diff --git a/src/qibo/models/qcnn.py b/src/qibo/models/qcnn.py index 618d6c79fc..c98fc28019 100644 --- a/src/qibo/models/qcnn.py +++ b/src/qibo/models/qcnn.py @@ -59,6 +59,21 @@ def __init__( twoqubitansatz=None, copy_init_state=None, ): + """ + Initializes the QuantumCNN object. + + Args: + nqubits (int): The number of qubits in the QCNN. + nlayers (int): The number of layers in the QCNN. + nclasses (int, optional): The number of classes for the classification task. Defaults to 2. + params (np.ndarray, optional): The initial parameters for the QCNN. If None, random parameters are generated. Defaults to None. + twoqubitansatz (qibo.core.circuit.Circuit, optional): A two-qubit ansatz for the convolutional layers. If None, a default ansatz is used. Defaults to None. + copy_init_state (bool, optional): Whether to copy the initial state for each shot in the simulation. If None, the behavior depends on the backend. Defaults to None. + + Raises: + ValueError: If nqubits is not larger than 1. + """ + self.nclasses = nclasses self.nqubits = nqubits self.nlayers = nlayers @@ -262,9 +277,6 @@ def Classifier_circuit(self, theta): """ Args: theta: list or numpy.array with the biases and the angles to be used in the circuit. - nlayers: int number of layers of the varitional circuit ansatz. - RY: if True, parameterized Rx,Rz,Rx gates are used in the circuit. - if False, parameterized Ry gates are used in the circuit (default=False). Returns: Circuit implementing the variational ansatz for angles "theta". """ @@ -318,7 +330,6 @@ def Cost_function(self, theta, data=None, labels=None, nshots=10000): """ Args: theta: list or numpy.array with the biases and the angles to be used in the circuit. - nlayers: int number of layers of the varitional circuit ansatz. data: numpy.array data[page][word] (this is an array of kets). labels: list or numpy.array with the labels of the quantum states to be classified. nshots: int number of runs of the circuit during the sampling process (default=10000).