-
Notifications
You must be signed in to change notification settings - Fork 2
/
run_training_pipeline_lungs.sh
executable file
·89 lines (81 loc) · 2.13 KB
/
run_training_pipeline_lungs.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
python train.py \
--dataset_dir dataset/lungs_segmentation\
--model_name Unet \
--input_size 384 384 \
--encoder_name se_resnext101_32x4d \
--loss_seg BCE \
--optimizer Adam \
--lr 0.0001 \
--batch_size 24
python train.py \
--dataset_dir dataset/lungs_segmentation\
--model_name Unet++ \
--input_size 384 384 \
--encoder_name efficientnet-b1 \
--loss_seg Jaccard \
--optimizer Adam_amsgrad \
--lr 0.001 \
--batch_size 32
python train.py \
--dataset_dir dataset/lungs_segmentation\
--model_name DeepLabV3 \
--input_size 512 512 \
--encoder_name efficientnet-b0 \
--loss_seg Dice \
--optimizer AdamW_amsgrad \
--lr 0.0005 \
--batch_size 16
python train.py \
--dataset_dir dataset/lungs_segmentation\
--model_name DeepLabV3+ \
--input_size 512 512 \
--encoder_name efficientnet-b1 \
--loss_seg BCE \
--optimizer AdamW \
--lr 0.0005 \
--batch_size 20
python train.py \
--dataset_dir dataset/lungs_segmentation\
--model_name FPN \
--input_size 544 544 \
--encoder_name efficientnet-b0 \
--loss_seg BCE \
--optimizer Adam_amsgrad \
--lr 0.001 \
--batch_size 32
python train.py \
--dataset_dir dataset/lungs_segmentation\
--model_name Linknet \
--input_size 480 480 \
--encoder_name timm-regnetx_064 \
--loss_seg BCE \
--optimizer AdamW \
--lr 0.0001 \
--batch_size 24
python train.py \
--dataset_dir dataset/lungs_segmentation\
--model_name PSPNet \
--input_size 480 480 \
--encoder_name timm-regnety_064 \
--loss_seg Dice \
--optimizer Adam \
--lr 0.0001 \
--batch_size 40
python train.py \
--dataset_dir dataset/lungs_segmentation\
--model_name PAN \
--input_size 512 512 \
--encoder_name efficientnet-b0 \
--loss_seg Jaccard \
--optimizer Adam_amsgrad \
--lr 0.001 \
--batch_size 32
python train.py \
--dataset_dir dataset/lungs_segmentation\
--model_name MAnet \
--input_size 512 512 \
--encoder_name efficientnet-b2 \
--loss_seg Dice \
--optimizer Adam_amsgrad \
--lr 0.001 \
--batch_size 24