diff --git a/docs/planning.md b/docs/planning.md index 246cc42..f6273c4 100644 --- a/docs/planning.md +++ b/docs/planning.md @@ -5,18 +5,26 @@ - Pauli Matrix $\sigma_i \in \{ I,X,Y,Z \}$ - Pauli String $\mathcal{\hat{P}} = \bigotimes_i \sigma_i$ +- State vector ${\ket{\psi}}$ and a set of ${n}$ state vectors $\ket{\psi_t}$ represented as columns in matrix - Sum of weighted Pauli strings (currently called `PauliOp`) $A_k = \sum_i h_i \mathcal{\hat{P_i}}$ - Sum of summed weighted Pauli strings (currently called `SummedPauliOp`) $B = \sum_k \sum_i h_{ik} \mathcal{\hat{P_i}}$ + # List of Operations Here's a terse list of the type of operations we want to support in `fast_pauli` (this list will grow over time): -1. Pauli String to sparse matrix (Pauli Composer) -2. $\mathcal{\hat{P}} \ket{\psi}$ -3. $\mathcal{\hat{P}} \ket{\psi_t}$ -4. $\big( \sum_i h_i \mathcal{\hat{P}}_i \big) \ket{\psi_t}$ -5. $\big(\sum_k \sum_i h_{ik} \mathcal{\hat{P}}_i \big) \ket{\psi_t}$ -6. $\big(\sum_k x_{tk} \sum_i h_{ik} \mathcal{\hat{P}}_i \big) \ket{\psi_t}$ -7. $\bigg(\sum_k \big( \sum_i h_{ik} \mathcal{\hat{P}}_i \big)^2 \bigg) \ket{\psi_t}$ -8. Calculate $\bra{\psi_t} \{ \mathcal{\hat{P_i}}, \hat{A_k} \} \ket{\psi}$ and $\bra{\psi} \mathcal{\hat{P_i}} \ket{\psi}$ +1. Pauli String to sparse matrix (Pauli Composer) +2. $\mathcal{\hat{P}} \ket{\psi}$ +3. $\mathcal{\hat{P}} \ket{\psi_t}$ +4. $\bra{\psi_t} \mathcal{\hat{P_i}} \ket{\psi_t}$ +5. $\bra{\psi_t} \mathcal{x_{ti}\hat{P_i}} \ket{\psi_t}$ +6. $\big( \sum_i h_i \mathcal{\hat{P}}_i \big) \ket{\psi_t}$ +7. $\big(\sum_k \sum_i h_{ik} \mathcal{\hat{P}}_i \big) \ket{\psi_t}$ +8. $\big(\sum_k x_{tk} \sum_i h_{ik} \mathcal{\hat{P}}_i \big) \ket{\psi_t}$ +9. $\big(\sum_k ( \sum_i h_{ik} \mathcal{\hat{P}}_i )^2 \big) \ket{\psi_t}$ +10. $\bra{\psi_t} \{ \mathcal{\hat{P_i}}, \hat{A_k} \} \ket{\psi_t}$ +11. $\bra{\psi_t} ( \sum_i h_{ik} \mathcal{\hat{P}}_i ) \ket{\psi_t}$ +12. $\bra{\psi_t} \big(\sum_k x_{tk} \sum_i h_{ik} \mathcal{\hat{P}}_i \big) \ket{\psi_t}$ +13. $\bra{\psi_t} ( \sum_i h_{ik} \mathcal{\hat{P}}_i )^2 \ket{\psi_t}$ +14. $\bra{\psi_t} \big(\sum_k ( \sum_i h_{ik} \mathcal{\hat{P}}_i )^2 \big) \ket{\psi_t}$