-
Notifications
You must be signed in to change notification settings - Fork 77
/
external_optics.py
119 lines (93 loc) · 3.9 KB
/
external_optics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from solcore import si
from solcore import material
from solcore.solar_cell import SolarCell, Layer, Junction
from solcore.solar_cell_solver import solar_cell_solver, default_options
import numpy as np
from scipy.interpolate import interp1d
import matplotlib.pyplot as plt
T = 300
wavelengths_optics = np.linspace(300, 1200, 800)*1e-9
Si = material("Si")
SiO2 = material("SiO2")()
n_material = Si(T=T, Nd=si(1e21, "cm-3"), hole_diffusion_length=si("50um"),
electron_mobility=50e-4)
p_material = Si(T=T, Na=si(1e16, "cm-3"), electron_diffusion_length=si("150um"),
hole_mobility=400e-4)
ARC_width = si("100nm")
n_material_width = si("500nm")
p_material_width = si("50um")
solar_cell = SolarCell(
[
Layer(width=ARC_width, material=SiO2),
Junction([Layer(width=n_material_width, material=n_material, role='emitter'),
Layer(width=p_material_width, material=p_material, role='base'),
], sn=1, sp=1, kind='DA'),
])
total_width = ARC_width + n_material_width + p_material_width
options = default_options
options.optics_method = "TMM"
options.wavelength = wavelengths_optics
# options.position = np.linspace(0, total_width, 100000)
options.light_iv = True
V = np.linspace(0, 1.2, 200)
solar_cell_solver(solar_cell, 'iv', options)
reflected = solar_cell.reflected
absorbed_in_Si = solar_cell[1].layer_absorption
interp_ref = interp1d(options.wavelength, reflected)
interp_totalA = interp1d(options.wavelength, solar_cell[1].layer_absorption)
wavelengths_external = np.linspace(301, 1199, 800)*1e-9
alpha = n_material.alpha(wavelengths_external)
A_layer = interp_totalA(wavelengths_external)
junction_width = n_material_width + p_material_width
def make_absorb_fn(alpha, A_layer, junction_width):
norm = A_layer * alpha / (1 - np.exp(-alpha * junction_width))
def profile(z):
xy = norm[None, :] * np.exp(-alpha * z[:, None])
return xy.T
return profile
diff_absorb_fn = make_absorb_fn(alpha, A_layer, junction_width)
solar_cell_external = SolarCell(
[
Junction([Layer(width=n_material_width, material=n_material, role='emitter'),
Layer(width=p_material_width, material=p_material, role='base'),
], sn=1, sp=1, kind='DA'),
], external_reflected=interp_ref(wavelengths_external), external_absorbed=diff_absorb_fn)
options.optics_method = "external"
options.wavelength = wavelengths_external
solar_cell_solver(solar_cell_external, 'iv', options)
plt.figure()
plt.plot(wavelengths_external*1e9, solar_cell_external.reflected, label='Reflected - external')
plt.plot(wavelengths_external*1e9, solar_cell_external.absorbed, label='Absorbed - external')
plt.plot(wavelengths_optics*1e9, reflected, 'k--', label='Reflected - TMM')
plt.plot(wavelengths_optics*1e9, absorbed_in_Si, '--', label='Absorbed - TMM')
plt.legend()
plt.xlabel('Wavelength (nm)')
plt.ylabel('R/A')
plt.show()
plt.figure(1)
plt.plot(V, -solar_cell[1].iv(V), 'b', label='TMM calculation')
plt.plot(V, -solar_cell_external[0].iv(V), 'k--', label='External optics')
plt.legend()
plt.ylim(-20, 350)
plt.xlim(0, 1)
plt.ylabel('Current (A/m$^2$)')
plt.xlabel('Voltage (V)') #The expected values of Isc and Voc are 372 A/m^2 and 0.63 V respectively
plt.show()
position_plot = np.linspace(0, 200, 100)*1e-9
absorption_profile_TMM = solar_cell[0].diff_absorption(position_plot)
absorption_profile_constructed = solar_cell_external[0].diff_absorption(position_plot)
plt.figure()
plt.plot(position_plot, solar_cell[1].absorbed(position_plot))
plt.show()
plt.figure(figsize=(10, 4))
plt.subplot(121)
plt.imshow(absorption_profile_TMM, aspect='auto', extent=[0, 400, 1200, 300])
plt.colorbar()
plt.xlabel('Depth (nm)')
plt.ylabel('Wavelength (nm)')
plt.title(r'Differential absorption (m$^{-1}$) in front surface of cell')
plt.subplot(122)
plt.imshow(absorption_profile_constructed, aspect='auto', extent=[0, 400, 1200, 300])
plt.xlabel('Depth (nm)')
plt.ylabel('Wavelength (nm)')
plt.show()