forked from PaddlePaddle/PaddleVideo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vit_tweaks.py
516 lines (444 loc) · 18.4 KB
/
vit_tweaks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Callable
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import Constant
from paddle.regularizer import L2Decay
from ...utils import load_ckpt
from ..registry import BACKBONES
from ..weight_init import trunc_normal_
__all__ = ['VisionTransformer_tweaks']
zeros_ = Constant(value=0.)
ones_ = Constant(value=1.)
def to_2tuple(x):
return tuple([x] * 2)
def rand_bbox(size, lam):
""" rand_bbox """
w = size[2]
h = size[3]
cut_rat = np.sqrt(1. - lam)
cut_w = np.int(w * cut_rat)
cut_h = np.int(h * cut_rat)
# uniform
cx = np.random.randint(w)
cy = np.random.randint(h)
bbx1 = np.clip(cx - cut_w // 2, 0, w)
bby1 = np.clip(cy - cut_h // 2, 0, h)
bbx2 = np.clip(cx + cut_w // 2, 0, w)
bby2 = np.clip(cy + cut_h // 2, 0, h)
return bbx1, bby1, bbx2, bby2
def drop_path(x, drop_prob=0., training=False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
# issuecomment-532968956 ...
See discussion: https://github.com/tensorflow/tpu/issues/494
"""
if drop_prob == 0. or not training:
return x
keep_prob = paddle.to_tensor(1 - drop_prob)
shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
random_tensor = paddle.floor(random_tensor) # binarize
output = x.divide(keep_prob) * random_tensor
return output
class DropPath(nn.Layer):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class Identity(nn.Layer):
def __init__(self):
super(Identity, self).__init__()
def forward(self, input):
return input
class Mlp(nn.Layer):
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.,
wd_bias=True,
lr_mult=1.0):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Layer):
def __init__(self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.,
proj_drop=0.,
wd_bias=True,
lr_mult=1.0):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias_attr=qkv_bias)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.attn_drop = nn.Dropout(attn_drop)
def forward(self, x):
N, C = x.shape[1:]
qkv = self.qkv(x).reshape(
(-1, N, 3, self.num_heads, C // self.num_heads)).transpose(
(2, 0, 3, 1, 4))
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q.matmul(k.transpose((0, 1, 3, 2)))) * self.scale
attn = nn.functional.softmax(attn, axis=-1)
attn = self.attn_drop(attn)
x = (attn.matmul(v)).transpose((0, 2, 1, 3)).reshape((-1, N, C))
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Layer):
def __init__(self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.1,
act_layer=nn.GELU,
norm_layer='nn.LayerNorm',
epsilon=1e-5,
attention_type='divided_space_time',
wd_bias=True,
lr_mult=1.0):
super().__init__()
self.attention_type = attention_type
if isinstance(norm_layer, str):
self.norm1 = eval(norm_layer)(dim, epsilon=epsilon)
elif isinstance(norm_layer, Callable):
self.norm1 = norm_layer(dim, epsilon=epsilon)
else:
raise TypeError(
"The norm_layer must be str or paddle.nn.layer.Layer class")
self.attn = Attention(dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
wd_bias=wd_bias,
lr_mult=lr_mult)
# Temporal Attention Parameters
if self.attention_type == 'divided_space_time':
if isinstance(norm_layer, str):
self.temporal_norm1 = eval(norm_layer)(dim, epsilon=epsilon)
elif isinstance(norm_layer, Callable):
self.temporal_norm1 = norm_layer(dim, epsilon=epsilon)
else:
raise TypeError(
"The norm_layer must be str or paddle.nn.layer.Layer class")
self.temporal_attn = Attention(dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
wd_bias=wd_bias,
lr_mult=lr_mult)
self.temporal_fc = nn.Linear(dim, dim)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()
if isinstance(norm_layer, str):
self.norm2 = eval(norm_layer)(dim, epsilon=epsilon)
elif isinstance(norm_layer, Callable):
self.norm2 = norm_layer(dim, epsilon=epsilon)
else:
raise TypeError(
"The norm_layer must be str or paddle.nn.layer.Layer class")
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
wd_bias=wd_bias,
lr_mult=lr_mult)
def forward(self, x, B, T, W):
num_spatial_tokens = (x.shape[1] - 1) // T
H = num_spatial_tokens // W
if self.attention_type in ['space_only', 'joint_space_time']:
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
elif self.attention_type == 'divided_space_time':
########## Temporal ##########
xt = x[:, 1:, :]
_, _, _, _t, _m = B, H, W, T, xt.shape[-1]
xt = xt.reshape([-1, _t, _m])
res_temporal = self.drop_path(
self.temporal_attn(self.temporal_norm1(xt)))
_, _h, _w, _t, _m = B, H, W, T, res_temporal.shape[-1]
res_temporal = res_temporal.reshape([-1, _h * _w * _t, _m])
res_temporal = self.temporal_fc(res_temporal)
xt = x[:, 1:, :] + res_temporal
########## Spatial ##########
init_cls_token = x[:, 0, :].unsqueeze(1)
cls_token = init_cls_token.tile((1, T, 1))
_b, _t, _m = cls_token.shape
cls_token = cls_token.reshape([-1, _m]).unsqueeze(1)
xs = xt
_, _h, _w, _t, _m = B, H, W, T, xs.shape[-1]
xs = xs.reshape([-1, _h, _w, _t, _m]).transpose(
(0, 3, 1, 2, 4)).reshape([-1, _h * _w, _m])
xs = paddle.concat((cls_token, xs), axis=1)
res_spatial = self.drop_path(self.attn(self.norm1(xs)))
# Taking care of CLS token
cls_token = res_spatial[:, 0, :]
_, _t, _m = B, T, cls_token.shape[-1]
cls_token = cls_token.reshape([-1, _t, _m])
# averaging for every frame
cls_token = paddle.mean(cls_token, axis=1, keepdim=True)
res_spatial = res_spatial[:, 1:, :]
_, _t, _h, _w, _m = B, T, H, W, res_spatial.shape[-1]
res_spatial = res_spatial.reshape([-1, _t, _h, _w, _m]).transpose(
(0, 2, 3, 1, 4)).reshape([-1, _h * _w * _t, _m])
res = res_spatial
x = xt
x = paddle.concat((init_cls_token, x), axis=1) + paddle.concat(
(cls_token, res), axis=1)
# Mlp
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
else:
raise NotImplementedError
class PatchEmbed(nn.Layer):
""" Image to Patch Embedding
"""
def __init__(self,
img_size=224,
patch_size=16,
in_channels=3,
embed_dim=768,
wd_bias=True,
lr_mult=1.0):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] //
patch_size[0])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2D(in_channels,
embed_dim,
kernel_size=patch_size,
stride=patch_size)
def forward(self, x):
B, C, T, H, W = x.shape
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = x.transpose((0, 2, 1, 3, 4)) # [B,T,C,H,W]
x = x.reshape([-1, C, H, W]) # [BT,C,H,W]
x = self.proj(x) # [BT,F,nH,nW]
W = x.shape[-1]
x = x.flatten(2).transpose((0, 2, 1)) # [BT,F,nHnW]
return x, T, W
@BACKBONES.register()
class VisionTransformer_tweaks(nn.Layer):
""" Vision Transformer with support for patch input
"""
def __init__(self,
pretrained=None,
img_size=224,
patch_size=16,
in_channels=3,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=False,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.1,
norm_layer='nn.LayerNorm',
epsilon=1e-5,
num_seg=8,
attention_type='divided_space_time',
wd_bias=True,
lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0],
**args):
super().__init__()
self.pretrained = pretrained
self.num_seg = num_seg
self.attention_type = attention_type
self.lr_mult_list = lr_mult_list
self.num_features = self.embed_dim = embed_dim
self.patch_embed = PatchEmbed(img_size=img_size,
patch_size=patch_size,
in_channels=in_channels,
embed_dim=embed_dim,
wd_bias=wd_bias,
lr_mult=self.lr_mult_list[0])
num_patches = self.patch_embed.num_patches
# Positional Embeddings
self.cls_token = self.create_parameter(
shape=(1, 1, embed_dim),
default_initializer=zeros_,
attr=ParamAttr(regularizer=L2Decay(0.0)))
self.pos_embed = self.create_parameter(
shape=(1, num_patches + 1, embed_dim),
default_initializer=zeros_,
attr=ParamAttr(regularizer=L2Decay(0.0)))
self.pos_drop = nn.Dropout(p=drop_rate)
if self.attention_type != 'space_only':
self.time_embed = self.create_parameter(
shape=(1, num_seg, embed_dim),
default_initializer=zeros_,
attr=ParamAttr(regularizer=L2Decay(0.0)))
self.time_drop = nn.Dropout(p=drop_rate)
self.add_parameter("pos_embed", self.pos_embed)
self.add_parameter("cls_token", self.cls_token)
dpr = np.linspace(0, drop_path_rate, depth)
self.blocks = nn.LayerList([
Block(dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
epsilon=epsilon,
attention_type=self.attention_type,
wd_bias=wd_bias,
lr_mult=self.lr_mult_list[(i // 4) + 1]) for i in range(depth)
])
self.norm = eval(norm_layer)(embed_dim, epsilon=epsilon)
def init_weights(self):
"""First init model's weight"""
trunc_normal_(self.pos_embed, std=0.02)
trunc_normal_(self.cls_token, std=0.02)
self.apply(self._init_fn)
if self.attention_type == 'divided_space_time':
i = 0
for m in self.blocks.sublayers(include_self=True):
m_str = str(m)
if 'Block' in m_str:
if i > 0:
zeros_(m.temporal_fc.weight)
zeros_(m.temporal_fc.bias)
i += 1
"""Second, if provide pretrained ckpt, load it"""
if isinstance(
self.pretrained, str
) and self.pretrained.strip() != "": # load pretrained weights
load_ckpt(self,
self.pretrained,
num_patches=self.patch_embed.num_patches,
num_seg=self.num_seg,
attention_type=self.attention_type)
elif self.pretrained is None or self.pretrained.strip() == "":
pass
else:
raise NotImplementedError
def _init_fn(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight)
if m.bias is not None:
zeros_(m.bias)
elif isinstance(m, nn.LayerNorm):
ones_(m.weight)
zeros_(m.bias)
def forward_features(self, x):
# B = x.shape[0]
B = paddle.shape(x)[0]
x, T, W = self.patch_embed(x) # [BT,nH*nW,F]
cls_tokens = self.cls_token.expand((B * T, -1, -1)) # [1,1,F]->[BT,1,F]
x = paddle.concat((cls_tokens, x), axis=1)
pos_interp = (x.shape[1] != self.pos_embed.shape[1])
if pos_interp:
pos_embed = self.pos_embed
cls_pos_embed = pos_embed[0, 0, :].unsqueeze(0).unsqueeze(1)
other_pos_embed = pos_embed[0, 1:, :].unsqueeze(0).transpose(
(0, 2, 1))
P = int(other_pos_embed.shape[2]**0.5)
H = x.shape[1] // W
other_pos_embed = other_pos_embed.reshape([1, x.shape[2], P, P])
new_pos_embed = F.interpolate(other_pos_embed,
size=(H, W),
mode='nearest')
new_pos_embed = new_pos_embed.flatten(2)
new_pos_embed = new_pos_embed.transpose((0, 2, 1))
new_pos_embed = paddle.concat((cls_pos_embed, new_pos_embed),
axis=1)
x = x + new_pos_embed
else:
x = x + self.pos_embed
x = self.pos_drop(x)
# Time Embeddings
if self.attention_type != 'space_only':
cls_tokens = x[:B, 0, :].unsqueeze(1) if B > 0 else x.split(
T)[0].index_select(paddle.to_tensor([0]), axis=1)
x = x[:, 1:]
_, _n, _m = x.shape
_t = T
x = x.reshape([-1, _t, _n, _m]).transpose(
(0, 2, 1, 3)).reshape([-1, _t, _m])
# Resizing time embeddings in case they don't match
time_interp = (T != self.time_embed.shape[1])
if time_interp: # T' != T
time_embed = self.time_embed.transpose((0, 2, 1)).unsqueeze(0)
new_time_embed = F.interpolate(time_embed,
size=(T, x.shape[-1]),
mode='nearest').squeeze(0)
new_time_embed = new_time_embed.transpose((0, 2, 1))
x = x + new_time_embed
else:
x = x + self.time_embed
x = self.time_drop(x)
_, _t, _m = x.shape
x = x.reshape([-1, W * W * T, _m])
x = paddle.concat((cls_tokens, x), axis=1)
# Attention blocks
for blk in self.blocks:
x = blk(x, B, T, W)
# Predictions for space-only baseline
if self.attention_type == 'space_only':
_, _n, _m = x.shape
_t = T
x = x.reshape([-1, _t, _n, _m])
x = paddle.mean(x, 1) # averaging predictions for every frame
x = self.norm(x)
return x[:, 0] # [B, embed_dim]
def forward(self, x):
x = self.forward_features(x)
return x