From 4632a6cd3a1fdd6cf0df5064087eed2c554b5b90 Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Fri, 15 Mar 2024 06:50:33 +0000 Subject: [PATCH] [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --- src/qibo/backends/__init__.py | 1 + src/qibo/models/error_mitigation.py | 85 +++++++++++++++++++++-------- 2 files changed, 63 insertions(+), 23 deletions(-) diff --git a/src/qibo/backends/__init__.py b/src/qibo/backends/__init__.py index 0927c3ad97..3a34c6077e 100644 --- a/src/qibo/backends/__init__.py +++ b/src/qibo/backends/__init__.py @@ -202,6 +202,7 @@ def _check_backend(backend): return backend + def _check_backend_and_local_state(seed, backend): if ( seed is not None diff --git a/src/qibo/models/error_mitigation.py b/src/qibo/models/error_mitigation.py index 08e12d895e..ca4de615a0 100644 --- a/src/qibo/models/error_mitigation.py +++ b/src/qibo/models/error_mitigation.py @@ -6,7 +6,7 @@ from scipy.optimize import curve_fit from qibo import gates -from qibo.backends import GlobalBackend, _check_backend_and_local_state, _check_backend +from qibo.backends import GlobalBackend, _check_backend, _check_backend_and_local_state from qibo.config import raise_error @@ -137,7 +137,7 @@ def ZNE( * response_matrix: numpy.ndarray, used for applying a pre-computed response matrix for readout error mitigation. * ibu_iters: int, specifies the number of iterations for the iterative Bayesian unfolding method of readout error mitigation. If provided, the corresponding readout error mitigation method is used. Defaults to {}. - qubit_map (list, optional): the qubit map. If None, a list of range of circuit's qubits is used. + qubit_map (list, optional): the qubit map. If None, a list of range of circuit's qubits is used. Defaults to ``None``. seed (int or :class:`numpy.random.Generator`, optional): Either a generator of random numbers or a fixed seed to initialize a generator. If ``None``, initializes @@ -301,7 +301,7 @@ def CDR( * response_matrix: numpy.ndarray, used for applying a pre-computed response matrix for readout error mitigation. * ibu_iters: int, specifies the number of iterations for the iterative Bayesian unfolding method of readout error mitigation. If provided, the corresponding readout error mitigation method is used. Defaults to {}. - qubit_map (list, optional): the qubit map. If None, a list of range of circuit's qubits is used. + qubit_map (list, optional): the qubit map. If None, a list of range of circuit's qubits is used. Defaults to ``None``. seed (int or :class:`numpy.random.Generator`, optional): Either a generator of random numbers or a fixed seed to initialize a generator. If ``None``, initializes @@ -336,14 +336,28 @@ def CDR( val = result.expectation_from_samples(observable) train_val["noise-free"].append(val) val = get_expectation_val_with_readout_mitigation( - circ, observable, noise_model, nshots, readout, qubit_map, seed=local_state, backend=backend + circ, + observable, + noise_model, + nshots, + readout, + qubit_map, + seed=local_state, + backend=backend, ) train_val["noisy"].append(val) optimal_params = curve_fit(model, train_val["noisy"], train_val["noise-free"])[0] val = get_expectation_val_with_readout_mitigation( - circuit, observable, noise_model, nshots, readout, qubit_map, seed=local_state, backend=backend + circuit, + observable, + noise_model, + nshots, + readout, + qubit_map, + seed=local_state, + backend=backend, ) mit_val = model(val, *optimal_params) @@ -418,7 +432,7 @@ def vnCDR( readout = {} training_circuits = [ - sample_training_circuit_cdr(circuit, seed=local_state, backend=backend) + sample_training_circuit_cdr(circuit, seed=local_state, backend=backend) for _ in range(n_training_samples) ] train_val = {"noise-free": [], "noisy": []} @@ -596,10 +610,10 @@ def apply_randomized_readout_mitigation( seed=None, backend=None, ): - """Readout mitigation method that transforms the bias in an expectation value into a - measurable multiplicative factor. - - This factor can be eliminated at the expense of increased sampling complexity + """Readout mitigation method that transforms the bias in an expectation value into a + measurable multiplicative factor. + + This factor can be eliminated at the expense of increased sampling complexity for the observable. Args: @@ -609,7 +623,7 @@ def apply_randomized_readout_mitigation( nshots (int, optional): number of shots. Defaults to :math:`10000`. ncircuits (int, optional): number of randomized circuits. Each of them uses ``int(nshots / ncircuits)`` shots. Defaults to 10. - qubit_map (list, optional): the qubit map. If None, a list of range of circuit's qubits is used. + qubit_map (list, optional): the qubit map. If None, a list of range of circuit's qubits is used. Defaults to ``None``. seed (int or :class:`numpy.random.Generator`, optional): Either a generator of random numbers or a fixed seed to initialize a generator. If ``None``, initializes @@ -624,7 +638,7 @@ def apply_randomized_readout_mitigation( Reference: - 1. Ewout van den Berg, Zlatko K. Minev et al, + 1. Ewout van den Berg, Zlatko K. Minev et al, *Model-free readout-error mitigation for quantum expectation values*. `arXiv:2012.09738 [quant-ph] `_. """ @@ -643,7 +657,9 @@ def apply_randomized_readout_mitigation( circuit_c.queue.pop() cal_circuit = Circuit(circuit.nqubits, density_matrix=True) - x_gate = random_pauli(circuit.nqubits, 1, subset=["I", "X"], seed=local_state).queue + x_gate = random_pauli( + circuit.nqubits, 1, subset=["I", "X"], seed=local_state + ).queue error_map = {} for j, gate in enumerate(x_gate): @@ -699,7 +715,7 @@ def get_expectation_val_with_readout_mitigation( * response_matrix: numpy.ndarray, used for applying a pre-computed response matrix for readout error mitigation. * ibu_iters: int, specifies the number of iterations for the iterative Bayesian unfolding method of readout error mitigation. If provided, the corresponding readout error mitigation method is used. Defaults to {}. - qubit_map (list, optional): the qubit map. If None, a list of range of circuit's qubits is used. + qubit_map (list, optional): the qubit map. If None, a list of range of circuit's qubits is used. Defaults to ``None``. seed (int or :class:`numpy.random.Generator`, optional): Either a generator of random numbers or a fixed seed to initialize a generator. If ``None``, initializes @@ -717,7 +733,12 @@ def get_expectation_val_with_readout_mitigation( if "ncircuits" in readout: circuit_result, circuit_result_cal = apply_randomized_readout_mitigation( - circuit, noise_model, nshots, readout["ncircuits"], seed=local_state, backend=backend + circuit, + noise_model, + nshots, + readout["ncircuits"], + seed=local_state, + backend=backend, ) else: circuit_result = _execute_circuit( @@ -778,7 +799,9 @@ def sample_clifford_training_circuit( if isinstance(gate, gates.M): for q in gate.qubits: gate_rand = gates.Unitary( - random_clifford(1, return_circuit=False, seed=local_state, backend=backend), + random_clifford( + 1, return_circuit=False, seed=local_state, backend=backend + ), q, ) gate_rand.clifford = True @@ -788,7 +811,10 @@ def sample_clifford_training_circuit( if i in non_clifford_gates_indices: gate = gates.Unitary( random_clifford( - len(gate.qubits), return_circuit=False, seed=local_state, backend=backend + len(gate.qubits), + return_circuit=False, + seed=local_state, + backend=backend, ), *gate.qubits, ) @@ -804,7 +830,7 @@ def error_sensitive_circuit(circuit, observable, seed=None, backend=None): Args: circuit (:class:`qibo.models.Circuit`): input circuit. - observable (:class:`qibo.hamiltonians.Hamiltonian` or :class:`qibo.hamiltonians.SymbolicHamiltonian`): + observable (:class:`qibo.hamiltonians.Hamiltonian` or :class:`qibo.hamiltonians.SymbolicHamiltonian`): Pauli observable to be measured. seed (int or :class:`numpy.random.Generator`, optional): Either a generator of random numbers or a fixed seed to initialize a generator. If ``None``, initializes @@ -831,7 +857,9 @@ def error_sensitive_circuit(circuit, observable, seed=None, backend=None): backend, local_state = _check_backend_and_local_state(seed, backend) - sampled_circuit = sample_clifford_training_circuit(circuit, seed=local_state, backend=backend) + sampled_circuit = sample_clifford_training_circuit( + circuit, seed=local_state, backend=backend + ) unitary_matrix = sampled_circuit.unitary(backend=backend) num_qubits = sampled_circuit.nqubits @@ -866,7 +894,9 @@ def error_sensitive_circuit(circuit, observable, seed=None, backend=None): while backend.np.any( backend.np.abs(observable_i - pauli_gates["Z"]) > 1e-5 ) and backend.np.any(abs(observable_i - pauli_gates["I"]) > 1e-5): - random_init = random_clifford(1, return_circuit=False, seed=local_state, backend=backend) + random_init = random_clifford( + 1, return_circuit=False, seed=local_state, backend=backend + ) observable_i = ( backend.np.conj(backend.np.transpose(random_init, (1, 0))) @ pauli_gates[observable_pauli[i]] @@ -911,7 +941,7 @@ def ICS( * response_matrix: numpy.ndarray, used for applying a pre-computed response matrix for readout error mitigation. * ibu_iters: int, specifies the number of iterations for the iterative Bayesian unfolding method of readout error mitigation. If provided, the corresponding readout error mitigation method is used. Defaults to {}. - qubit_map (list, optional): the qubit map. If ``None``, a list of range of circuit's qubits is used. + qubit_map (list, optional): the qubit map. If ``None``, a list of range of circuit's qubits is used. Defaults to ``None``. noise_model (qibo.models.noise.Noise, optional): the noise model to be applied. Defaults to ``None``. nshots (int, optional): the number of shots for the circuit execution. Defaults to :math:`10000`. @@ -945,7 +975,9 @@ def ICS( qubit_map = list(range(circuit.nqubits)) training_circuits = [ - error_sensitive_circuit(circuit, observable, seed=local_state, backend=backend)[0] + error_sensitive_circuit(circuit, observable, seed=local_state, backend=backend)[ + 0 + ] for _ in range(n_training_samples) ] @@ -975,7 +1007,14 @@ def ICS( dep_param_std = np.std(lambda_list) noisy_expectation = get_expectation_val_with_readout_mitigation( - circuit, observable, noise_model, nshots, readout, qubit_map, seed=local_state, backend=backend + circuit, + observable, + noise_model, + nshots, + readout, + qubit_map, + seed=local_state, + backend=backend, ) one_dep_squared = (1 - dep_param) ** 2 dep_std_squared = dep_param_std**2