64, + desired_input: PureSine, + noise_inputs: &mut Vec, + time_constant_factor: f64, + tolerance: f32, +) { + let mut lockin = Lockin::new( + demodulation_phase_offset as f32, + (internal_frequency / adc_frequency) as u32, + harmonic, + IIR { + ba: lowpass_iir_coefficients(corner_frequency, adc_frequency), + y_offset: 0., + y_min: -ADC_MAX_COUNT as f32, + y_max: (ADC_MAX_COUNT - 1.) as f32, + }, + ); + + let mut timestamp_start: u64 = 0; + let time_constant: f64 = 1. / (2. * PI * corner_frequency); + let samples = + (time_constant_factor * time_constant * adc_frequency) as usize; + // Ensure the result remains within tolerance for 1 time constant + // after `time_constant_factor` time constants. + let extra_samples = (time_constant * adc_frequency) as usize; + let sample_count: u64 = (internal_frequency / adc_frequency) as u64 + * ADC_SAMPLE_BUFFER_SIZE as u64; + + let effective_phase_offset = + desired_input.phase_offset - demodulation_phase_offset; + let in_phase_actual = + linear(desired_input.amplitude_dbfs) * effective_phase_offset.cos(); + let quadrature_actual = + linear(desired_input.amplitude_dbfs) * effective_phase_offset.sin(); + + let total_noise_amplitude = sampled_noise_amplitude( + noise_inputs, + reference_frequency * harmonic as f64, + corner_frequency, + ); + let total_magnitude_noise = magnitude_noise( + total_noise_amplitude, + in_phase_actual, + quadrature_actual, + linear(desired_input.amplitude_dbfs), + ); + let total_phase_noise = + phase_noise(total_noise_amplitude, in_phase_actual, quadrature_actual); + + let pure_signals = noise_inputs; + pure_signals.push(desired_input); + + for n in 0..(samples + extra_samples) { + let signal: [i16; ADC_SAMPLE_BUFFER_SIZE] = adc_sampled_signal( + &pure_signals, + timestamp_start, + internal_frequency, + adc_frequency, + ); + let (valid_timestamps, timestamps) = adc_batch_timestamps( + reference_frequency, + timestamp_start, + timestamp_start + sample_count - 1, + internal_frequency, + ); + + let mut in_phase: [f32; ADC_SAMPLE_BUFFER_SIZE]; + let mut quadrature: [f32; ADC_SAMPLE_BUFFER_SIZE]; + let lockin_demodulate = + lockin.demodulate(signal, timestamps, valid_timestamps as u16); + match lockin_demodulate { + Some(i) => { + in_phase = i.0; + quadrature = i.1; + } + None => { + continue; + } + } + + lockin.filter(&mut in_phase, &mut quadrature); + let (in_phase_decimated, quadrature_decimated) = + decimate(in_phase, quadrature); + + let mut magnitude_decimated = in_phase_decimated.clone(); + let mut phase_decimated = quadrature_decimated.clone(); + + magnitude_phase(&mut magnitude_decimated, &mut phase_decimated); + + // Ensure stable within tolerance for 1 time constant after + // `time_constant_factor`. + if n >= samples { + for k in 0..DECIMATED_BUFFER_SIZE { + let amplitude_normalized: f32 = + magnitude_decimated[k] / ADC_MAX_COUNT as f32; + assert!( + tolerance_check(linear(desired_input.amplitude_dbfs) as f32, amplitude_normalized, total_magnitude_noise as f32, tolerance), + "magnitude actual: {:.4} ({:.2} dBFS), magnitude computed: {:.4} ({:.2} dBFS), tolerance: {:.4}", + linear(desired_input.amplitude_dbfs), + desired_input.amplitude_dbfs, + amplitude_normalized, + dbfs(amplitude_normalized as f64), + max_error(linear(desired_input.amplitude_dbfs) as f32, total_magnitude_noise as f32, tolerance) + ); + assert!( + tolerance_check( + effective_phase_offset as f32, + phase_decimated[k], + total_phase_noise as f32, + tolerance + ), + "phase actual: {:.4}, phase computed: {:.4}, tolerance: {:.4}", + effective_phase_offset as f32, + phase_decimated[k], + max_error( + effective_phase_offset as f32, + total_phase_noise as f32, + tolerance + ) + ); + + let in_phase_normalized: f32 = + in_phase_decimated[k] / ADC_MAX_COUNT as f32; + let quadrature_normalized: f32 = + quadrature_decimated[k] / ADC_MAX_COUNT as f32; + assert!( + tolerance_check( + in_phase_actual as f32, + in_phase_normalized, + total_noise_amplitude as f32, + tolerance + ), + "in-phase actual: {:.4}, in-phase computed: {:.3}, tolerance: {:.4}", + in_phase_actual, + in_phase_normalized, + max_error( + in_phase_actual as f32, + total_noise_amplitude as f32, + tolerance + ) + ); + assert!( + tolerance_check( + quadrature_actual as f32, + quadrature_normalized, + total_noise_amplitude as f32, + tolerance + ), + "quadrature actual: {:.4}, quadrature computed: {:.4}, tolerance: {:.4}", + quadrature_actual, + quadrature_normalized, + max_error( + quadrature_actual as f32, + total_noise_amplitude as f32, + tolerance + ) + ); + } + } + + timestamp_start += sample_count; + } +} + +#[test] +fn lowpass() { + let internal_frequency: f64 = 100e6; + let adc_frequency: f64 = 500e3; + let signal_frequency: f64 = 100e3; + let harmonic: u32 = 1; + let corner_frequency: f64 = 1e3; + let demodulation_frequency: f64 = harmonic as f64 * signal_frequency; + let demodulation_phase_offset: f64 = 0.; + let time_constant_factor: f64 = 5.; + let tolerance: f32 = 1e-2; + + lowpass_test( + internal_frequency, + adc_frequency, + signal_frequency, + demodulation_phase_offset, + harmonic, + corner_frequency, + PureSine { + frequency: demodulation_frequency, + amplitude_dbfs: -30., + phase_offset: 0., + }, + &mut vec![ + PureSine { + frequency: 1.1 * demodulation_frequency, + amplitude_dbfs: -20., + phase_offset: 0., + }, + PureSine { + frequency: 0.9 * demodulation_frequency, + amplitude_dbfs: -20., + phase_offset: 0., + }, + ], + time_constant_factor, + tolerance, + ); +} + +#[test] +fn lowpass_demodulation_phase_offset_pi_2() { + let internal_frequency: f64 = 100e6; + let adc_frequency: f64 = 500e3; + let signal_frequency: f64 = 100e3; + let harmonic: u32 = 1; + let corner_frequency: f64 = 1e3; + let demodulation_frequency: f64 = harmonic as f64 * signal_frequency; + let demodulation_phase_offset: f64 = PI / 2.; + let time_constant_factor: f64 = 5.; + let tolerance: f32 = 1e-2; + + lowpass_test( + internal_frequency, + adc_frequency, + signal_frequency, + demodulation_phase_offset, + harmonic, + corner_frequency, + PureSine { + frequency: demodulation_frequency, + amplitude_dbfs: -30., + phase_offset: 0., + }, + &mut vec![ + PureSine { + frequency: 1.1 * demodulation_frequency, + amplitude_dbfs: -20., + phase_offset: 0., + }, + PureSine { + frequency: 0.9 * demodulation_frequency, + amplitude_dbfs: -20., + phase_offset: 0., + }, + ], + time_constant_factor, + tolerance, + ); +} + +#[test] +fn lowpass_phase_offset_pi_2() { + let internal_frequency: f64 = 100e6; + let adc_frequency: f64 = 500e3; + let signal_frequency: f64 = 100e3; + let harmonic: u32 = 1; + let corner_frequency: f64 = 1e3; + let demodulation_frequency: f64 = harmonic as f64 * signal_frequency; + let demodulation_phase_offset: f64 = 0.; + let time_constant_factor: f64 = 5.; + let tolerance: f32 = 1e-2; + + lowpass_test( + internal_frequency, + adc_frequency, + signal_frequency, + demodulation_phase_offset, + harmonic, + corner_frequency, + PureSine { + frequency: demodulation_frequency, + amplitude_dbfs: -30., + phase_offset: PI / 2., + }, + &mut vec![ + PureSine { + frequency: 1.1 * demodulation_frequency, + amplitude_dbfs: -20., + phase_offset: 0., + }, + PureSine { + frequency: 0.9 * demodulation_frequency, + amplitude_dbfs: -20., + phase_offset: 0., + }, + ], + time_constant_factor, + tolerance, + ); +} + +#[test] +fn lowpass_fundamental_111e3_phase_offset_pi_4() { + let internal_frequency: f64 = 100e6; + let adc_frequency: f64 = 500e3; + let signal_frequency: f64 = 111e3; + let harmonic: u32 = 1; + let corner_frequency: f64 = 1e3; + let demodulation_frequency: f64 = harmonic as f64 * signal_frequency; + let demodulation_phase_offset: f64 = 0.; + let time_constant_factor: f64 = 5.; + let tolerance: f32 = 1e-2; + + lowpass_test( + internal_frequency, + adc_frequency, + signal_frequency, + demodulation_phase_offset, + harmonic, + corner_frequency, + PureSine { + frequency: demodulation_frequency, + amplitude_dbfs: -30., + phase_offset: PI / 4., + }, + &mut vec![ + PureSine { + frequency: 1.1 * demodulation_frequency, + amplitude_dbfs: -20., + phase_offset: 0., + }, + PureSine { + frequency: 0.9 * demodulation_frequency, + amplitude_dbfs: -20., + phase_offset: 0., + }, + ], + time_constant_factor, + tolerance, + ); +} + +#[test] +fn lowpass_first_harmonic() { + let internal_frequency: f64 = 100e6; + let adc_frequency: f64 = 500e3; + let signal_frequency: f64 = 50e3; + let harmonic: u32 = 2; + let corner_frequency: f64 = 1e3; + let demodulation_frequency: f64 = harmonic as f64 * signal_frequency; + let demodulation_phase_offset: f64 = 0.; + let time_constant_factor: f64 = 5.; + let tolerance: f32 = 1e-2; + + lowpass_test( + internal_frequency, + adc_frequency, + signal_frequency, + demodulation_phase_offset, + harmonic, + corner_frequency, + PureSine { + frequency: demodulation_frequency, + amplitude_dbfs: -30., + phase_offset: 0., + }, + &mut vec![ + PureSine { + frequency: 1.2 * demodulation_frequency, + amplitude_dbfs: -20., + phase_offset: 0., + }, + PureSine { + frequency: 0.8 * demodulation_frequency, + amplitude_dbfs: -20., + phase_offset: 0., + }, + ], + time_constant_factor, + tolerance, + ); +} + +#[test] +fn lowpass_second_harmonic() { + let internal_frequency: f64 = 100e6; + let adc_frequency: f64 = 500e3; + let signal_frequency: f64 = 50e3; + let harmonic: u32 = 3; + let corner_frequency: f64 = 1e3; + let demodulation_frequency: f64 = harmonic as f64 * signal_frequency; + let demodulation_phase_offset: f64 = 0.; + let time_constant_factor: f64 = 5.; + let tolerance: f32 = 1e-2; + + lowpass_test( + internal_frequency, + adc_frequency, + signal_frequency, + demodulation_phase_offset, + harmonic, + corner_frequency, + PureSine { + frequency: demodulation_frequency, + amplitude_dbfs: -30., + phase_offset: 0., + }, + &mut vec![ + PureSine { + frequency: 1.2 * demodulation_frequency, + amplitude_dbfs: -20., + phase_offset: 0., + }, + PureSine { + frequency: 0.8 * demodulation_frequency, + amplitude_dbfs: -20., + phase_offset: 0., + }, + ], + time_constant_factor, + tolerance, + ); +} + +#[test] +fn lowpass_third_harmonic() { + let internal_frequency: f64 = 100e6; + let adc_frequency: f64 = 500e3; + let signal_frequency: f64 = 50e3; + let harmonic: u32 = 4; + let corner_frequency: f64 = 1e3; + let demodulation_frequency: f64 = harmonic as f64 * signal_frequency; + let demodulation_phase_offset: f64 = 0.; + let time_constant_factor: f64 = 5.; + let tolerance: f32 = 1e-2; + + lowpass_test( + internal_frequency, + adc_frequency, + signal_frequency, + demodulation_phase_offset, + harmonic, + corner_frequency, + PureSine { + frequency: demodulation_frequency, + amplitude_dbfs: -30., + phase_offset: 0., + }, + &mut vec![ + PureSine { + frequency: 1.2 * demodulation_frequency, + amplitude_dbfs: -20., + phase_offset: 0., + }, + PureSine { + frequency: 0.8 * demodulation_frequency, + amplitude_dbfs: -20., + phase_offset: 0., + }, + ], + time_constant_factor, + tolerance, + ); +} + +#[test] +fn lowpass_first_harmonic_phase_shift() { + let internal_frequency: f64 = 100e6; + let adc_frequency: f64 = 500e3; + let signal_frequency: f64 = 50e3; + let harmonic: u32 = 2; + let corner_frequency: f64 = 1e3; + let demodulation_frequency: f64 = harmonic as f64 * signal_frequency; + let demodulation_phase_offset: f64 = 0.; + let time_constant_factor: f64 = 5.; + let tolerance: f32 = 1e-2; + + lowpass_test( + internal_frequency, + adc_frequency, + signal_frequency, + demodulation_phase_offset, + harmonic, + corner_frequency, + PureSine { + frequency: demodulation_frequency, + amplitude_dbfs: -30., + phase_offset: PI / 4., + }, + &mut vec![ + PureSine { + frequency: 1.2 * demodulation_frequency, + amplitude_dbfs: -20., + phase_offset: 0., + }, + PureSine { + frequency: 0.8 * demodulation_frequency, + amplitude_dbfs: -20., + phase_offset: 0., + }, + ], + time_constant_factor, + tolerance, + ); +} + +#[test] +fn lowpass_adc_frequency_1e6() { + let internal_frequency: f64 = 100e6; + let adc_frequency: f64 = 1e6; + let signal_frequency: f64 = 100e3; + let harmonic: u32 = 1; + let corner_frequency: f64 = 1e3; + let demodulation_frequency: f64 = harmonic as f64 * signal_frequency; + let demodulation_phase_offset: f64 = 0.; + let time_constant_factor: f64 = 5.; + let tolerance: f32 = 1e-2; + + lowpass_test( + internal_frequency, + adc_frequency, + signal_frequency, + demodulation_phase_offset, + harmonic, + corner_frequency, + PureSine { + frequency: demodulation_frequency, + amplitude_dbfs: -30., + phase_offset: 0., + }, + &mut vec![ + PureSine { + frequency: 1.2 * demodulation_frequency, + amplitude_dbfs: -20., + phase_offset: 0., + }, + PureSine { + frequency: 0.8 * demodulation_frequency, + amplitude_dbfs: -20., + phase_offset: 0., + }, + ], + time_constant_factor, + tolerance, + ); +} + +#[test] +fn lowpass_internal_frequency_125e6() { + let internal_frequency: f64 = 125e6; + let adc_frequency: f64 = 500e3; + let signal_frequency: f64 = 100e3; + let harmonic: u32 = 1; + let corner_frequency: f64 = 1e3; + let demodulation_frequency: f64 = harmonic as f64 * signal_frequency; + let demodulation_phase_offset: f64 = 0.; + let time_constant_factor: f64 = 5.; + let tolerance: f32 = 1e-2; + + lowpass_test( + internal_frequency, + adc_frequency, + signal_frequency, + demodulation_phase_offset, + harmonic, + corner_frequency, + PureSine { + frequency: demodulation_frequency, + amplitude_dbfs: -30., + phase_offset: 0., + }, + &mut vec![ + PureSine { + frequency: 1.2 * demodulation_frequency, + amplitude_dbfs: -20., + phase_offset: 0., + }, + PureSine { + frequency: 0.8 * demodulation_frequency, + amplitude_dbfs: -20., + phase_offset: 0., + }, + ], + time_constant_factor, + tolerance, + ); +} + +#[test] +fn lowpass_low_signal_frequency() { + let internal_frequency: f64 = 100e6; + let adc_frequency: f64 = 500e3; + let signal_frequency: f64 = 10e3; + let harmonic: u32 = 1; + let corner_frequency: f64 = 1e3; + let demodulation_frequency: f64 = harmonic as f64 * signal_frequency; + let demodulation_phase_offset: f64 = 0.; + let time_constant_factor: f64 = 5.; + let tolerance: f32 = 1e-2; + + lowpass_test( + internal_frequency, + adc_frequency, + signal_frequency, + demodulation_phase_offset, + harmonic, + corner_frequency, + PureSine { + frequency: demodulation_frequency, + amplitude_dbfs: -30., + phase_offset: 0., + }, + &mut vec![PureSine { + frequency: 1.1 * demodulation_frequency, + amplitude_dbfs: -20., + phase_offset: 0., + }], + time_constant_factor, + tolerance, + ); +}