From b1b26f5c8b8179217884971cc685f94d4fcf207e Mon Sep 17 00:00:00 2001 From: Renato Mello Date: Thu, 7 Nov 2024 15:08:57 +0400 Subject: [PATCH] metrics --- src/qibo/quantum_info/entanglement.py | 2 +- src/qibo/quantum_info/metrics.py | 123 +++++++++++++++----------- 2 files changed, 74 insertions(+), 51 deletions(-) diff --git a/src/qibo/quantum_info/entanglement.py b/src/qibo/quantum_info/entanglement.py index d7b7b931ad..2521264e86 100644 --- a/src/qibo/quantum_info/entanglement.py +++ b/src/qibo/quantum_info/entanglement.py @@ -159,7 +159,7 @@ def negativity(state, partition: Union[List[int], Tuple[int, ...]], backend=None (also known as nuclear norm or trace norm). Args: - state (ndarray): statevector or density matrix :math:``. + state (ndarray): statevector or density matrix :math:`\\rho`. partition (list or tuple): qubits in the partition :math:`A` to be traced out. backend (:class:`qibo.backends.abstract.Backend`, optional): backend to be used in the execution. If ``None``, it uses it uses the current backend. diff --git a/src/qibo/quantum_info/metrics.py b/src/qibo/quantum_info/metrics.py index 22240a135a..ea432c2d89 100644 --- a/src/qibo/quantum_info/metrics.py +++ b/src/qibo/quantum_info/metrics.py @@ -154,7 +154,7 @@ def hilbert_schmidt_inner_product(operator_A, operator_B, backend=None): inner product between the two is given by .. math:: - \\braket{A, \\, B}_{\\text{HS}} = \\text{tr}\\left(A^{\\dagger} \\, B\\right) \\, . + \\braket{A, \\, B}_{\\text{HS}} = \\text{Tr}\\left(A^{\\dagger} \\, B\\right) \\, . Args: operator_A (ndarray): operator :math:`A`. @@ -174,25 +174,30 @@ def hilbert_schmidt_inner_product(operator_A, operator_B, backend=None): def hilbert_schmidt_distance(state, target, backend=None): - """Calculate the Hilbert-Schmidt distance between two quantum states: + """Calculate the Hilbert-Schmidt distance between two quantum states. + + Given two quantum states :math:`\\rho` and :math:`\\sigma`, their + Hilbert-Schmidt distance is given by .. math:: - \\braket{\\rho - \\sigma, \\, \\rho - \\sigma}_{\\text{HS}} = - \\text{tr}\\left((\\rho - \\sigma)^{2}\\right) \\, , + \\begin{align} + \\operatorname{HSD}(\\rho, \\, \\sigma) &\\equiv + \\braket{\\rho - \\sigma, \\, \\rho - \\sigma}_{\\text{HS}} \\\\ + &= \\text{Tr}\\left((\\rho - \\sigma)^{2}\\right) \\, , + \\end{align} where :math:`\\braket{\\cdot, \\, \\cdot}_{\\text{HS}}` is the :func:`qibo.quantum_info.hilbert_schmidt_inner_product`. Args: - state (ndarray): statevector or density matrix. - target (ndarray): statevector or density matrix. + state (ndarray): statevector or density matrix :math:`\\rho`.. + target (ndarray): statevector or density matrix :math:`\\sigma`. backend (:class:`qibo.backends.abstract.Backend`, optional): backend to be used in the execution. If ``None``, it uses the current backend. Defaults to ``None``. Returns: - float: Hilbert-Schmidt distance between ``state`` :math:`\\rho` - and ``target`` :math:`\\sigma`. + float: Hilbert-Schmidt distance :math:`\\operatorname{HSD}`. References: 1. P. J. Coles, M. Cerezo, and L. Cincio, *Strong bound between trace distance @@ -224,21 +229,23 @@ def hilbert_schmidt_distance(state, target, backend=None): def fidelity(state, target, check_hermitian: bool = False, backend=None): - """Fidelity :math:`F(\\rho, \\sigma)` between ``state`` :math:`\\rho` and - ``target`` state :math:`\\sigma`. In general, + """Calcualte the fidelity between two quantum states. + + Given two quantum states :math:`\\rho` and :math:`\\sigma`, In general, .. math:: - F(\\rho, \\sigma) = \\text{tr}^{2}\\left( \\sqrt{\\sqrt{\\sigma} \\, - \\rho^{\\dagger} \\, \\sqrt{\\sigma}} \\right) \\, . + \\operatorname{F}(\\rho, \\sigma) = \\text{Tr}\\left( \\sqrt{\\sqrt{\\sigma} \\, + \\rho^{\\dagger} \\, \\sqrt{\\sigma}} \\right) \\, . - However, when at least one of the states is pure, then + When at least one of the quantum states is pure, then :math:`\\operatorname{F}` + reduces to .. math:: - F(\\rho, \\sigma) = \\text{tr}(\\rho \\, \\sigma) + \\operatorname{F}(\\rho, \\sigma) = \\text{Tr}(\\rho \\, \\sigma) Args: - state (ndarray): statevector or density matrix. - target (ndarray): statevector or density matrix. + state (ndarray): statevector or density matrix :math:`\\operatorname{\\rho}`. + target (ndarray): statevector or density matrix :math:`\\operatorname{\\sigma}`. check_hermitian (bool, optional): if ``True``, checks if ``state`` is Hermitian. Defaults to ``False``. backend (:class:`qibo.backends.abstract.Backend`, optional): backend to be used @@ -246,7 +253,7 @@ def fidelity(state, target, check_hermitian: bool = False, backend=None): Defaults to ``None``. Returns: - float: Fidelity between ``state`` :math:`\\rho` and ``target`` :math:`\\sigma`. + float: Fidelity :math:`\\operatorname{F}`. """ backend = _check_backend(backend) state = backend.cast(state, dtype=state.dtype) @@ -333,18 +340,20 @@ def fidelity(state, target, check_hermitian: bool = False, backend=None): def infidelity(state, target, check_hermitian: bool = False, backend=None): - """Infidelity between ``state`` :math:`\\rho` and ``target`` state - :math:`\\sigma`, which is given by + """Calculate the infidelity between two quantum states. + + Given two quantum states :math:`\\rho` and :math:`\\sigma`, + their infidelity is given by .. math:: - 1 - F(\\rho, \\, \\sigma) \\, , + 1 - \\operatorname{F}(\\rho, \\, \\sigma) \\, , - where :math:`F(\\rho, \\, \\sigma)` is the :func:`qibo.quantum_info.fidelity` - between ``state`` and ``target``. + where :math:`\\operatorname{F}(\\rho, \\, \\sigma)` is the :func:`qibo.quantum_info.fidelity` + between ``state`` :math:`\\rho` and ``target`` :math:`\\sigma`. Args: - state (ndarray): statevector or density matrix. - target (ndarray): statevector or density matrix. + state (ndarray): statevector or density matrix :math:`\\rho`. + target (ndarray): statevector or density matrix :math:`\\sigma`. check_hermitian (bool, optional): if ``True``, checks if ``state`` is Hermitian. Defaults to ``False``. backend (:class:`qibo.backends.abstract.Backend`, optional): backend to be used @@ -352,24 +361,28 @@ def infidelity(state, target, check_hermitian: bool = False, backend=None): Defaults to ``None``. Returns: - float: Infidelity between ``state`` :math:`\\rho` and ``target`` :math:`\\sigma`. + float: Infidelity :math:`1 - \\operatorname{F}`. """ return 1 - fidelity(state, target, check_hermitian=check_hermitian, backend=backend) def bures_angle(state, target, check_hermitian: bool = False, backend=None): - """Calculates the Bures angle :math:`D_{A}` between a ``state`` - :math:`\\rho` and a ``target`` state :math:`\\sigma`. This is given by + """Calculate the Bures angle between two quantum states. + + Given two quantum states :math:`\\rho` and :math:`\\sigma`, + the Bures angle between them is given by .. math:: - D_{A}(\\rho, \\, \\sigma) = \\text{arccos}\\left(\\sqrt{F(\\rho, \\, \\sigma)}\\right) \\, , + \\operatorname{B}_{\\text{ang}}(\\rho, \\, \\sigma) = + \\operatorname{arccos}\\left( + \\sqrt{\\operatorname{F}(\\rho, \\, \\sigma)}\\right) \\, , - where :math:`F(\\rho, \\sigma)` is the :func:`qibo.quantum_info.fidelity` + where :math:`\\operatorname{F}(\\rho, \\sigma)` is the :func:`qibo.quantum_info.fidelity` between `state` and `target`. Args: - state (ndarray): statevector or density matrix. - target (ndarray): statevector or density matrix. + state (ndarray): statevector or density matrix :math:`\\rho`. + target (ndarray): statevector or density matrix :math:`\\sigma`. check_hermitian (bool, optional): if ``True``, checks if ``state`` is Hermitian. Defaults to ``False``. backend (:class:`qibo.backends.abstract.Backend`, optional): backend to be used @@ -377,7 +390,7 @@ def bures_angle(state, target, check_hermitian: bool = False, backend=None): Defaults to ``None``. Returns: - float: Bures angle between ``state`` and ``target``. + float: Bures angle :math:`\\operatorname{B}_{\\text{ang}}`. """ backend = _check_backend(backend) @@ -389,18 +402,21 @@ def bures_angle(state, target, check_hermitian: bool = False, backend=None): def bures_distance(state, target, check_hermitian: bool = False, backend=None): - """Calculates the Bures distance :math:`D_{B}` between a ``state`` - :math:`\\rho` and a ``target`` state :math:`\\sigma`. This is given by + """Calculate the Bures distance between two quantum states. + + Given two quantum states :math:`\\rho` and :math:`\\sigma`, + their Bures distance is given by .. math:: - D_{B}(\\rho, \\, \\sigma) = \\sqrt{2 \\, \\left(1 - \\sqrt{F(\\rho, \\, \\sigma)}\\right)} + \\operatorname{B}_{\\text{dist}}(\\rho, \\, \\sigma) = + \\sqrt{2 \\, \\left(1 - \\sqrt{F(\\rho, \\, \\sigma)}\\right)} \\, , - where :math:`F(\\rho, \\sigma)` is the :func:`qibo.quantum_info.fidelity` - between `state` and `target`. + where :math:`\\operatorname{F}(\\rho, \\sigma)` is the + :func:`qibo.quantum_info.fidelity` between ``state`` and ``target``. Args: - state (ndarray): statevector or density matrix. - target (ndarray): statevector or density matrix. + state (ndarray): statevector or density matrix :math:`\\rho`. + target (ndarray): statevector or density matrix :math:`\\sigma`. check_hermitian (bool, optional): if ``True``, checks if ``state`` is Hermitian. Defaults to ``False``. backend (:class:`qibo.backends.abstract.Backend`, optional): backend to be used @@ -408,7 +424,7 @@ def bures_distance(state, target, check_hermitian: bool = False, backend=None): Defaults to ``None``. Returns: - float: Bures distance between ``state`` and ``target``. + float: Bures distance :math:`\\operatorname{B}_{\\text{dist}}`. """ backend = _check_backend(backend) sqrt_fid = backend.np.sqrt( @@ -420,17 +436,24 @@ def bures_distance(state, target, check_hermitian: bool = False, backend=None): def process_fidelity(channel, target=None, check_unitary: bool = False, backend=None): - """Process fidelity between a quantum ``channel`` :math:`\\mathcal{E}` and - a ``target`` unitary channel :math:`U`. The process fidelity is defined as + """Calculate the process fidelity between a quantum channel and target unitary. + + Given a generic :math:`n`-qubit quantum channel :math:`\\mathcal{E}` + and a target :math:`n`-qubit unitary :math:`\\mathcal{U}`, + both in their Choi representation, their process fidelity is defined as .. math:: - F_{\\text{pro}}(\\mathcal{E}, \\mathcal{U}) = \\frac{1}{d^{2}} \\, - \\text{tr}(\\mathcal{E}^{\\dagger} \\, \\mathcal{U}) + \\operatorname{F}_{\\text{pro}}(\\mathcal{E}, \\, \\mathcal{U}) = + \\frac{1}{d^{2}} \\, \\text{Tr}(\\mathcal{E}^{\\dagger} \\, + \\mathcal{U}) \\, , + + where :math:`d = 2^{n}`. For more about the Choi representation of quantum channels, + please see :func:`qibo.quantum_info.to_choi`. Args: - channel: quantum channel :math:`\\mathcal{E}`. - target (optional): quantum channel :math:`U`. If ``None``, target is the - Identity channel. Defaults to ``None``. + channel: quantum channel :math:`\\mathcal{E}` in the Choi representation. + target (optional): quantum channel :math:`\\mathcal{U}` in the Choi representation. + If ``None``, target is the Identity channel. Defaults to ``None``. check_unitary (bool, optional): if ``True``, checks if one of the input channels is unitary. Default: ``False``. backend (:class:`qibo.backends.abstract.Backend`, optional): backend to be used @@ -438,7 +461,7 @@ def process_fidelity(channel, target=None, check_unitary: bool = False, backend= Defaults to ``None``. Returns: - float: Process fidelity between ``channel`` and ``target``. + float: Process fidelity :math:`\\operatorname{F}_{\\text{pro}}`. """ backend = _check_backend(backend) @@ -794,7 +817,7 @@ def frame_potential( .. math:: \\mathcal{F}_{\\mathcal{U}}^{(t)} = \\int_{U,V \\in \\mathcal{U}} \\, - \\text{d}U \\, \\text{d}V \\, \\bigl| \\, \\text{tr}(U^{\\dagger} \\, V) + \\text{d}U \\, \\text{d}V \\, \\bigl| \\, \\text{Tr}(U^{\\dagger} \\, V) \\, \\bigr|^{2t} \\, , where :math:`\\mathcal{U}` is the group of unitaries defined by the parametrized circuit. @@ -802,7 +825,7 @@ def frame_potential( .. math:: \\mathcal{F}_{\\mathcal{U}}^{(t)} \\approx \\frac{1}{N} \\, - \\sum_{k=1}^{N} \\, \\bigl| \\, \\text{tr}(U_{k}^{\\dagger} \\, V_{k}) \\, \\bigr|^{2t} \\, , + \\sum_{k=1}^{N} \\, \\bigl| \\, \\text{Tr}(U_{k}^{\\dagger} \\, V_{k}) \\, \\bigr|^{2t} \\, , where :math:`N` is the number of ``samples``.