diff --git a/assets/hub/datvuthanh_hybridnets.ipynb b/assets/hub/datvuthanh_hybridnets.ipynb index 95b1f0f302fc..411e0b19d841 100644 --- a/assets/hub/datvuthanh_hybridnets.ipynb +++ b/assets/hub/datvuthanh_hybridnets.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "a03f3c27", + "id": "7461d39d", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -24,7 +24,7 @@ { "cell_type": "code", "execution_count": null, - "id": "c53374d0", + "id": "642e295f", "metadata": {}, "outputs": [], "source": [ @@ -34,7 +34,7 @@ }, { "cell_type": "markdown", - "id": "187d33f9", + "id": "51c2ea62", "metadata": {}, "source": [ "## Model Description\n", @@ -93,7 +93,7 @@ { "cell_type": "code", "execution_count": null, - "id": "fe220c4b", + "id": "bda8c68e", "metadata": {}, "outputs": [], "source": [ @@ -109,7 +109,7 @@ }, { "cell_type": "markdown", - "id": "e86df1d3", + "id": "468d5dda", "metadata": {}, "source": [ "### Citation\n", @@ -120,7 +120,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ae665090", + "id": "7159f81c", "metadata": { "attributes": { "classes": [ diff --git a/assets/hub/facebookresearch_WSL-Images_resnext.ipynb b/assets/hub/facebookresearch_WSL-Images_resnext.ipynb index 4458d8b9fbe3..e487b7b1703f 100644 --- a/assets/hub/facebookresearch_WSL-Images_resnext.ipynb +++ b/assets/hub/facebookresearch_WSL-Images_resnext.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "7f6bc74a", + "id": "b80018b5", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -22,7 +22,7 @@ { "cell_type": "code", "execution_count": null, - "id": "d7c1aa68", + "id": "774b6486", "metadata": {}, "outputs": [], "source": [ @@ -39,7 +39,7 @@ }, { "cell_type": "markdown", - "id": "1be946c9", + "id": "047a209f", "metadata": {}, "source": [ "All pre-trained models expect input images normalized in the same way,\n", @@ -53,7 +53,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a2cc7b85", + "id": "a5d58f1d", "metadata": {}, "outputs": [], "source": [ @@ -67,7 +67,7 @@ { "cell_type": "code", "execution_count": null, - "id": "46f1c52b", + "id": "dead0b79", "metadata": {}, "outputs": [], "source": [ @@ -99,7 +99,7 @@ }, { "cell_type": "markdown", - "id": "b597bf8a", + "id": "f9fac4b3", "metadata": {}, "source": [ "### Model Description\n", diff --git a/assets/hub/facebookresearch_pytorch-gan-zoo_dcgan.ipynb b/assets/hub/facebookresearch_pytorch-gan-zoo_dcgan.ipynb index 373b9f403c34..227dfecaefb3 100644 --- a/assets/hub/facebookresearch_pytorch-gan-zoo_dcgan.ipynb +++ b/assets/hub/facebookresearch_pytorch-gan-zoo_dcgan.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "eb6ab35a", + "id": "7876bcf2", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -22,7 +22,7 @@ { "cell_type": "code", "execution_count": null, - "id": "69a21a14", + "id": "c13b03dd", "metadata": {}, "outputs": [], "source": [ @@ -34,7 +34,7 @@ }, { "cell_type": "markdown", - "id": "ec84b9cd", + "id": "15f8d6ce", "metadata": {}, "source": [ "The input to the model is a noise vector of shape `(N, 120)` where `N` is the number of images to be generated.\n", @@ -45,7 +45,7 @@ { "cell_type": "code", "execution_count": null, - "id": "33e4b4ca", + "id": "7f0dc223", "metadata": {}, "outputs": [], "source": [ @@ -63,7 +63,7 @@ }, { "cell_type": "markdown", - "id": "01fe5ab4", + "id": "dc33614e", "metadata": {}, "source": [ "You should see an image similar to the one on the left.\n", diff --git a/assets/hub/facebookresearch_pytorch-gan-zoo_pgan.ipynb b/assets/hub/facebookresearch_pytorch-gan-zoo_pgan.ipynb index abece3bf99a7..3dcb30f3be38 100644 --- a/assets/hub/facebookresearch_pytorch-gan-zoo_pgan.ipynb +++ b/assets/hub/facebookresearch_pytorch-gan-zoo_pgan.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "4f6f6eee", + "id": "0288a894", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -24,7 +24,7 @@ { "cell_type": "code", "execution_count": null, - "id": "902dd745", + "id": "bbb7654f", "metadata": {}, "outputs": [], "source": [ @@ -44,7 +44,7 @@ }, { "cell_type": "markdown", - "id": "51481d60", + "id": "4a1157ab", "metadata": {}, "source": [ "The input to the model is a noise vector of shape `(N, 512)` where `N` is the number of images to be generated.\n", @@ -55,7 +55,7 @@ { "cell_type": "code", "execution_count": null, - "id": "de9b54ff", + "id": "cdacbf60", "metadata": {}, "outputs": [], "source": [ @@ -74,7 +74,7 @@ }, { "cell_type": "markdown", - "id": "e3401543", + "id": "1005f373", "metadata": {}, "source": [ "You should see an image similar to the one on the left.\n", diff --git a/assets/hub/facebookresearch_pytorchvideo_resnet.ipynb b/assets/hub/facebookresearch_pytorchvideo_resnet.ipynb index c41f48941890..6cf5c4db107f 100644 --- a/assets/hub/facebookresearch_pytorchvideo_resnet.ipynb +++ b/assets/hub/facebookresearch_pytorchvideo_resnet.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "c6e3e109", + "id": "00619deb", "metadata": {}, "source": [ "# 3D ResNet\n", @@ -22,7 +22,7 @@ { "cell_type": "code", "execution_count": null, - "id": "35df0999", + "id": "d595788b", "metadata": {}, "outputs": [], "source": [ @@ -33,7 +33,7 @@ }, { "cell_type": "markdown", - "id": "565c3dd7", + "id": "102a8d2a", "metadata": {}, "source": [ "Import remaining functions:" @@ -42,7 +42,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b4a5ff33", + "id": "ba23ffd1", "metadata": {}, "outputs": [], "source": [ @@ -64,7 +64,7 @@ }, { "cell_type": "markdown", - "id": "71b77d71", + "id": "4a60936e", "metadata": {}, "source": [ "#### Setup\n", @@ -75,7 +75,7 @@ { "cell_type": "code", "execution_count": null, - "id": "d61f1edb", + "id": "92a7855b", "metadata": { "attributes": { "classes": [ @@ -94,7 +94,7 @@ }, { "cell_type": "markdown", - "id": "3eb1ebd5", + "id": "44c93646", "metadata": {}, "source": [ "Download the id to label mapping for the Kinetics 400 dataset on which the torch hub models were trained. This will be used to get the category label names from the predicted class ids." @@ -103,7 +103,7 @@ { "cell_type": "code", "execution_count": null, - "id": "494f8f29", + "id": "e4849ccb", "metadata": {}, "outputs": [], "source": [ @@ -116,7 +116,7 @@ { "cell_type": "code", "execution_count": null, - "id": "53f8397e", + "id": "b8dde08a", "metadata": {}, "outputs": [], "source": [ @@ -131,7 +131,7 @@ }, { "cell_type": "markdown", - "id": "50b0697f", + "id": "ea6b33f1", "metadata": {}, "source": [ "#### Define input transform" @@ -140,7 +140,7 @@ { "cell_type": "code", "execution_count": null, - "id": "e59baf46", + "id": "71441349", "metadata": {}, "outputs": [], "source": [ @@ -174,7 +174,7 @@ }, { "cell_type": "markdown", - "id": "4a7866fd", + "id": "ce350472", "metadata": {}, "source": [ "#### Run Inference\n", @@ -185,7 +185,7 @@ { "cell_type": "code", "execution_count": null, - "id": "342b6d09", + "id": "d74d9827", "metadata": {}, "outputs": [], "source": [ @@ -197,7 +197,7 @@ }, { "cell_type": "markdown", - "id": "2c98b756", + "id": "2f515992", "metadata": {}, "source": [ "Load the video and transform it to the input format required by the model." @@ -206,7 +206,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a39b1e5e", + "id": "a420c700", "metadata": {}, "outputs": [], "source": [ @@ -231,7 +231,7 @@ }, { "cell_type": "markdown", - "id": "d17b186a", + "id": "fb5970b0", "metadata": {}, "source": [ "#### Get Predictions" @@ -240,7 +240,7 @@ { "cell_type": "code", "execution_count": null, - "id": "df270bdb", + "id": "81c54fe7", "metadata": {}, "outputs": [], "source": [ @@ -259,7 +259,7 @@ }, { "cell_type": "markdown", - "id": "186a7bf1", + "id": "563cb067", "metadata": {}, "source": [ "### Model Description\n", diff --git a/assets/hub/facebookresearch_pytorchvideo_slowfast.ipynb b/assets/hub/facebookresearch_pytorchvideo_slowfast.ipynb index 7a4247619c46..25762f5e9571 100644 --- a/assets/hub/facebookresearch_pytorchvideo_slowfast.ipynb +++ b/assets/hub/facebookresearch_pytorchvideo_slowfast.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "e74405d0", + "id": "f5265f05", "metadata": {}, "source": [ "# SlowFast\n", @@ -22,7 +22,7 @@ { "cell_type": "code", "execution_count": null, - "id": "e89e8bdf", + "id": "84f49515", "metadata": {}, "outputs": [], "source": [ @@ -33,7 +33,7 @@ }, { "cell_type": "markdown", - "id": "d9086dd0", + "id": "6d9ce844", "metadata": {}, "source": [ "Import remaining functions:" @@ -42,7 +42,7 @@ { "cell_type": "code", "execution_count": null, - "id": "f6f1f1e9", + "id": "e6760dcb", "metadata": {}, "outputs": [], "source": [ @@ -65,7 +65,7 @@ }, { "cell_type": "markdown", - "id": "2aab1608", + "id": "70efabae", "metadata": {}, "source": [ "#### Setup\n", @@ -76,7 +76,7 @@ { "cell_type": "code", "execution_count": null, - "id": "e8f2b0b8", + "id": "d0545729", "metadata": { "attributes": { "classes": [ @@ -95,7 +95,7 @@ }, { "cell_type": "markdown", - "id": "4b59e82d", + "id": "633a6ac5", "metadata": {}, "source": [ "Download the id to label mapping for the Kinetics 400 dataset on which the torch hub models were trained. This will be used to get the category label names from the predicted class ids." @@ -104,7 +104,7 @@ { "cell_type": "code", "execution_count": null, - "id": "d5b7fb63", + "id": "11a1b79b", "metadata": {}, "outputs": [], "source": [ @@ -117,7 +117,7 @@ { "cell_type": "code", "execution_count": null, - "id": "c73e5c0c", + "id": "8657850f", "metadata": {}, "outputs": [], "source": [ @@ -132,7 +132,7 @@ }, { "cell_type": "markdown", - "id": "e4c57b33", + "id": "e8eb7c42", "metadata": {}, "source": [ "#### Define input transform" @@ -141,7 +141,7 @@ { "cell_type": "code", "execution_count": null, - "id": "04975b98", + "id": "4f439c50", "metadata": {}, "outputs": [], "source": [ @@ -198,7 +198,7 @@ }, { "cell_type": "markdown", - "id": "d1c84123", + "id": "48608bbf", "metadata": {}, "source": [ "#### Run Inference\n", @@ -209,7 +209,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b9739a5d", + "id": "2069277e", "metadata": {}, "outputs": [], "source": [ @@ -221,7 +221,7 @@ }, { "cell_type": "markdown", - "id": "4119c9c6", + "id": "78b1fdea", "metadata": {}, "source": [ "Load the video and transform it to the input format required by the model." @@ -230,7 +230,7 @@ { "cell_type": "code", "execution_count": null, - "id": "8d3449ce", + "id": "7d188df7", "metadata": {}, "outputs": [], "source": [ @@ -255,7 +255,7 @@ }, { "cell_type": "markdown", - "id": "2efbee16", + "id": "a27b93d8", "metadata": {}, "source": [ "#### Get Predictions" @@ -264,7 +264,7 @@ { "cell_type": "code", "execution_count": null, - "id": "cb294087", + "id": "bc675197", "metadata": {}, "outputs": [], "source": [ @@ -283,7 +283,7 @@ }, { "cell_type": "markdown", - "id": "fd8ba8ee", + "id": "1b31216a", "metadata": {}, "source": [ "### Model Description\n", diff --git a/assets/hub/facebookresearch_pytorchvideo_x3d.ipynb b/assets/hub/facebookresearch_pytorchvideo_x3d.ipynb index a98ebd735e90..8dd5bf754b6c 100644 --- a/assets/hub/facebookresearch_pytorchvideo_x3d.ipynb +++ b/assets/hub/facebookresearch_pytorchvideo_x3d.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "e19d28a0", + "id": "576813ae", "metadata": {}, "source": [ "# X3D\n", @@ -22,7 +22,7 @@ { "cell_type": "code", "execution_count": null, - "id": "c9fa2761", + "id": "259c298f", "metadata": {}, "outputs": [], "source": [ @@ -34,7 +34,7 @@ }, { "cell_type": "markdown", - "id": "dac9e117", + "id": "bf673450", "metadata": {}, "source": [ "Import remaining functions:" @@ -43,7 +43,7 @@ { "cell_type": "code", "execution_count": null, - "id": "f6241353", + "id": "23051509", "metadata": {}, "outputs": [], "source": [ @@ -65,7 +65,7 @@ }, { "cell_type": "markdown", - "id": "e6a2fdac", + "id": "8f2e3a79", "metadata": {}, "source": [ "#### Setup\n", @@ -76,7 +76,7 @@ { "cell_type": "code", "execution_count": null, - "id": "afee2379", + "id": "78337995", "metadata": {}, "outputs": [], "source": [ @@ -88,7 +88,7 @@ }, { "cell_type": "markdown", - "id": "05cb6e66", + "id": "4f55500f", "metadata": {}, "source": [ "Download the id to label mapping for the Kinetics 400 dataset on which the torch hub models were trained. This will be used to get the category label names from the predicted class ids." @@ -97,7 +97,7 @@ { "cell_type": "code", "execution_count": null, - "id": "5eae5cf3", + "id": "edeed9df", "metadata": {}, "outputs": [], "source": [ @@ -110,7 +110,7 @@ { "cell_type": "code", "execution_count": null, - "id": "cbf69d49", + "id": "0593cc20", "metadata": {}, "outputs": [], "source": [ @@ -125,7 +125,7 @@ }, { "cell_type": "markdown", - "id": "25361693", + "id": "92bb9c5f", "metadata": {}, "source": [ "#### Define input transform" @@ -134,7 +134,7 @@ { "cell_type": "code", "execution_count": null, - "id": "6afab030", + "id": "e8031608", "metadata": {}, "outputs": [], "source": [ @@ -187,7 +187,7 @@ }, { "cell_type": "markdown", - "id": "079f69ae", + "id": "320da8f0", "metadata": {}, "source": [ "#### Run Inference\n", @@ -198,7 +198,7 @@ { "cell_type": "code", "execution_count": null, - "id": "1e0e11e3", + "id": "f0da4568", "metadata": {}, "outputs": [], "source": [ @@ -210,7 +210,7 @@ }, { "cell_type": "markdown", - "id": "7e121db9", + "id": "792f057e", "metadata": {}, "source": [ "Load the video and transform it to the input format required by the model." @@ -219,7 +219,7 @@ { "cell_type": "code", "execution_count": null, - "id": "0f23b088", + "id": "f42cc905", "metadata": {}, "outputs": [], "source": [ @@ -244,7 +244,7 @@ }, { "cell_type": "markdown", - "id": "11193277", + "id": "e4feab1d", "metadata": {}, "source": [ "#### Get Predictions" @@ -253,7 +253,7 @@ { "cell_type": "code", "execution_count": null, - "id": "decdc9ca", + "id": "dd707356", "metadata": {}, "outputs": [], "source": [ @@ -272,7 +272,7 @@ }, { "cell_type": "markdown", - "id": "08b07033", + "id": "2bb38b1b", "metadata": {}, "source": [ "### Model Description\n", diff --git a/assets/hub/facebookresearch_semi-supervised-ImageNet1K-models_resnext.ipynb b/assets/hub/facebookresearch_semi-supervised-ImageNet1K-models_resnext.ipynb index 19e3a24dc09d..34f7d11451a1 100644 --- a/assets/hub/facebookresearch_semi-supervised-ImageNet1K-models_resnext.ipynb +++ b/assets/hub/facebookresearch_semi-supervised-ImageNet1K-models_resnext.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "2bd415fd", + "id": "066e7b52", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -22,7 +22,7 @@ { "cell_type": "code", "execution_count": null, - "id": "6db71247", + "id": "73f3121b", "metadata": {}, "outputs": [], "source": [ @@ -47,7 +47,7 @@ }, { "cell_type": "markdown", - "id": "27049554", + "id": "f106ffda", "metadata": {}, "source": [ "All pre-trained models expect input images normalized in the same way,\n", @@ -61,7 +61,7 @@ { "cell_type": "code", "execution_count": null, - "id": "800e4183", + "id": "a3356bdb", "metadata": {}, "outputs": [], "source": [ @@ -75,7 +75,7 @@ { "cell_type": "code", "execution_count": null, - "id": "7fc07bb7", + "id": "f1ced582", "metadata": {}, "outputs": [], "source": [ @@ -107,7 +107,7 @@ }, { "cell_type": "markdown", - "id": "0a4f2406", + "id": "c599ed7f", "metadata": {}, "source": [ "### Model Description\n", @@ -144,7 +144,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ede96ff1", + "id": "25ceb02a", "metadata": {}, "outputs": [], "source": [ diff --git a/assets/hub/huggingface_pytorch-transformers.ipynb b/assets/hub/huggingface_pytorch-transformers.ipynb index c009b087d336..35373e65b60b 100644 --- a/assets/hub/huggingface_pytorch-transformers.ipynb +++ b/assets/hub/huggingface_pytorch-transformers.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "feb9a1a4", + "id": "37965285", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -43,7 +43,7 @@ { "cell_type": "code", "execution_count": null, - "id": "4b9306fb", + "id": "a9571698", "metadata": {}, "outputs": [], "source": [ @@ -53,7 +53,7 @@ }, { "cell_type": "markdown", - "id": "1047ea9b", + "id": "0e963ef8", "metadata": {}, "source": [ "# Usage\n", @@ -86,7 +86,7 @@ { "cell_type": "code", "execution_count": null, - "id": "26876dcb", + "id": "9ab3e8e4", "metadata": { "attributes": { "classes": [ @@ -104,7 +104,7 @@ }, { "cell_type": "markdown", - "id": "d20e1fe7", + "id": "1b0b00fa", "metadata": {}, "source": [ "## Models\n", @@ -115,7 +115,7 @@ { "cell_type": "code", "execution_count": null, - "id": "1c6f8a3d", + "id": "d99a57e2", "metadata": { "attributes": { "classes": [ @@ -138,7 +138,7 @@ }, { "cell_type": "markdown", - "id": "c6974f27", + "id": "0a9e83c9", "metadata": {}, "source": [ "## Models with a language modeling head\n", @@ -149,7 +149,7 @@ { "cell_type": "code", "execution_count": null, - "id": "049aeb77", + "id": "578b75b1", "metadata": { "attributes": { "classes": [ @@ -172,7 +172,7 @@ }, { "cell_type": "markdown", - "id": "0cb29c87", + "id": "b62b4cd8", "metadata": {}, "source": [ "## Models with a sequence classification head\n", @@ -183,7 +183,7 @@ { "cell_type": "code", "execution_count": null, - "id": "bcde8abd", + "id": "fe9fd312", "metadata": { "attributes": { "classes": [ @@ -206,7 +206,7 @@ }, { "cell_type": "markdown", - "id": "43c7d719", + "id": "ee1dbd19", "metadata": {}, "source": [ "## Models with a question answering head\n", @@ -217,7 +217,7 @@ { "cell_type": "code", "execution_count": null, - "id": "5f06db16", + "id": "cf5eeb36", "metadata": { "attributes": { "classes": [ @@ -240,7 +240,7 @@ }, { "cell_type": "markdown", - "id": "986eead4", + "id": "a9d1f66d", "metadata": {}, "source": [ "## Configuration\n", @@ -251,7 +251,7 @@ { "cell_type": "code", "execution_count": null, - "id": "2a1f29c1", + "id": "9b2d9fc6", "metadata": { "attributes": { "classes": [ @@ -282,7 +282,7 @@ }, { "cell_type": "markdown", - "id": "4cefd2c7", + "id": "96d26a0e", "metadata": {}, "source": [ "# Example Usage\n", @@ -295,7 +295,7 @@ { "cell_type": "code", "execution_count": null, - "id": "31bd825e", + "id": "f0282ba1", "metadata": {}, "outputs": [], "source": [ @@ -311,7 +311,7 @@ }, { "cell_type": "markdown", - "id": "cc2d7660", + "id": "ca3c2355", "metadata": {}, "source": [ "## Using `BertModel` to encode the input sentence in a sequence of last layer hidden-states" @@ -320,7 +320,7 @@ { "cell_type": "code", "execution_count": null, - "id": "309c1bfb", + "id": "fada3e9c", "metadata": {}, "outputs": [], "source": [ @@ -339,7 +339,7 @@ }, { "cell_type": "markdown", - "id": "78391617", + "id": "2c85b954", "metadata": {}, "source": [ "## Using `modelForMaskedLM` to predict a masked token with BERT" @@ -348,7 +348,7 @@ { "cell_type": "code", "execution_count": null, - "id": "bcf73823", + "id": "369cbf00", "metadata": {}, "outputs": [], "source": [ @@ -370,7 +370,7 @@ }, { "cell_type": "markdown", - "id": "856c6063", + "id": "6cbf8a17", "metadata": {}, "source": [ "## Using `modelForQuestionAnswering` to do question answering with BERT" @@ -379,7 +379,7 @@ { "cell_type": "code", "execution_count": null, - "id": "0dc9b52c", + "id": "cc88ba35", "metadata": {}, "outputs": [], "source": [ @@ -409,7 +409,7 @@ }, { "cell_type": "markdown", - "id": "e468f5af", + "id": "a163d516", "metadata": {}, "source": [ "## Using `modelForSequenceClassification` to do paraphrase classification with BERT" @@ -418,7 +418,7 @@ { "cell_type": "code", "execution_count": null, - "id": "708fdf05", + "id": "11a8db50", "metadata": {}, "outputs": [], "source": [ diff --git a/assets/hub/hustvl_yolop.ipynb b/assets/hub/hustvl_yolop.ipynb index a055f6124c23..093c85fc96b4 100644 --- a/assets/hub/hustvl_yolop.ipynb +++ b/assets/hub/hustvl_yolop.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "cb19e97a", + "id": "477755f1", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -23,7 +23,7 @@ { "cell_type": "code", "execution_count": null, - "id": "21a92ae1", + "id": "131b5528", "metadata": {}, "outputs": [], "source": [ @@ -33,7 +33,7 @@ }, { "cell_type": "markdown", - "id": "cd23fcdb", + "id": "4699c8a0", "metadata": {}, "source": [ "## YOLOP: You Only Look Once for Panoptic driving Perception\n", @@ -132,7 +132,7 @@ { "cell_type": "code", "execution_count": null, - "id": "42678f69", + "id": "e7b461bb", "metadata": {}, "outputs": [], "source": [ @@ -148,7 +148,7 @@ }, { "cell_type": "markdown", - "id": "728d3643", + "id": "cd43ef31", "metadata": {}, "source": [ "### Citation\n", diff --git a/assets/hub/intelisl_midas_v2.ipynb b/assets/hub/intelisl_midas_v2.ipynb index d0c8cb273ea8..7add3bce0c47 100644 --- a/assets/hub/intelisl_midas_v2.ipynb +++ b/assets/hub/intelisl_midas_v2.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "c157b72c", + "id": "bd9ab2f2", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -32,7 +32,7 @@ { "cell_type": "code", "execution_count": null, - "id": "2d26ee63", + "id": "9330a71f", "metadata": { "attributes": { "classes": [ @@ -48,7 +48,7 @@ }, { "cell_type": "markdown", - "id": "9fc975a6", + "id": "7e6364b8", "metadata": {}, "source": [ "### Example Usage\n", @@ -59,7 +59,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a1e9b69c", + "id": "2eefb6f2", "metadata": {}, "outputs": [], "source": [ @@ -75,7 +75,7 @@ }, { "cell_type": "markdown", - "id": "7af23620", + "id": "12e7f1b3", "metadata": {}, "source": [ "Load a model (see [https://github.com/intel-isl/MiDaS/#Accuracy](https://github.com/intel-isl/MiDaS/#Accuracy) for an overview)" @@ -84,7 +84,7 @@ { "cell_type": "code", "execution_count": null, - "id": "6a7615a7", + "id": "1ab5a484", "metadata": {}, "outputs": [], "source": [ @@ -97,7 +97,7 @@ }, { "cell_type": "markdown", - "id": "e04aab33", + "id": "5832d501", "metadata": {}, "source": [ "Move model to GPU if available" @@ -106,7 +106,7 @@ { "cell_type": "code", "execution_count": null, - "id": "6ec96ca7", + "id": "1b885053", "metadata": {}, "outputs": [], "source": [ @@ -117,7 +117,7 @@ }, { "cell_type": "markdown", - "id": "3f2ff58e", + "id": "2a5972df", "metadata": {}, "source": [ "Load transforms to resize and normalize the image for large or small model" @@ -126,7 +126,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a373d812", + "id": "247f74a8", "metadata": {}, "outputs": [], "source": [ @@ -140,7 +140,7 @@ }, { "cell_type": "markdown", - "id": "fc930c88", + "id": "a8b2f344", "metadata": {}, "source": [ "Load image and apply transforms" @@ -149,7 +149,7 @@ { "cell_type": "code", "execution_count": null, - "id": "18b14e45", + "id": "87257110", "metadata": {}, "outputs": [], "source": [ @@ -161,7 +161,7 @@ }, { "cell_type": "markdown", - "id": "45a75b2d", + "id": "b8043f04", "metadata": {}, "source": [ "Predict and resize to original resolution" @@ -170,7 +170,7 @@ { "cell_type": "code", "execution_count": null, - "id": "e8771d83", + "id": "a6fc05a1", "metadata": {}, "outputs": [], "source": [ @@ -189,7 +189,7 @@ }, { "cell_type": "markdown", - "id": "becc084f", + "id": "2d3d0b97", "metadata": {}, "source": [ "Show result" @@ -198,7 +198,7 @@ { "cell_type": "code", "execution_count": null, - "id": "d64cde3e", + "id": "68d9f090", "metadata": {}, "outputs": [], "source": [ @@ -208,7 +208,7 @@ }, { "cell_type": "markdown", - "id": "fa9500de", + "id": "e15edae4", "metadata": {}, "source": [ "### References\n", @@ -222,7 +222,7 @@ { "cell_type": "code", "execution_count": null, - "id": "961fd18f", + "id": "28f08e21", "metadata": { "attributes": { "classes": [ @@ -244,7 +244,7 @@ { "cell_type": "code", "execution_count": null, - "id": "96344668", + "id": "d90e9990", "metadata": { "attributes": { "classes": [ diff --git a/assets/hub/mateuszbuda_brain-segmentation-pytorch_unet.ipynb b/assets/hub/mateuszbuda_brain-segmentation-pytorch_unet.ipynb index ad0e25556013..e3357f74af93 100644 --- a/assets/hub/mateuszbuda_brain-segmentation-pytorch_unet.ipynb +++ b/assets/hub/mateuszbuda_brain-segmentation-pytorch_unet.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "4d8401aa", + "id": "36854897", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -22,7 +22,7 @@ { "cell_type": "code", "execution_count": null, - "id": "e3805838", + "id": "adc84183", "metadata": {}, "outputs": [], "source": [ @@ -33,7 +33,7 @@ }, { "cell_type": "markdown", - "id": "27a6f447", + "id": "4f4eedad", "metadata": {}, "source": [ "Loads a U-Net model pre-trained for abnormality segmentation on a dataset of brain MRI volumes [kaggle.com/mateuszbuda/lgg-mri-segmentation](https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation)\n", @@ -57,7 +57,7 @@ { "cell_type": "code", "execution_count": null, - "id": "92e2721e", + "id": "c0b5d491", "metadata": {}, "outputs": [], "source": [ @@ -71,7 +71,7 @@ { "cell_type": "code", "execution_count": null, - "id": "92ec8e4f", + "id": "80fe56cd", "metadata": {}, "outputs": [], "source": [ @@ -100,7 +100,7 @@ }, { "cell_type": "markdown", - "id": "568b174e", + "id": "703f2552", "metadata": {}, "source": [ "### References\n", diff --git a/assets/hub/nicolalandro_ntsnet-cub200_ntsnet.ipynb b/assets/hub/nicolalandro_ntsnet-cub200_ntsnet.ipynb index 7a829611014d..e6b834a8bb62 100644 --- a/assets/hub/nicolalandro_ntsnet-cub200_ntsnet.ipynb +++ b/assets/hub/nicolalandro_ntsnet-cub200_ntsnet.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "7ff24817", + "id": "80d0fa2b", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -22,7 +22,7 @@ { "cell_type": "code", "execution_count": null, - "id": "7b480b1e", + "id": "254cd796", "metadata": {}, "outputs": [], "source": [ @@ -33,7 +33,7 @@ }, { "cell_type": "markdown", - "id": "df97dfed", + "id": "c8758251", "metadata": {}, "source": [ "### Example Usage" @@ -42,7 +42,7 @@ { "cell_type": "code", "execution_count": null, - "id": "6fd63b9f", + "id": "f8a4b4c9", "metadata": {}, "outputs": [], "source": [ @@ -78,7 +78,7 @@ }, { "cell_type": "markdown", - "id": "d25ce4ac", + "id": "c397c709", "metadata": {}, "source": [ "### Model Description\n", @@ -91,7 +91,7 @@ { "cell_type": "code", "execution_count": null, - "id": "241f4f8f", + "id": "2f858e49", "metadata": { "attributes": { "classes": [ diff --git a/assets/hub/nvidia_deeplearningexamples_efficientnet.ipynb b/assets/hub/nvidia_deeplearningexamples_efficientnet.ipynb index 53264f190950..a228e9765d2b 100644 --- a/assets/hub/nvidia_deeplearningexamples_efficientnet.ipynb +++ b/assets/hub/nvidia_deeplearningexamples_efficientnet.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "06236c8b", + "id": "16dd12b5", "metadata": {}, "source": [ "### This notebook requires a GPU runtime to run.\n", @@ -42,7 +42,7 @@ { "cell_type": "code", "execution_count": null, - "id": "47684356", + "id": "579f6903", "metadata": {}, "outputs": [], "source": [ @@ -52,7 +52,7 @@ { "cell_type": "code", "execution_count": null, - "id": "054e88c8", + "id": "e54670be", "metadata": {}, "outputs": [], "source": [ @@ -73,7 +73,7 @@ }, { "cell_type": "markdown", - "id": "8eeca6df", + "id": "18ccdf10", "metadata": {}, "source": [ "Load the model pretrained on ImageNet dataset.\n", @@ -93,7 +93,7 @@ { "cell_type": "code", "execution_count": null, - "id": "33d10c55", + "id": "97e36c99", "metadata": {}, "outputs": [], "source": [ @@ -105,7 +105,7 @@ }, { "cell_type": "markdown", - "id": "6a0d43fe", + "id": "7a276050", "metadata": {}, "source": [ "Prepare sample input data." @@ -114,7 +114,7 @@ { "cell_type": "code", "execution_count": null, - "id": "1a31651e", + "id": "4d22e75d", "metadata": {}, "outputs": [], "source": [ @@ -132,7 +132,7 @@ }, { "cell_type": "markdown", - "id": "c333fd59", + "id": "cdeee9c4", "metadata": {}, "source": [ "Run inference. Use `pick_n_best(predictions=output, n=topN)` helper function to pick N most probable hypotheses according to the model." @@ -141,7 +141,7 @@ { "cell_type": "code", "execution_count": null, - "id": "f63e272c", + "id": "bdf0c853", "metadata": {}, "outputs": [], "source": [ @@ -153,7 +153,7 @@ }, { "cell_type": "markdown", - "id": "6f454bf4", + "id": "3252cf2f", "metadata": {}, "source": [ "Display the result." @@ -162,7 +162,7 @@ { "cell_type": "code", "execution_count": null, - "id": "7a1f1090", + "id": "8a69b900", "metadata": {}, "outputs": [], "source": [ @@ -176,7 +176,7 @@ }, { "cell_type": "markdown", - "id": "ccee0adc", + "id": "a8426e40", "metadata": {}, "source": [ "### Details\n", diff --git a/assets/hub/nvidia_deeplearningexamples_fastpitch.ipynb b/assets/hub/nvidia_deeplearningexamples_fastpitch.ipynb index d657eb56bb08..6bde9566629b 100644 --- a/assets/hub/nvidia_deeplearningexamples_fastpitch.ipynb +++ b/assets/hub/nvidia_deeplearningexamples_fastpitch.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "8335cef2", + "id": "35398358", "metadata": {}, "source": [ "### This notebook requires a GPU runtime to run.\n", @@ -51,7 +51,7 @@ { "cell_type": "code", "execution_count": null, - "id": "99b310cd", + "id": "d62e722c", "metadata": {}, "outputs": [], "source": [ @@ -66,7 +66,7 @@ { "cell_type": "code", "execution_count": null, - "id": "2d5bcfb6", + "id": "9ccea2b4", "metadata": {}, "outputs": [], "source": [ @@ -82,7 +82,7 @@ }, { "cell_type": "markdown", - "id": "b331fb57", + "id": "6117141c", "metadata": {}, "source": [ "Download and setup FastPitch generator model." @@ -91,7 +91,7 @@ { "cell_type": "code", "execution_count": null, - "id": "f0f9a48c", + "id": "1178aeaa", "metadata": {}, "outputs": [], "source": [ @@ -100,7 +100,7 @@ }, { "cell_type": "markdown", - "id": "2fedf1d3", + "id": "fed393a2", "metadata": {}, "source": [ "Download and setup vocoder and denoiser models." @@ -109,7 +109,7 @@ { "cell_type": "code", "execution_count": null, - "id": "774f291c", + "id": "10853661", "metadata": {}, "outputs": [], "source": [ @@ -118,7 +118,7 @@ }, { "cell_type": "markdown", - "id": "86ac124c", + "id": "9a21ef3f", "metadata": {}, "source": [ "Verify that generator and vocoder models agree on input parameters." @@ -127,7 +127,7 @@ { "cell_type": "code", "execution_count": null, - "id": "2601ca60", + "id": "7cc0a869", "metadata": {}, "outputs": [], "source": [ @@ -147,7 +147,7 @@ }, { "cell_type": "markdown", - "id": "6298ddfb", + "id": "52e11f95", "metadata": {}, "source": [ "Put all models on available device." @@ -156,7 +156,7 @@ { "cell_type": "code", "execution_count": null, - "id": "2352292b", + "id": "a69596a4", "metadata": {}, "outputs": [], "source": [ @@ -167,7 +167,7 @@ }, { "cell_type": "markdown", - "id": "63676a62", + "id": "be021ea2", "metadata": {}, "source": [ "Load text processor." @@ -176,7 +176,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b794808d", + "id": "98fef381", "metadata": {}, "outputs": [], "source": [ @@ -185,7 +185,7 @@ }, { "cell_type": "markdown", - "id": "7c671847", + "id": "136c21df", "metadata": {}, "source": [ "Set the text to be synthetized, prepare input and set additional generation parameters." @@ -194,7 +194,7 @@ { "cell_type": "code", "execution_count": null, - "id": "9ecd2f4d", + "id": "61f8192d", "metadata": {}, "outputs": [], "source": [ @@ -204,7 +204,7 @@ { "cell_type": "code", "execution_count": null, - "id": "c12420f6", + "id": "c17d1989", "metadata": {}, "outputs": [], "source": [ @@ -214,7 +214,7 @@ { "cell_type": "code", "execution_count": null, - "id": "fa51b9ba", + "id": "8253d94e", "metadata": {}, "outputs": [], "source": [ @@ -228,7 +228,7 @@ { "cell_type": "code", "execution_count": null, - "id": "9415c6b1", + "id": "4d4a1a71", "metadata": {}, "outputs": [], "source": [ @@ -242,7 +242,7 @@ }, { "cell_type": "markdown", - "id": "4e6d7312", + "id": "e6f32706", "metadata": {}, "source": [ "Plot the intermediate spectorgram." @@ -251,7 +251,7 @@ { "cell_type": "code", "execution_count": null, - "id": "970d4994", + "id": "a889b6b3", "metadata": {}, "outputs": [], "source": [ @@ -265,7 +265,7 @@ }, { "cell_type": "markdown", - "id": "ad54977d", + "id": "5edfccfa", "metadata": {}, "source": [ "Syntesize audio." @@ -274,7 +274,7 @@ { "cell_type": "code", "execution_count": null, - "id": "1b9e64fe", + "id": "8c8e1fda", "metadata": {}, "outputs": [], "source": [ @@ -284,7 +284,7 @@ }, { "cell_type": "markdown", - "id": "f4a3cfd4", + "id": "cb917a83", "metadata": {}, "source": [ "Write audio to wav file." @@ -293,7 +293,7 @@ { "cell_type": "code", "execution_count": null, - "id": "7189d7a5", + "id": "a20af121", "metadata": {}, "outputs": [], "source": [ @@ -303,7 +303,7 @@ }, { "cell_type": "markdown", - "id": "7723b2eb", + "id": "35e1c107", "metadata": {}, "source": [ "### Details\n", diff --git a/assets/hub/nvidia_deeplearningexamples_gpunet.ipynb b/assets/hub/nvidia_deeplearningexamples_gpunet.ipynb index 6126b1125513..63603a3d08df 100644 --- a/assets/hub/nvidia_deeplearningexamples_gpunet.ipynb +++ b/assets/hub/nvidia_deeplearningexamples_gpunet.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "51f776e6", + "id": "94c28869", "metadata": {}, "source": [ "### This notebook requires a GPU runtime to run.\n", @@ -34,7 +34,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b6265e7d", + "id": "6a56c86d", "metadata": {}, "outputs": [], "source": [ @@ -45,7 +45,7 @@ { "cell_type": "code", "execution_count": null, - "id": "f58a929c", + "id": "7e5cd61c", "metadata": {}, "outputs": [], "source": [ @@ -73,7 +73,7 @@ }, { "cell_type": "markdown", - "id": "05bafba9", + "id": "82d85a57", "metadata": {}, "source": [ "### Load Pretrained model\n", @@ -97,7 +97,7 @@ { "cell_type": "code", "execution_count": null, - "id": "bec84ee3", + "id": "dbadc515", "metadata": {}, "outputs": [], "source": [ @@ -113,7 +113,7 @@ }, { "cell_type": "markdown", - "id": "dd7c8a91", + "id": "de80ac7e", "metadata": {}, "source": [ "### Prepare inference data\n", @@ -123,7 +123,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ecc48106", + "id": "1d61f625", "metadata": {}, "outputs": [], "source": [ @@ -146,7 +146,7 @@ }, { "cell_type": "markdown", - "id": "1252a354", + "id": "6b536cfa", "metadata": {}, "source": [ "### Run inference\n", @@ -156,7 +156,7 @@ { "cell_type": "code", "execution_count": null, - "id": "5972ad6f", + "id": "c31a78ac", "metadata": {}, "outputs": [], "source": [ @@ -168,7 +168,7 @@ }, { "cell_type": "markdown", - "id": "687f85fa", + "id": "6741336f", "metadata": {}, "source": [ "### Display result" @@ -177,7 +177,7 @@ { "cell_type": "code", "execution_count": null, - "id": "716238dd", + "id": "e405aa9f", "metadata": {}, "outputs": [], "source": [ @@ -191,7 +191,7 @@ }, { "cell_type": "markdown", - "id": "76a61b49", + "id": "4b5c39bb", "metadata": {}, "source": [ "### Details\n", diff --git a/assets/hub/nvidia_deeplearningexamples_hifigan.ipynb b/assets/hub/nvidia_deeplearningexamples_hifigan.ipynb index ea51692dedcb..c383d5a6fe8f 100644 --- a/assets/hub/nvidia_deeplearningexamples_hifigan.ipynb +++ b/assets/hub/nvidia_deeplearningexamples_hifigan.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "4a175da6", + "id": "b7e24248", "metadata": {}, "source": [ "### This notebook requires a GPU runtime to run.\n", @@ -44,7 +44,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a1e63852", + "id": "fe720bfd", "metadata": {}, "outputs": [], "source": [ @@ -59,7 +59,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ac17f8e1", + "id": "bd68badf", "metadata": {}, "outputs": [], "source": [ @@ -75,7 +75,7 @@ }, { "cell_type": "markdown", - "id": "0c58ed30", + "id": "69c9817c", "metadata": {}, "source": [ "Download and setup FastPitch generator model." @@ -84,7 +84,7 @@ { "cell_type": "code", "execution_count": null, - "id": "25ef3004", + "id": "b42fa7c0", "metadata": {}, "outputs": [], "source": [ @@ -93,7 +93,7 @@ }, { "cell_type": "markdown", - "id": "5b2a5481", + "id": "343d174e", "metadata": {}, "source": [ "Download and setup vocoder and denoiser models." @@ -102,7 +102,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a6ae5a69", + "id": "749745de", "metadata": {}, "outputs": [], "source": [ @@ -111,7 +111,7 @@ }, { "cell_type": "markdown", - "id": "228da38c", + "id": "c5f94c55", "metadata": {}, "source": [ "Verify that generator and vocoder models agree on input parameters." @@ -120,7 +120,7 @@ { "cell_type": "code", "execution_count": null, - "id": "11c7a53a", + "id": "26c363bd", "metadata": {}, "outputs": [], "source": [ @@ -140,7 +140,7 @@ }, { "cell_type": "markdown", - "id": "652177b7", + "id": "d3185f09", "metadata": {}, "source": [ "Put all models on available device." @@ -149,7 +149,7 @@ { "cell_type": "code", "execution_count": null, - "id": "e5bb7ebc", + "id": "9d0af800", "metadata": {}, "outputs": [], "source": [ @@ -160,7 +160,7 @@ }, { "cell_type": "markdown", - "id": "c420d0ee", + "id": "95edfb46", "metadata": {}, "source": [ "Load text processor." @@ -169,7 +169,7 @@ { "cell_type": "code", "execution_count": null, - "id": "085aed06", + "id": "3f161fbe", "metadata": {}, "outputs": [], "source": [ @@ -178,7 +178,7 @@ }, { "cell_type": "markdown", - "id": "cbcc85d2", + "id": "94372288", "metadata": {}, "source": [ "Set the text to be synthetized, prepare input and set additional generation parameters." @@ -187,7 +187,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a781eeed", + "id": "2b920e08", "metadata": {}, "outputs": [], "source": [ @@ -197,7 +197,7 @@ { "cell_type": "code", "execution_count": null, - "id": "95570589", + "id": "a6329134", "metadata": {}, "outputs": [], "source": [ @@ -207,7 +207,7 @@ { "cell_type": "code", "execution_count": null, - "id": "bff1d381", + "id": "27d3e565", "metadata": {}, "outputs": [], "source": [ @@ -221,7 +221,7 @@ { "cell_type": "code", "execution_count": null, - "id": "8b40325a", + "id": "fe1f0bb5", "metadata": {}, "outputs": [], "source": [ @@ -235,7 +235,7 @@ }, { "cell_type": "markdown", - "id": "6d3b756e", + "id": "5e6e9027", "metadata": {}, "source": [ "Plot the intermediate spectorgram." @@ -244,7 +244,7 @@ { "cell_type": "code", "execution_count": null, - "id": "4a3888b8", + "id": "e7afd2e8", "metadata": {}, "outputs": [], "source": [ @@ -258,7 +258,7 @@ }, { "cell_type": "markdown", - "id": "eb74472a", + "id": "056a517a", "metadata": {}, "source": [ "Syntesize audio." @@ -267,7 +267,7 @@ { "cell_type": "code", "execution_count": null, - "id": "825b2587", + "id": "0084610f", "metadata": {}, "outputs": [], "source": [ @@ -277,7 +277,7 @@ }, { "cell_type": "markdown", - "id": "bcbad8d7", + "id": "bb4df622", "metadata": {}, "source": [ "Write audio to wav file." @@ -286,7 +286,7 @@ { "cell_type": "code", "execution_count": null, - "id": "3402ccbc", + "id": "d4f72102", "metadata": {}, "outputs": [], "source": [ @@ -296,7 +296,7 @@ }, { "cell_type": "markdown", - "id": "ca8d169d", + "id": "37b219e7", "metadata": {}, "source": [ "### Details\n", diff --git a/assets/hub/nvidia_deeplearningexamples_resnet50.ipynb b/assets/hub/nvidia_deeplearningexamples_resnet50.ipynb index 0c7d42833924..fd7208324fd5 100644 --- a/assets/hub/nvidia_deeplearningexamples_resnet50.ipynb +++ b/assets/hub/nvidia_deeplearningexamples_resnet50.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "2904159f", + "id": "dc10fa2d", "metadata": {}, "source": [ "### This notebook requires a GPU runtime to run.\n", @@ -44,7 +44,7 @@ { "cell_type": "code", "execution_count": null, - "id": "db2d989b", + "id": "4b7e4c74", "metadata": {}, "outputs": [], "source": [ @@ -54,7 +54,7 @@ { "cell_type": "code", "execution_count": null, - "id": "749ad4c2", + "id": "0a38e856", "metadata": {}, "outputs": [], "source": [ @@ -75,7 +75,7 @@ }, { "cell_type": "markdown", - "id": "76ceaf8b", + "id": "dcb057cf", "metadata": {}, "source": [ "Load the model pretrained on ImageNet dataset." @@ -84,7 +84,7 @@ { "cell_type": "code", "execution_count": null, - "id": "5714c3c1", + "id": "3ba613fa", "metadata": {}, "outputs": [], "source": [ @@ -96,7 +96,7 @@ }, { "cell_type": "markdown", - "id": "7ad98d14", + "id": "64d06fce", "metadata": {}, "source": [ "Prepare sample input data." @@ -105,7 +105,7 @@ { "cell_type": "code", "execution_count": null, - "id": "1d5f30bf", + "id": "06f24989", "metadata": {}, "outputs": [], "source": [ @@ -123,7 +123,7 @@ }, { "cell_type": "markdown", - "id": "23547f43", + "id": "99c597ac", "metadata": {}, "source": [ "Run inference. Use `pick_n_best(predictions=output, n=topN)` helper function to pick N most probably hypothesis according to the model." @@ -132,7 +132,7 @@ { "cell_type": "code", "execution_count": null, - "id": "09eee7e5", + "id": "0dc8a1a9", "metadata": {}, "outputs": [], "source": [ @@ -144,7 +144,7 @@ }, { "cell_type": "markdown", - "id": "a8a9b75d", + "id": "5965f6ed", "metadata": {}, "source": [ "Display the result." @@ -153,7 +153,7 @@ { "cell_type": "code", "execution_count": null, - "id": "8641346b", + "id": "b1dea786", "metadata": {}, "outputs": [], "source": [ @@ -167,7 +167,7 @@ }, { "cell_type": "markdown", - "id": "1aab4df2", + "id": "5b83f14b", "metadata": {}, "source": [ "### Details\n", diff --git a/assets/hub/nvidia_deeplearningexamples_resnext.ipynb b/assets/hub/nvidia_deeplearningexamples_resnext.ipynb index 461fbf53aa01..c4b1f0bec70c 100644 --- a/assets/hub/nvidia_deeplearningexamples_resnext.ipynb +++ b/assets/hub/nvidia_deeplearningexamples_resnext.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "1ededb6c", + "id": "e72c9bda", "metadata": {}, "source": [ "### This notebook requires a GPU runtime to run.\n", @@ -53,7 +53,7 @@ { "cell_type": "code", "execution_count": null, - "id": "51aea367", + "id": "a7510258", "metadata": {}, "outputs": [], "source": [ @@ -63,7 +63,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a7a6068a", + "id": "17f9db6f", "metadata": {}, "outputs": [], "source": [ @@ -84,7 +84,7 @@ }, { "cell_type": "markdown", - "id": "214e06ed", + "id": "4926bab0", "metadata": {}, "source": [ "Load the model pretrained on ImageNet dataset." @@ -93,7 +93,7 @@ { "cell_type": "code", "execution_count": null, - "id": "015395b9", + "id": "6a3b38bd", "metadata": {}, "outputs": [], "source": [ @@ -105,7 +105,7 @@ }, { "cell_type": "markdown", - "id": "d51738a3", + "id": "b6ef4884", "metadata": {}, "source": [ "Prepare sample input data." @@ -114,7 +114,7 @@ { "cell_type": "code", "execution_count": null, - "id": "337fa0bc", + "id": "7de2ce79", "metadata": {}, "outputs": [], "source": [ @@ -133,7 +133,7 @@ }, { "cell_type": "markdown", - "id": "108e2242", + "id": "9dab7a61", "metadata": {}, "source": [ "Run inference. Use `pick_n_best(predictions=output, n=topN)` helper function to pick N most probably hypothesis according to the model." @@ -142,7 +142,7 @@ { "cell_type": "code", "execution_count": null, - "id": "8acc61bf", + "id": "ed2224e0", "metadata": {}, "outputs": [], "source": [ @@ -154,7 +154,7 @@ }, { "cell_type": "markdown", - "id": "6cabcb50", + "id": "14ca87c6", "metadata": {}, "source": [ "Display the result." @@ -163,7 +163,7 @@ { "cell_type": "code", "execution_count": null, - "id": "9177ac0f", + "id": "c3a2823b", "metadata": {}, "outputs": [], "source": [ @@ -177,7 +177,7 @@ }, { "cell_type": "markdown", - "id": "425a843e", + "id": "e45813fe", "metadata": {}, "source": [ "### Details\n", diff --git a/assets/hub/nvidia_deeplearningexamples_se-resnext.ipynb b/assets/hub/nvidia_deeplearningexamples_se-resnext.ipynb index 4d9ea90377c2..0736fca96a8c 100644 --- a/assets/hub/nvidia_deeplearningexamples_se-resnext.ipynb +++ b/assets/hub/nvidia_deeplearningexamples_se-resnext.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "7bdab1c5", + "id": "aef46189", "metadata": {}, "source": [ "### This notebook requires a GPU runtime to run.\n", @@ -53,7 +53,7 @@ { "cell_type": "code", "execution_count": null, - "id": "85b54891", + "id": "7b4d66fc", "metadata": {}, "outputs": [], "source": [ @@ -63,7 +63,7 @@ { "cell_type": "code", "execution_count": null, - "id": "dd058a88", + "id": "ad33b836", "metadata": {}, "outputs": [], "source": [ @@ -84,7 +84,7 @@ }, { "cell_type": "markdown", - "id": "abcfcc55", + "id": "84aad8fc", "metadata": {}, "source": [ "Load the model pretrained on ImageNet dataset." @@ -93,7 +93,7 @@ { "cell_type": "code", "execution_count": null, - "id": "f6841514", + "id": "2fdb6af5", "metadata": {}, "outputs": [], "source": [ @@ -105,7 +105,7 @@ }, { "cell_type": "markdown", - "id": "f0f23ebe", + "id": "cdb34ad0", "metadata": {}, "source": [ "Prepare sample input data." @@ -114,7 +114,7 @@ { "cell_type": "code", "execution_count": null, - "id": "7669db84", + "id": "da929c1d", "metadata": {}, "outputs": [], "source": [ @@ -133,7 +133,7 @@ }, { "cell_type": "markdown", - "id": "1dded722", + "id": "082f27a7", "metadata": {}, "source": [ "Run inference. Use `pick_n_best(predictions=output, n=topN)` helper function to pick N most probable hypotheses according to the model." @@ -142,7 +142,7 @@ { "cell_type": "code", "execution_count": null, - "id": "5bf3fb72", + "id": "0bb62c4c", "metadata": {}, "outputs": [], "source": [ @@ -154,7 +154,7 @@ }, { "cell_type": "markdown", - "id": "ff01b742", + "id": "b60137fc", "metadata": {}, "source": [ "Display the result." @@ -163,7 +163,7 @@ { "cell_type": "code", "execution_count": null, - "id": "045b1371", + "id": "d02b1810", "metadata": {}, "outputs": [], "source": [ @@ -177,7 +177,7 @@ }, { "cell_type": "markdown", - "id": "40629204", + "id": "741f6dd4", "metadata": {}, "source": [ "### Details\n", diff --git a/assets/hub/nvidia_deeplearningexamples_ssd.ipynb b/assets/hub/nvidia_deeplearningexamples_ssd.ipynb index 669a05963e08..cd5c71ff6687 100644 --- a/assets/hub/nvidia_deeplearningexamples_ssd.ipynb +++ b/assets/hub/nvidia_deeplearningexamples_ssd.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "00fc29ac", + "id": "a7fd2953", "metadata": {}, "source": [ "### This notebook requires a GPU runtime to run.\n", @@ -56,7 +56,7 @@ { "cell_type": "code", "execution_count": null, - "id": "216fd60c", + "id": "310e0f77", "metadata": {}, "outputs": [], "source": [ @@ -66,7 +66,7 @@ }, { "cell_type": "markdown", - "id": "e3598938", + "id": "393309f2", "metadata": {}, "source": [ "Load an SSD model pretrained on COCO dataset, as well as a set of utility methods for convenient and comprehensive formatting of input and output of the model." @@ -75,7 +75,7 @@ { "cell_type": "code", "execution_count": null, - "id": "5d01faeb", + "id": "411f2e80", "metadata": {}, "outputs": [], "source": [ @@ -86,7 +86,7 @@ }, { "cell_type": "markdown", - "id": "6d4590bb", + "id": "d3d2f691", "metadata": {}, "source": [ "Now, prepare the loaded model for inference" @@ -95,7 +95,7 @@ { "cell_type": "code", "execution_count": null, - "id": "f3cc878d", + "id": "b28ad4a9", "metadata": {}, "outputs": [], "source": [ @@ -105,7 +105,7 @@ }, { "cell_type": "markdown", - "id": "4e211633", + "id": "0e9187a6", "metadata": {}, "source": [ "Prepare input images for object detection.\n", @@ -115,7 +115,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b5520438", + "id": "722223e7", "metadata": {}, "outputs": [], "source": [ @@ -128,7 +128,7 @@ }, { "cell_type": "markdown", - "id": "952427fe", + "id": "d8d0c93f", "metadata": {}, "source": [ "Format the images to comply with the network input and convert them to tensor." @@ -137,7 +137,7 @@ { "cell_type": "code", "execution_count": null, - "id": "11a99b99", + "id": "00f422fb", "metadata": {}, "outputs": [], "source": [ @@ -147,7 +147,7 @@ }, { "cell_type": "markdown", - "id": "f3d89308", + "id": "dfe4b433", "metadata": {}, "source": [ "Run the SSD network to perform object detection." @@ -156,7 +156,7 @@ { "cell_type": "code", "execution_count": null, - "id": "9489953f", + "id": "5e358933", "metadata": {}, "outputs": [], "source": [ @@ -166,7 +166,7 @@ }, { "cell_type": "markdown", - "id": "62d5b47b", + "id": "e4c6c76b", "metadata": {}, "source": [ "By default, raw output from SSD network per input image contains\n", @@ -177,7 +177,7 @@ { "cell_type": "code", "execution_count": null, - "id": "897ec8f1", + "id": "6f2d74a6", "metadata": {}, "outputs": [], "source": [ @@ -187,7 +187,7 @@ }, { "cell_type": "markdown", - "id": "5649c506", + "id": "c5af6c78", "metadata": {}, "source": [ "The model was trained on COCO dataset, which we need to access in order to translate class IDs into object names.\n", @@ -197,7 +197,7 @@ { "cell_type": "code", "execution_count": null, - "id": "33096f43", + "id": "05aba236", "metadata": {}, "outputs": [], "source": [ @@ -206,7 +206,7 @@ }, { "cell_type": "markdown", - "id": "324c5a71", + "id": "85c5a626", "metadata": {}, "source": [ "Finally, let's visualize our detections" @@ -215,7 +215,7 @@ { "cell_type": "code", "execution_count": null, - "id": "5b12929b", + "id": "de00fb67", "metadata": {}, "outputs": [], "source": [ @@ -240,7 +240,7 @@ }, { "cell_type": "markdown", - "id": "96276363", + "id": "358e1ae2", "metadata": {}, "source": [ "### Details\n", diff --git a/assets/hub/nvidia_deeplearningexamples_tacotron2.ipynb b/assets/hub/nvidia_deeplearningexamples_tacotron2.ipynb index b922dbc7a436..4fffc9591ab0 100644 --- a/assets/hub/nvidia_deeplearningexamples_tacotron2.ipynb +++ b/assets/hub/nvidia_deeplearningexamples_tacotron2.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "1d2a5fd6", + "id": "e0e3d3c4", "metadata": {}, "source": [ "### This notebook requires a GPU runtime to run.\n", @@ -41,7 +41,7 @@ { "cell_type": "code", "execution_count": null, - "id": "c8e99b9c", + "id": "f041e30b", "metadata": {}, "outputs": [], "source": [ @@ -53,7 +53,7 @@ }, { "cell_type": "markdown", - "id": "767c188d", + "id": "9c3811b8", "metadata": {}, "source": [ "Load the Tacotron2 model pre-trained on [LJ Speech dataset](https://keithito.com/LJ-Speech-Dataset/) and prepare it for inference:" @@ -62,7 +62,7 @@ { "cell_type": "code", "execution_count": null, - "id": "13d5b887", + "id": "1882fd02", "metadata": {}, "outputs": [], "source": [ @@ -74,7 +74,7 @@ }, { "cell_type": "markdown", - "id": "b58c0c88", + "id": "b983374e", "metadata": {}, "source": [ "Load pretrained WaveGlow model" @@ -83,7 +83,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a5451a54", + "id": "1f2d1c60", "metadata": {}, "outputs": [], "source": [ @@ -95,7 +95,7 @@ }, { "cell_type": "markdown", - "id": "7eba6377", + "id": "7cbddd69", "metadata": {}, "source": [ "Now, let's make the model say:" @@ -104,7 +104,7 @@ { "cell_type": "code", "execution_count": null, - "id": "e4b76dc5", + "id": "0aff3bf8", "metadata": {}, "outputs": [], "source": [ @@ -113,7 +113,7 @@ }, { "cell_type": "markdown", - "id": "2c6bed8a", + "id": "fc8b5e40", "metadata": {}, "source": [ "Format the input using utility methods" @@ -122,7 +122,7 @@ { "cell_type": "code", "execution_count": null, - "id": "e838d14d", + "id": "2473c538", "metadata": {}, "outputs": [], "source": [ @@ -132,7 +132,7 @@ }, { "cell_type": "markdown", - "id": "63801402", + "id": "f7e694c7", "metadata": {}, "source": [ "Run the chained models:" @@ -141,7 +141,7 @@ { "cell_type": "code", "execution_count": null, - "id": "19b611fa", + "id": "874ecd1e", "metadata": {}, "outputs": [], "source": [ @@ -154,7 +154,7 @@ }, { "cell_type": "markdown", - "id": "77262942", + "id": "f80ca3ec", "metadata": {}, "source": [ "You can write it to a file and listen to it" @@ -163,7 +163,7 @@ { "cell_type": "code", "execution_count": null, - "id": "3eb8e532", + "id": "b6cfedfb", "metadata": {}, "outputs": [], "source": [ @@ -173,7 +173,7 @@ }, { "cell_type": "markdown", - "id": "a2592a3b", + "id": "4e0c3d14", "metadata": {}, "source": [ "Alternatively, play it right away in a notebook with IPython widgets" @@ -182,7 +182,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b22c7a44", + "id": "cac99f65", "metadata": {}, "outputs": [], "source": [ @@ -192,7 +192,7 @@ }, { "cell_type": "markdown", - "id": "0fea6073", + "id": "e4e7d656", "metadata": {}, "source": [ "### Details\n", diff --git a/assets/hub/nvidia_deeplearningexamples_waveglow.ipynb b/assets/hub/nvidia_deeplearningexamples_waveglow.ipynb index 11533bee3866..bafefc93a500 100644 --- a/assets/hub/nvidia_deeplearningexamples_waveglow.ipynb +++ b/assets/hub/nvidia_deeplearningexamples_waveglow.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "c2e68cca", + "id": "4737738d", "metadata": {}, "source": [ "### This notebook requires a GPU runtime to run.\n", @@ -39,7 +39,7 @@ { "cell_type": "code", "execution_count": null, - "id": "762e0c43", + "id": "16144d7f", "metadata": {}, "outputs": [], "source": [ @@ -51,7 +51,7 @@ }, { "cell_type": "markdown", - "id": "c38795ea", + "id": "9058df91", "metadata": {}, "source": [ "Load the WaveGlow model pre-trained on [LJ Speech dataset](https://keithito.com/LJ-Speech-Dataset/)" @@ -60,7 +60,7 @@ { "cell_type": "code", "execution_count": null, - "id": "d860aa0e", + "id": "cfb19ffe", "metadata": {}, "outputs": [], "source": [ @@ -70,7 +70,7 @@ }, { "cell_type": "markdown", - "id": "83d10fab", + "id": "4161c0ad", "metadata": {}, "source": [ "Prepare the WaveGlow model for inference" @@ -79,7 +79,7 @@ { "cell_type": "code", "execution_count": null, - "id": "20b47dd6", + "id": "7bc84f49", "metadata": {}, "outputs": [], "source": [ @@ -90,7 +90,7 @@ }, { "cell_type": "markdown", - "id": "a091647e", + "id": "4d8154f0", "metadata": {}, "source": [ "Load a pretrained Tacotron2 model" @@ -99,7 +99,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a342ba38", + "id": "45b294a9", "metadata": {}, "outputs": [], "source": [ @@ -110,7 +110,7 @@ }, { "cell_type": "markdown", - "id": "98c82f9d", + "id": "0e97546e", "metadata": {}, "source": [ "Now, let's make the model say:" @@ -119,7 +119,7 @@ { "cell_type": "code", "execution_count": null, - "id": "589d76ba", + "id": "e72c24e6", "metadata": {}, "outputs": [], "source": [ @@ -128,7 +128,7 @@ }, { "cell_type": "markdown", - "id": "db5e0026", + "id": "bd2667fd", "metadata": {}, "source": [ "Format the input using utility methods" @@ -137,7 +137,7 @@ { "cell_type": "code", "execution_count": null, - "id": "1f74382e", + "id": "b1b8d5ad", "metadata": {}, "outputs": [], "source": [ @@ -147,7 +147,7 @@ }, { "cell_type": "markdown", - "id": "2f5b4896", + "id": "303943c1", "metadata": {}, "source": [ "Run the chained models" @@ -156,7 +156,7 @@ { "cell_type": "code", "execution_count": null, - "id": "7be3aca9", + "id": "2615435e", "metadata": {}, "outputs": [], "source": [ @@ -169,7 +169,7 @@ }, { "cell_type": "markdown", - "id": "ad8869e1", + "id": "c270bfc3", "metadata": {}, "source": [ "You can write it to a file and listen to it" @@ -178,7 +178,7 @@ { "cell_type": "code", "execution_count": null, - "id": "15a0c6d0", + "id": "26825978", "metadata": {}, "outputs": [], "source": [ @@ -188,7 +188,7 @@ }, { "cell_type": "markdown", - "id": "c1771622", + "id": "14484a89", "metadata": {}, "source": [ "Alternatively, play it right away in a notebook with IPython widgets" @@ -197,7 +197,7 @@ { "cell_type": "code", "execution_count": null, - "id": "51e1dcd7", + "id": "4cc5f8f8", "metadata": {}, "outputs": [], "source": [ @@ -207,7 +207,7 @@ }, { "cell_type": "markdown", - "id": "4cfb5ba4", + "id": "427cf6bf", "metadata": {}, "source": [ "### Details\n", diff --git a/assets/hub/pytorch_fairseq_roberta.ipynb b/assets/hub/pytorch_fairseq_roberta.ipynb index 196068448cee..7ae7b041e31e 100644 --- a/assets/hub/pytorch_fairseq_roberta.ipynb +++ b/assets/hub/pytorch_fairseq_roberta.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "31ad7aa7", + "id": "94a60a92", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -43,7 +43,7 @@ { "cell_type": "code", "execution_count": null, - "id": "121498f6", + "id": "862010ad", "metadata": {}, "outputs": [], "source": [ @@ -53,7 +53,7 @@ }, { "cell_type": "markdown", - "id": "d425fe97", + "id": "3aee90ba", "metadata": {}, "source": [ "### Example\n", @@ -64,7 +64,7 @@ { "cell_type": "code", "execution_count": null, - "id": "454e72ca", + "id": "d17bf5e4", "metadata": {}, "outputs": [], "source": [ @@ -75,7 +75,7 @@ }, { "cell_type": "markdown", - "id": "360318ab", + "id": "b3dd17f8", "metadata": {}, "source": [ "##### Apply Byte-Pair Encoding (BPE) to input text" @@ -84,7 +84,7 @@ { "cell_type": "code", "execution_count": null, - "id": "5d179e52", + "id": "21c10e8a", "metadata": {}, "outputs": [], "source": [ @@ -95,7 +95,7 @@ }, { "cell_type": "markdown", - "id": "6b8994a9", + "id": "75dd8336", "metadata": {}, "source": [ "##### Extract features from RoBERTa" @@ -104,7 +104,7 @@ { "cell_type": "code", "execution_count": null, - "id": "d57b6500", + "id": "53830c5b", "metadata": {}, "outputs": [], "source": [ @@ -120,7 +120,7 @@ }, { "cell_type": "markdown", - "id": "85168502", + "id": "22d492d5", "metadata": {}, "source": [ "##### Use RoBERTa for sentence-pair classification tasks" @@ -129,7 +129,7 @@ { "cell_type": "code", "execution_count": null, - "id": "9a220ccb", + "id": "bccc692e", "metadata": {}, "outputs": [], "source": [ @@ -151,7 +151,7 @@ }, { "cell_type": "markdown", - "id": "f6f34c54", + "id": "3fc1a321", "metadata": {}, "source": [ "##### Register a new (randomly initialized) classification head" @@ -160,7 +160,7 @@ { "cell_type": "code", "execution_count": null, - "id": "fda20e6e", + "id": "338f0cce", "metadata": {}, "outputs": [], "source": [ @@ -170,7 +170,7 @@ }, { "cell_type": "markdown", - "id": "4190649b", + "id": "e2d53b85", "metadata": {}, "source": [ "### References\n", diff --git a/assets/hub/pytorch_fairseq_translation.ipynb b/assets/hub/pytorch_fairseq_translation.ipynb index 62a04e2d49df..12fc64602aaf 100644 --- a/assets/hub/pytorch_fairseq_translation.ipynb +++ b/assets/hub/pytorch_fairseq_translation.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "03a70c24", + "id": "a0ef562f", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -37,7 +37,7 @@ { "cell_type": "code", "execution_count": null, - "id": "20bcbe45", + "id": "11769181", "metadata": {}, "outputs": [], "source": [ @@ -47,7 +47,7 @@ }, { "cell_type": "markdown", - "id": "10a36215", + "id": "d8d3f273", "metadata": {}, "source": [ "### English-to-French Translation\n", @@ -59,7 +59,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ce42e2ad", + "id": "8c417e7d", "metadata": {}, "outputs": [], "source": [ @@ -101,7 +101,7 @@ }, { "cell_type": "markdown", - "id": "8409f70a", + "id": "8479dcc8", "metadata": {}, "source": [ "### English-to-German Translation\n", @@ -123,7 +123,7 @@ { "cell_type": "code", "execution_count": null, - "id": "70c5ad1a", + "id": "9da22e93", "metadata": {}, "outputs": [], "source": [ @@ -142,7 +142,7 @@ }, { "cell_type": "markdown", - "id": "f625ff49", + "id": "36b4666a", "metadata": {}, "source": [ "We can also do a round-trip translation to create a paraphrase:" @@ -151,7 +151,7 @@ { "cell_type": "code", "execution_count": null, - "id": "49c2eb96", + "id": "bf89c380", "metadata": {}, "outputs": [], "source": [ @@ -172,7 +172,7 @@ }, { "cell_type": "markdown", - "id": "a85bc1a5", + "id": "bcb08298", "metadata": {}, "source": [ "### References\n", diff --git a/assets/hub/pytorch_vision_alexnet.ipynb b/assets/hub/pytorch_vision_alexnet.ipynb index 36f035736f7e..f4c622962c42 100644 --- a/assets/hub/pytorch_vision_alexnet.ipynb +++ b/assets/hub/pytorch_vision_alexnet.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "16626dc1", + "id": "3c885dd5", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -24,7 +24,7 @@ { "cell_type": "code", "execution_count": null, - "id": "95d8ebe4", + "id": "36e46ac5", "metadata": {}, "outputs": [], "source": [ @@ -35,7 +35,7 @@ }, { "cell_type": "markdown", - "id": "c2953f18", + "id": "abf97661", "metadata": {}, "source": [ "All pre-trained models expect input images normalized in the same way,\n", @@ -49,7 +49,7 @@ { "cell_type": "code", "execution_count": null, - "id": "308fc9cb", + "id": "65d9054a", "metadata": {}, "outputs": [], "source": [ @@ -63,7 +63,7 @@ { "cell_type": "code", "execution_count": null, - "id": "682c4582", + "id": "e624f28d", "metadata": {}, "outputs": [], "source": [ @@ -97,7 +97,7 @@ { "cell_type": "code", "execution_count": null, - "id": "163b43f5", + "id": "e2a34643", "metadata": {}, "outputs": [], "source": [ @@ -108,7 +108,7 @@ { "cell_type": "code", "execution_count": null, - "id": "d5883fd0", + "id": "617e0700", "metadata": {}, "outputs": [], "source": [ @@ -123,7 +123,7 @@ }, { "cell_type": "markdown", - "id": "449f01a3", + "id": "c21ae5c4", "metadata": {}, "source": [ "### Model Description\n", diff --git a/assets/hub/pytorch_vision_deeplabv3_resnet101.ipynb b/assets/hub/pytorch_vision_deeplabv3_resnet101.ipynb index 633e2c71cd2b..91144ad0f438 100644 --- a/assets/hub/pytorch_vision_deeplabv3_resnet101.ipynb +++ b/assets/hub/pytorch_vision_deeplabv3_resnet101.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "acd9bbb8", + "id": "091cbcb7", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -24,7 +24,7 @@ { "cell_type": "code", "execution_count": null, - "id": "74540f95", + "id": "ce0f1a10", "metadata": {}, "outputs": [], "source": [ @@ -38,7 +38,7 @@ }, { "cell_type": "markdown", - "id": "3faa89a5", + "id": "64e97cbc", "metadata": {}, "source": [ "All pre-trained models expect input images normalized in the same way,\n", @@ -54,7 +54,7 @@ { "cell_type": "code", "execution_count": null, - "id": "fc820f6a", + "id": "4401a5ee", "metadata": {}, "outputs": [], "source": [ @@ -68,7 +68,7 @@ { "cell_type": "code", "execution_count": null, - "id": "d5a87afa", + "id": "92a05765", "metadata": {}, "outputs": [], "source": [ @@ -97,7 +97,7 @@ }, { "cell_type": "markdown", - "id": "ab84a767", + "id": "35151109", "metadata": {}, "source": [ "The output here is of shape `(21, H, W)`, and at each location, there are unnormalized probabilities corresponding to the prediction of each class.\n", @@ -109,7 +109,7 @@ { "cell_type": "code", "execution_count": null, - "id": "c59aae4b", + "id": "83d14a8a", "metadata": {}, "outputs": [], "source": [ @@ -129,7 +129,7 @@ }, { "cell_type": "markdown", - "id": "13df020f", + "id": "a60195d1", "metadata": {}, "source": [ "### Model Description\n", diff --git a/assets/hub/pytorch_vision_densenet.ipynb b/assets/hub/pytorch_vision_densenet.ipynb index 818a9867b715..48c3160bd82e 100644 --- a/assets/hub/pytorch_vision_densenet.ipynb +++ b/assets/hub/pytorch_vision_densenet.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "0f8e983f", + "id": "76708fd0", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -24,7 +24,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ac57fe2c", + "id": "cf3fe541", "metadata": {}, "outputs": [], "source": [ @@ -39,7 +39,7 @@ }, { "cell_type": "markdown", - "id": "3a13e61a", + "id": "dcc580e7", "metadata": {}, "source": [ "All pre-trained models expect input images normalized in the same way,\n", @@ -53,7 +53,7 @@ { "cell_type": "code", "execution_count": null, - "id": "7796387d", + "id": "8512c10f", "metadata": {}, "outputs": [], "source": [ @@ -67,7 +67,7 @@ { "cell_type": "code", "execution_count": null, - "id": "5c75871f", + "id": "2ba264fe", "metadata": {}, "outputs": [], "source": [ @@ -101,7 +101,7 @@ { "cell_type": "code", "execution_count": null, - "id": "6ccdd13c", + "id": "2df44bc5", "metadata": {}, "outputs": [], "source": [ @@ -112,7 +112,7 @@ { "cell_type": "code", "execution_count": null, - "id": "5ced19d3", + "id": "8e45515e", "metadata": {}, "outputs": [], "source": [ @@ -127,7 +127,7 @@ }, { "cell_type": "markdown", - "id": "225e1c26", + "id": "06de3acb", "metadata": {}, "source": [ "### Model Description\n", diff --git a/assets/hub/pytorch_vision_fcn_resnet101.ipynb b/assets/hub/pytorch_vision_fcn_resnet101.ipynb index 23cd72afec3a..019df15255b9 100644 --- a/assets/hub/pytorch_vision_fcn_resnet101.ipynb +++ b/assets/hub/pytorch_vision_fcn_resnet101.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "65c8d9c9", + "id": "ef2032c1", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -24,7 +24,7 @@ { "cell_type": "code", "execution_count": null, - "id": "3ba547ac", + "id": "6b86c3e5", "metadata": {}, "outputs": [], "source": [ @@ -37,7 +37,7 @@ }, { "cell_type": "markdown", - "id": "5b7fde87", + "id": "0a5de13c", "metadata": {}, "source": [ "All pre-trained models expect input images normalized in the same way,\n", @@ -53,7 +53,7 @@ { "cell_type": "code", "execution_count": null, - "id": "1853b36e", + "id": "3e479d46", "metadata": {}, "outputs": [], "source": [ @@ -67,7 +67,7 @@ { "cell_type": "code", "execution_count": null, - "id": "4b80c169", + "id": "d7e777d9", "metadata": {}, "outputs": [], "source": [ @@ -96,7 +96,7 @@ }, { "cell_type": "markdown", - "id": "7436a26c", + "id": "901192f4", "metadata": {}, "source": [ "The output here is of shape `(21, H, W)`, and at each location, there are unnormalized probabilities corresponding to the prediction of each class.\n", @@ -108,7 +108,7 @@ { "cell_type": "code", "execution_count": null, - "id": "7cd0b22c", + "id": "5773dc62", "metadata": {}, "outputs": [], "source": [ @@ -128,7 +128,7 @@ }, { "cell_type": "markdown", - "id": "9e77c06f", + "id": "c7a9fb19", "metadata": {}, "source": [ "### Model Description\n", diff --git a/assets/hub/pytorch_vision_ghostnet.ipynb b/assets/hub/pytorch_vision_ghostnet.ipynb index 9acaf46345e3..d43d92ce3b10 100644 --- a/assets/hub/pytorch_vision_ghostnet.ipynb +++ b/assets/hub/pytorch_vision_ghostnet.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "161def7a", + "id": "a295a3ca", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -22,7 +22,7 @@ { "cell_type": "code", "execution_count": null, - "id": "17689f73", + "id": "8b08a9ba", "metadata": {}, "outputs": [], "source": [ @@ -33,7 +33,7 @@ }, { "cell_type": "markdown", - "id": "ee748fa7", + "id": "090c64d8", "metadata": {}, "source": [ "All pre-trained models expect input images normalized in the same way,\n", @@ -47,7 +47,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ec8611d2", + "id": "dc642178", "metadata": {}, "outputs": [], "source": [ @@ -61,7 +61,7 @@ { "cell_type": "code", "execution_count": null, - "id": "2f1d5893", + "id": "581701ff", "metadata": {}, "outputs": [], "source": [ @@ -95,7 +95,7 @@ { "cell_type": "code", "execution_count": null, - "id": "bb1dba4d", + "id": "3cb0ee89", "metadata": {}, "outputs": [], "source": [ @@ -106,7 +106,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ebf31050", + "id": "ef7e4a50", "metadata": {}, "outputs": [], "source": [ @@ -121,7 +121,7 @@ }, { "cell_type": "markdown", - "id": "c29b10c6", + "id": "fb9a2922", "metadata": {}, "source": [ "### Model Description\n", diff --git a/assets/hub/pytorch_vision_googlenet.ipynb b/assets/hub/pytorch_vision_googlenet.ipynb index 8b23f90001ca..f2624747e375 100644 --- a/assets/hub/pytorch_vision_googlenet.ipynb +++ b/assets/hub/pytorch_vision_googlenet.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "f1a7b60a", + "id": "265124d8", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -24,7 +24,7 @@ { "cell_type": "code", "execution_count": null, - "id": "02901d68", + "id": "0814b75a", "metadata": {}, "outputs": [], "source": [ @@ -35,7 +35,7 @@ }, { "cell_type": "markdown", - "id": "efb92e8a", + "id": "1800f10c", "metadata": {}, "source": [ "All pre-trained models expect input images normalized in the same way,\n", @@ -49,7 +49,7 @@ { "cell_type": "code", "execution_count": null, - "id": "c620d5b5", + "id": "a64461f1", "metadata": {}, "outputs": [], "source": [ @@ -63,7 +63,7 @@ { "cell_type": "code", "execution_count": null, - "id": "918dd743", + "id": "730ca989", "metadata": {}, "outputs": [], "source": [ @@ -97,7 +97,7 @@ { "cell_type": "code", "execution_count": null, - "id": "5b376b6c", + "id": "18e3d059", "metadata": {}, "outputs": [], "source": [ @@ -108,7 +108,7 @@ { "cell_type": "code", "execution_count": null, - "id": "7fad7b71", + "id": "182cbdbc", "metadata": {}, "outputs": [], "source": [ @@ -123,7 +123,7 @@ }, { "cell_type": "markdown", - "id": "6f2ef850", + "id": "c383b4bf", "metadata": {}, "source": [ "### Model Description\n", diff --git a/assets/hub/pytorch_vision_hardnet.ipynb b/assets/hub/pytorch_vision_hardnet.ipynb index 6424d5154b15..6cd8a709f1e7 100644 --- a/assets/hub/pytorch_vision_hardnet.ipynb +++ b/assets/hub/pytorch_vision_hardnet.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "6a281ce0", + "id": "38cc7d97", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -24,7 +24,7 @@ { "cell_type": "code", "execution_count": null, - "id": "907b9af6", + "id": "9cc02677", "metadata": {}, "outputs": [], "source": [ @@ -39,7 +39,7 @@ }, { "cell_type": "markdown", - "id": "9af0f110", + "id": "479bc5da", "metadata": {}, "source": [ "All pre-trained models expect input images normalized in the same way,\n", @@ -53,7 +53,7 @@ { "cell_type": "code", "execution_count": null, - "id": "3fa2cf0e", + "id": "b636068c", "metadata": {}, "outputs": [], "source": [ @@ -67,7 +67,7 @@ { "cell_type": "code", "execution_count": null, - "id": "44b7eeb5", + "id": "2d962bfc", "metadata": {}, "outputs": [], "source": [ @@ -101,7 +101,7 @@ { "cell_type": "code", "execution_count": null, - "id": "3799c18e", + "id": "bf29afeb", "metadata": {}, "outputs": [], "source": [ @@ -112,7 +112,7 @@ { "cell_type": "code", "execution_count": null, - "id": "e5f4b725", + "id": "d117ce33", "metadata": {}, "outputs": [], "source": [ @@ -127,7 +127,7 @@ }, { "cell_type": "markdown", - "id": "abf47544", + "id": "906f320d", "metadata": {}, "source": [ "### Model Description\n", diff --git a/assets/hub/pytorch_vision_ibnnet.ipynb b/assets/hub/pytorch_vision_ibnnet.ipynb index 382524a87a4d..8b5d86fa25f8 100644 --- a/assets/hub/pytorch_vision_ibnnet.ipynb +++ b/assets/hub/pytorch_vision_ibnnet.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "4f13635a", + "id": "60422909", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -22,7 +22,7 @@ { "cell_type": "code", "execution_count": null, - "id": "56a4dcb3", + "id": "066eedcc", "metadata": {}, "outputs": [], "source": [ @@ -33,7 +33,7 @@ }, { "cell_type": "markdown", - "id": "c398f0ba", + "id": "a57b711a", "metadata": {}, "source": [ "All pre-trained models expect input images normalized in the same way,\n", @@ -47,7 +47,7 @@ { "cell_type": "code", "execution_count": null, - "id": "fd070cbd", + "id": "e8b72a02", "metadata": {}, "outputs": [], "source": [ @@ -61,7 +61,7 @@ { "cell_type": "code", "execution_count": null, - "id": "2d54e05b", + "id": "98283199", "metadata": {}, "outputs": [], "source": [ @@ -95,7 +95,7 @@ { "cell_type": "code", "execution_count": null, - "id": "cd7ea50b", + "id": "cb6ff6a8", "metadata": {}, "outputs": [], "source": [ @@ -106,7 +106,7 @@ { "cell_type": "code", "execution_count": null, - "id": "75345899", + "id": "897b2490", "metadata": {}, "outputs": [], "source": [ @@ -121,7 +121,7 @@ }, { "cell_type": "markdown", - "id": "326578b9", + "id": "84cd3475", "metadata": {}, "source": [ "### Model Description\n", diff --git a/assets/hub/pytorch_vision_inception_v3.ipynb b/assets/hub/pytorch_vision_inception_v3.ipynb index 92c99f2af61f..715ee584fb8e 100644 --- a/assets/hub/pytorch_vision_inception_v3.ipynb +++ b/assets/hub/pytorch_vision_inception_v3.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "f2c74b7c", + "id": "dc51d9d5", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -22,7 +22,7 @@ { "cell_type": "code", "execution_count": null, - "id": "84dbf1bd", + "id": "4df2a343", "metadata": {}, "outputs": [], "source": [ @@ -33,7 +33,7 @@ }, { "cell_type": "markdown", - "id": "a6388089", + "id": "85dc5701", "metadata": {}, "source": [ "All pre-trained models expect input images normalized in the same way,\n", @@ -47,7 +47,7 @@ { "cell_type": "code", "execution_count": null, - "id": "69feb11a", + "id": "9bca7a4a", "metadata": {}, "outputs": [], "source": [ @@ -61,7 +61,7 @@ { "cell_type": "code", "execution_count": null, - "id": "2c57f09c", + "id": "1be3ccb3", "metadata": {}, "outputs": [], "source": [ @@ -95,7 +95,7 @@ { "cell_type": "code", "execution_count": null, - "id": "9877fa26", + "id": "c084cb06", "metadata": {}, "outputs": [], "source": [ @@ -106,7 +106,7 @@ { "cell_type": "code", "execution_count": null, - "id": "435fd085", + "id": "df58bd8b", "metadata": {}, "outputs": [], "source": [ @@ -121,7 +121,7 @@ }, { "cell_type": "markdown", - "id": "a6a360d3", + "id": "925cc221", "metadata": {}, "source": [ "### Model Description\n", diff --git a/assets/hub/pytorch_vision_meal_v2.ipynb b/assets/hub/pytorch_vision_meal_v2.ipynb index b6ced128e15e..dc69aa6646ac 100644 --- a/assets/hub/pytorch_vision_meal_v2.ipynb +++ b/assets/hub/pytorch_vision_meal_v2.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "78518d9d", + "id": "69e7c335", "metadata": {}, "source": [ "### This notebook requires a GPU runtime to run.\n", @@ -27,7 +27,7 @@ { "cell_type": "code", "execution_count": null, - "id": "db36ecf4", + "id": "478cec56", "metadata": {}, "outputs": [], "source": [ @@ -38,7 +38,7 @@ { "cell_type": "code", "execution_count": null, - "id": "4647ee28", + "id": "144635e0", "metadata": {}, "outputs": [], "source": [ @@ -51,7 +51,7 @@ }, { "cell_type": "markdown", - "id": "667b27b2", + "id": "379d9d7f", "metadata": {}, "source": [ "All pre-trained models expect input images normalized in the same way,\n", @@ -65,7 +65,7 @@ { "cell_type": "code", "execution_count": null, - "id": "58111d27", + "id": "331e41b6", "metadata": {}, "outputs": [], "source": [ @@ -79,7 +79,7 @@ { "cell_type": "code", "execution_count": null, - "id": "edb71391", + "id": "8434e911", "metadata": {}, "outputs": [], "source": [ @@ -113,7 +113,7 @@ { "cell_type": "code", "execution_count": null, - "id": "af62952b", + "id": "726b8b7b", "metadata": {}, "outputs": [], "source": [ @@ -124,7 +124,7 @@ { "cell_type": "code", "execution_count": null, - "id": "f5eeb7f8", + "id": "dc36f79f", "metadata": {}, "outputs": [], "source": [ @@ -139,7 +139,7 @@ }, { "cell_type": "markdown", - "id": "05b99954", + "id": "f2a96be3", "metadata": {}, "source": [ "### Model Description\n", @@ -167,7 +167,7 @@ { "cell_type": "code", "execution_count": null, - "id": "9b70eb90", + "id": "58b0bd08", "metadata": {}, "outputs": [], "source": [ @@ -181,7 +181,7 @@ }, { "cell_type": "markdown", - "id": "99f86567", + "id": "85824670", "metadata": {}, "source": [ "@inproceedings{shen2019MEAL,\n", diff --git a/assets/hub/pytorch_vision_mobilenet_v2.ipynb b/assets/hub/pytorch_vision_mobilenet_v2.ipynb index 802303469a2a..1ea6f0f67d17 100644 --- a/assets/hub/pytorch_vision_mobilenet_v2.ipynb +++ b/assets/hub/pytorch_vision_mobilenet_v2.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "7953a328", + "id": "26aa9f97", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -24,7 +24,7 @@ { "cell_type": "code", "execution_count": null, - "id": "317ec13f", + "id": "4423fb1f", "metadata": {}, "outputs": [], "source": [ @@ -35,7 +35,7 @@ }, { "cell_type": "markdown", - "id": "ef53f37a", + "id": "d951fc23", "metadata": {}, "source": [ "All pre-trained models expect input images normalized in the same way,\n", @@ -49,7 +49,7 @@ { "cell_type": "code", "execution_count": null, - "id": "4588a23a", + "id": "d6a078f9", "metadata": {}, "outputs": [], "source": [ @@ -63,7 +63,7 @@ { "cell_type": "code", "execution_count": null, - "id": "380ccc04", + "id": "66d7f82b", "metadata": {}, "outputs": [], "source": [ @@ -97,7 +97,7 @@ { "cell_type": "code", "execution_count": null, - "id": "60e2d2cd", + "id": "5cdc2653", "metadata": {}, "outputs": [], "source": [ @@ -108,7 +108,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b1be69f6", + "id": "6d95262c", "metadata": {}, "outputs": [], "source": [ @@ -123,7 +123,7 @@ }, { "cell_type": "markdown", - "id": "61eef719", + "id": "8a13bc6b", "metadata": {}, "source": [ "### Model Description\n", diff --git a/assets/hub/pytorch_vision_once_for_all.ipynb b/assets/hub/pytorch_vision_once_for_all.ipynb index 3b8a36b12698..cb468dcf8164 100644 --- a/assets/hub/pytorch_vision_once_for_all.ipynb +++ b/assets/hub/pytorch_vision_once_for_all.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "9daeccba", + "id": "39d74515", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -29,7 +29,7 @@ { "cell_type": "code", "execution_count": null, - "id": "e2920106", + "id": "915406d2", "metadata": {}, "outputs": [], "source": [ @@ -45,7 +45,7 @@ }, { "cell_type": "markdown", - "id": "fa6bf8c3", + "id": "a6b4baf5", "metadata": {}, "source": [ "| OFA Network | Design Space | Resolution | Width Multiplier | Depth | Expand Ratio | kernel Size | \n", @@ -62,7 +62,7 @@ { "cell_type": "code", "execution_count": null, - "id": "44318a1a", + "id": "1fbb128a", "metadata": {}, "outputs": [], "source": [ @@ -77,7 +77,7 @@ }, { "cell_type": "markdown", - "id": "ab3fae3c", + "id": "fa1c85fa", "metadata": {}, "source": [ "### Get Specialized Architecture" @@ -86,7 +86,7 @@ { "cell_type": "code", "execution_count": null, - "id": "97fe0aac", + "id": "141ce42e", "metadata": {}, "outputs": [], "source": [ @@ -101,7 +101,7 @@ }, { "cell_type": "markdown", - "id": "5c941f15", + "id": "62131db8", "metadata": {}, "source": [ "More models and configurations can be found in [once-for-all/model-zoo](https://github.com/mit-han-lab/once-for-all#evaluate-1)\n", @@ -111,7 +111,7 @@ { "cell_type": "code", "execution_count": null, - "id": "2d577955", + "id": "3e2ce7a1", "metadata": {}, "outputs": [], "source": [ @@ -122,7 +122,7 @@ }, { "cell_type": "markdown", - "id": "f4490eab", + "id": "4c775b82", "metadata": {}, "source": [ "The model's prediction can be evalutaed by" @@ -131,7 +131,7 @@ { "cell_type": "code", "execution_count": null, - "id": "db41275c", + "id": "66ce5d71", "metadata": {}, "outputs": [], "source": [ @@ -173,7 +173,7 @@ }, { "cell_type": "markdown", - "id": "95dbd248", + "id": "e01481b9", "metadata": {}, "source": [ "### Model Description\n", @@ -189,7 +189,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a46493e4", + "id": "2ba18e84", "metadata": {}, "outputs": [], "source": [ diff --git a/assets/hub/pytorch_vision_proxylessnas.ipynb b/assets/hub/pytorch_vision_proxylessnas.ipynb index 5fb18284a6bf..fb3148f49baa 100644 --- a/assets/hub/pytorch_vision_proxylessnas.ipynb +++ b/assets/hub/pytorch_vision_proxylessnas.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "5373c917", + "id": "a391a344", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -22,7 +22,7 @@ { "cell_type": "code", "execution_count": null, - "id": "4e082662", + "id": "99601745", "metadata": {}, "outputs": [], "source": [ @@ -35,7 +35,7 @@ }, { "cell_type": "markdown", - "id": "c3c04d33", + "id": "2325f09c", "metadata": {}, "source": [ "All pre-trained models expect input images normalized in the same way,\n", @@ -49,7 +49,7 @@ { "cell_type": "code", "execution_count": null, - "id": "9e5fc0f1", + "id": "4dae43ad", "metadata": {}, "outputs": [], "source": [ @@ -63,7 +63,7 @@ { "cell_type": "code", "execution_count": null, - "id": "7de307ea", + "id": "5ccf8eaf", "metadata": {}, "outputs": [], "source": [ @@ -97,7 +97,7 @@ { "cell_type": "code", "execution_count": null, - "id": "9815a194", + "id": "e1ea05a3", "metadata": {}, "outputs": [], "source": [ @@ -108,7 +108,7 @@ { "cell_type": "code", "execution_count": null, - "id": "4444854e", + "id": "17f6fe00", "metadata": {}, "outputs": [], "source": [ @@ -123,7 +123,7 @@ }, { "cell_type": "markdown", - "id": "88f51718", + "id": "646e2bfb", "metadata": {}, "source": [ "### Model Description\n", diff --git a/assets/hub/pytorch_vision_resnest.ipynb b/assets/hub/pytorch_vision_resnest.ipynb index 194fc5c96d4a..26f8ecc7eca5 100644 --- a/assets/hub/pytorch_vision_resnest.ipynb +++ b/assets/hub/pytorch_vision_resnest.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "abca1a5a", + "id": "f6ad132d", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -22,7 +22,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a2e95264", + "id": "5941a9cc", "metadata": {}, "outputs": [], "source": [ @@ -36,7 +36,7 @@ }, { "cell_type": "markdown", - "id": "befe843f", + "id": "8463e678", "metadata": {}, "source": [ "All pre-trained models expect input images normalized in the same way,\n", @@ -50,7 +50,7 @@ { "cell_type": "code", "execution_count": null, - "id": "4dcfce53", + "id": "cc3c3c8c", "metadata": {}, "outputs": [], "source": [ @@ -64,7 +64,7 @@ { "cell_type": "code", "execution_count": null, - "id": "5dab18e5", + "id": "2f979882", "metadata": {}, "outputs": [], "source": [ @@ -98,7 +98,7 @@ { "cell_type": "code", "execution_count": null, - "id": "63b96316", + "id": "95be068b", "metadata": {}, "outputs": [], "source": [ @@ -109,7 +109,7 @@ { "cell_type": "code", "execution_count": null, - "id": "eae10c0e", + "id": "5ac52421", "metadata": {}, "outputs": [], "source": [ @@ -124,7 +124,7 @@ }, { "cell_type": "markdown", - "id": "5a3e8db4", + "id": "e9ac388e", "metadata": {}, "source": [ "### Model Description\n", diff --git a/assets/hub/pytorch_vision_resnet.ipynb b/assets/hub/pytorch_vision_resnet.ipynb index 4a19f442667e..36629aad573c 100644 --- a/assets/hub/pytorch_vision_resnet.ipynb +++ b/assets/hub/pytorch_vision_resnet.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "d8087c15", + "id": "1c0aaf86", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -22,7 +22,7 @@ { "cell_type": "code", "execution_count": null, - "id": "41a2a36a", + "id": "bc98d2fd", "metadata": {}, "outputs": [], "source": [ @@ -38,7 +38,7 @@ }, { "cell_type": "markdown", - "id": "92097d39", + "id": "80a2cf64", "metadata": {}, "source": [ "All pre-trained models expect input images normalized in the same way,\n", @@ -52,7 +52,7 @@ { "cell_type": "code", "execution_count": null, - "id": "c14501e7", + "id": "79ced132", "metadata": {}, "outputs": [], "source": [ @@ -66,7 +66,7 @@ { "cell_type": "code", "execution_count": null, - "id": "9028552b", + "id": "94b15881", "metadata": {}, "outputs": [], "source": [ @@ -100,7 +100,7 @@ { "cell_type": "code", "execution_count": null, - "id": "67497b46", + "id": "fbecef47", "metadata": {}, "outputs": [], "source": [ @@ -111,7 +111,7 @@ { "cell_type": "code", "execution_count": null, - "id": "29fa3c75", + "id": "f0271a30", "metadata": {}, "outputs": [], "source": [ @@ -126,7 +126,7 @@ }, { "cell_type": "markdown", - "id": "49085582", + "id": "3647fd75", "metadata": {}, "source": [ "### Model Description\n", diff --git a/assets/hub/pytorch_vision_resnext.ipynb b/assets/hub/pytorch_vision_resnext.ipynb index 7987db9b398a..bbed5e9bc0c5 100644 --- a/assets/hub/pytorch_vision_resnext.ipynb +++ b/assets/hub/pytorch_vision_resnext.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "35e27b7b", + "id": "24d91fcc", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -22,7 +22,7 @@ { "cell_type": "code", "execution_count": null, - "id": "1a2a41b3", + "id": "d0214938", "metadata": {}, "outputs": [], "source": [ @@ -35,7 +35,7 @@ }, { "cell_type": "markdown", - "id": "01946ced", + "id": "628cd867", "metadata": {}, "source": [ "All pre-trained models expect input images normalized in the same way,\n", @@ -49,7 +49,7 @@ { "cell_type": "code", "execution_count": null, - "id": "cac096b4", + "id": "d3d0cc3c", "metadata": {}, "outputs": [], "source": [ @@ -63,7 +63,7 @@ { "cell_type": "code", "execution_count": null, - "id": "40d0f659", + "id": "d693cdf1", "metadata": {}, "outputs": [], "source": [ @@ -97,7 +97,7 @@ { "cell_type": "code", "execution_count": null, - "id": "55a9a1d8", + "id": "4060cee4", "metadata": {}, "outputs": [], "source": [ @@ -108,7 +108,7 @@ { "cell_type": "code", "execution_count": null, - "id": "f3866e62", + "id": "27a812c9", "metadata": {}, "outputs": [], "source": [ @@ -125,7 +125,7 @@ }, { "cell_type": "markdown", - "id": "040ccd09", + "id": "18460454", "metadata": {}, "source": [ "### Model Description\n", diff --git a/assets/hub/pytorch_vision_shufflenet_v2.ipynb b/assets/hub/pytorch_vision_shufflenet_v2.ipynb index 2d2beca20add..5e25f34a6b66 100644 --- a/assets/hub/pytorch_vision_shufflenet_v2.ipynb +++ b/assets/hub/pytorch_vision_shufflenet_v2.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "95ff55c3", + "id": "2a7af770", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -24,7 +24,7 @@ { "cell_type": "code", "execution_count": null, - "id": "fc271b95", + "id": "b0c9c160", "metadata": {}, "outputs": [], "source": [ @@ -35,7 +35,7 @@ }, { "cell_type": "markdown", - "id": "22e21ca4", + "id": "670d3296", "metadata": {}, "source": [ "All pre-trained models expect input images normalized in the same way,\n", @@ -49,7 +49,7 @@ { "cell_type": "code", "execution_count": null, - "id": "fbce3848", + "id": "acb2705f", "metadata": {}, "outputs": [], "source": [ @@ -63,7 +63,7 @@ { "cell_type": "code", "execution_count": null, - "id": "59c8d3fb", + "id": "dfb380fe", "metadata": {}, "outputs": [], "source": [ @@ -97,7 +97,7 @@ { "cell_type": "code", "execution_count": null, - "id": "7c543e92", + "id": "da43c9ac", "metadata": {}, "outputs": [], "source": [ @@ -108,7 +108,7 @@ { "cell_type": "code", "execution_count": null, - "id": "7e173469", + "id": "bef76571", "metadata": {}, "outputs": [], "source": [ @@ -123,7 +123,7 @@ }, { "cell_type": "markdown", - "id": "5e5ccceb", + "id": "3ebbabcd", "metadata": {}, "source": [ "### Model Description\n", diff --git a/assets/hub/pytorch_vision_snnmlp.ipynb b/assets/hub/pytorch_vision_snnmlp.ipynb index 9601cc96206a..2e98cdfb5f81 100644 --- a/assets/hub/pytorch_vision_snnmlp.ipynb +++ b/assets/hub/pytorch_vision_snnmlp.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "87c35091", + "id": "26001b9c", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -22,7 +22,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a9dc31a1", + "id": "8aefcce7", "metadata": {}, "outputs": [], "source": [ @@ -37,7 +37,7 @@ }, { "cell_type": "markdown", - "id": "33554d77", + "id": "6e3587dc", "metadata": {}, "source": [ "All pre-trained models expect input images normalized in the same way,\n", @@ -51,7 +51,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ddc30dfe", + "id": "05c10bb6", "metadata": {}, "outputs": [], "source": [ @@ -65,7 +65,7 @@ { "cell_type": "code", "execution_count": null, - "id": "c51f09db", + "id": "c548b9d3", "metadata": {}, "outputs": [], "source": [ @@ -97,7 +97,7 @@ }, { "cell_type": "markdown", - "id": "10f333eb", + "id": "61afa7bd", "metadata": {}, "source": [ "### Model Description\n", @@ -121,7 +121,7 @@ { "cell_type": "code", "execution_count": null, - "id": "288c4bed", + "id": "b070a0d3", "metadata": {}, "outputs": [], "source": [ diff --git a/assets/hub/pytorch_vision_squeezenet.ipynb b/assets/hub/pytorch_vision_squeezenet.ipynb index 1f3178a8d53b..8eeee053cea2 100644 --- a/assets/hub/pytorch_vision_squeezenet.ipynb +++ b/assets/hub/pytorch_vision_squeezenet.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "990b17b6", + "id": "e3cf10c0", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -22,7 +22,7 @@ { "cell_type": "code", "execution_count": null, - "id": "6eec995d", + "id": "6b0f04f5", "metadata": {}, "outputs": [], "source": [ @@ -35,7 +35,7 @@ }, { "cell_type": "markdown", - "id": "ef7589d3", + "id": "14301e0d", "metadata": {}, "source": [ "All pre-trained models expect input images normalized in the same way,\n", @@ -49,7 +49,7 @@ { "cell_type": "code", "execution_count": null, - "id": "d455b779", + "id": "bd13e568", "metadata": {}, "outputs": [], "source": [ @@ -63,7 +63,7 @@ { "cell_type": "code", "execution_count": null, - "id": "d382dc58", + "id": "18675fde", "metadata": {}, "outputs": [], "source": [ @@ -97,7 +97,7 @@ { "cell_type": "code", "execution_count": null, - "id": "1172d23b", + "id": "d4329710", "metadata": {}, "outputs": [], "source": [ @@ -108,7 +108,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a19b4f86", + "id": "4755ebbf", "metadata": {}, "outputs": [], "source": [ @@ -123,7 +123,7 @@ }, { "cell_type": "markdown", - "id": "cdab898c", + "id": "7b7d6c59", "metadata": {}, "source": [ "### Model Description\n", diff --git a/assets/hub/pytorch_vision_vgg.ipynb b/assets/hub/pytorch_vision_vgg.ipynb index 1f7567aa42a5..94082489f2d8 100644 --- a/assets/hub/pytorch_vision_vgg.ipynb +++ b/assets/hub/pytorch_vision_vgg.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "b7bf779d", + "id": "24dbd7fd", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -22,7 +22,7 @@ { "cell_type": "code", "execution_count": null, - "id": "cf95fa3b", + "id": "0f90b7a9", "metadata": {}, "outputs": [], "source": [ @@ -41,7 +41,7 @@ }, { "cell_type": "markdown", - "id": "a09fce9d", + "id": "94461774", "metadata": {}, "source": [ "All pre-trained models expect input images normalized in the same way,\n", @@ -55,7 +55,7 @@ { "cell_type": "code", "execution_count": null, - "id": "e4cc1824", + "id": "cb9c4d28", "metadata": {}, "outputs": [], "source": [ @@ -69,7 +69,7 @@ { "cell_type": "code", "execution_count": null, - "id": "6d1cf177", + "id": "624987be", "metadata": {}, "outputs": [], "source": [ @@ -103,7 +103,7 @@ { "cell_type": "code", "execution_count": null, - "id": "497e676e", + "id": "3b8897e4", "metadata": {}, "outputs": [], "source": [ @@ -114,7 +114,7 @@ { "cell_type": "code", "execution_count": null, - "id": "14d11348", + "id": "5d69095a", "metadata": {}, "outputs": [], "source": [ @@ -129,7 +129,7 @@ }, { "cell_type": "markdown", - "id": "e61007b6", + "id": "03f74824", "metadata": {}, "source": [ "### Model Description\n", diff --git a/assets/hub/pytorch_vision_wide_resnet.ipynb b/assets/hub/pytorch_vision_wide_resnet.ipynb index 542a219382ab..cf161c963d87 100644 --- a/assets/hub/pytorch_vision_wide_resnet.ipynb +++ b/assets/hub/pytorch_vision_wide_resnet.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "2d21a3e8", + "id": "d366fb24", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -22,7 +22,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ad9c5b1e", + "id": "d1a86f6e", "metadata": {}, "outputs": [], "source": [ @@ -36,7 +36,7 @@ }, { "cell_type": "markdown", - "id": "051c5f23", + "id": "62fc0b0b", "metadata": {}, "source": [ "All pre-trained models expect input images normalized in the same way,\n", @@ -50,7 +50,7 @@ { "cell_type": "code", "execution_count": null, - "id": "7c5780de", + "id": "5edc1040", "metadata": {}, "outputs": [], "source": [ @@ -64,7 +64,7 @@ { "cell_type": "code", "execution_count": null, - "id": "e42019aa", + "id": "a86c792c", "metadata": {}, "outputs": [], "source": [ @@ -98,7 +98,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ff656268", + "id": "f09c00c9", "metadata": {}, "outputs": [], "source": [ @@ -109,7 +109,7 @@ { "cell_type": "code", "execution_count": null, - "id": "d739c287", + "id": "4f257dba", "metadata": {}, "outputs": [], "source": [ @@ -124,7 +124,7 @@ }, { "cell_type": "markdown", - "id": "4c073a20", + "id": "52ade214", "metadata": {}, "source": [ "### Model Description\n", diff --git a/assets/hub/sigsep_open-unmix-pytorch_umx.ipynb b/assets/hub/sigsep_open-unmix-pytorch_umx.ipynb index 110765165d8d..8b4ceede5f16 100644 --- a/assets/hub/sigsep_open-unmix-pytorch_umx.ipynb +++ b/assets/hub/sigsep_open-unmix-pytorch_umx.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "b82b10f0", + "id": "6a1a65cd", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -22,7 +22,7 @@ { "cell_type": "code", "execution_count": null, - "id": "44aa00e6", + "id": "f9790a9b", "metadata": {}, "outputs": [], "source": [ @@ -34,7 +34,7 @@ { "cell_type": "code", "execution_count": null, - "id": "7649dafc", + "id": "47fe7b1f", "metadata": {}, "outputs": [], "source": [ @@ -59,7 +59,7 @@ }, { "cell_type": "markdown", - "id": "12bb0cfc", + "id": "1982e29b", "metadata": {}, "source": [ "### Model Description\n", @@ -94,7 +94,7 @@ { "cell_type": "code", "execution_count": null, - "id": "2ce82f72", + "id": "fb5c980f", "metadata": {}, "outputs": [], "source": [ @@ -104,7 +104,7 @@ }, { "cell_type": "markdown", - "id": "138c8662", + "id": "55c65701", "metadata": {}, "source": [ "### References\n", diff --git a/assets/hub/simplenet.ipynb b/assets/hub/simplenet.ipynb index 3fef62c5553f..892b473529f1 100644 --- a/assets/hub/simplenet.ipynb +++ b/assets/hub/simplenet.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "40c42022", + "id": "b2a471c2", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -22,7 +22,7 @@ { "cell_type": "code", "execution_count": null, - "id": "99af1e5b", + "id": "ad86a684", "metadata": {}, "outputs": [], "source": [ @@ -41,7 +41,7 @@ }, { "cell_type": "markdown", - "id": "fef7ea73", + "id": "d7daf7cb", "metadata": {}, "source": [ "All pre-trained models expect input images normalized in the same way,\n", @@ -55,7 +55,7 @@ { "cell_type": "code", "execution_count": null, - "id": "d8df08b5", + "id": "cc0ab575", "metadata": {}, "outputs": [], "source": [ @@ -69,7 +69,7 @@ { "cell_type": "code", "execution_count": null, - "id": "efd8576d", + "id": "a6a16cfb", "metadata": {}, "outputs": [], "source": [ @@ -103,7 +103,7 @@ { "cell_type": "code", "execution_count": null, - "id": "88d04e45", + "id": "ee1319ea", "metadata": {}, "outputs": [], "source": [ @@ -114,7 +114,7 @@ { "cell_type": "code", "execution_count": null, - "id": "fd2932fd", + "id": "daebb731", "metadata": {}, "outputs": [], "source": [ @@ -129,7 +129,7 @@ }, { "cell_type": "markdown", - "id": "10c955ff", + "id": "c79fc11b", "metadata": {}, "source": [ "### Model Description\n", diff --git a/assets/hub/snakers4_silero-models_stt.ipynb b/assets/hub/snakers4_silero-models_stt.ipynb index c04b82edd7ec..c93ee85be423 100644 --- a/assets/hub/snakers4_silero-models_stt.ipynb +++ b/assets/hub/snakers4_silero-models_stt.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "860cb313", + "id": "eb575053", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -24,7 +24,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ed8ffa2a", + "id": "3a9d262f", "metadata": {}, "outputs": [], "source": [ @@ -36,7 +36,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ed535a3f", + "id": "8dd1d901", "metadata": {}, "outputs": [], "source": [ @@ -69,7 +69,7 @@ }, { "cell_type": "markdown", - "id": "b82b835c", + "id": "50caba0b", "metadata": {}, "source": [ "### Model Description\n", diff --git a/assets/hub/snakers4_silero-models_tts.ipynb b/assets/hub/snakers4_silero-models_tts.ipynb index 685de7507119..5a7178430ac3 100644 --- a/assets/hub/snakers4_silero-models_tts.ipynb +++ b/assets/hub/snakers4_silero-models_tts.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "f0a6d820", + "id": "0db6016b", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -20,7 +20,7 @@ { "cell_type": "code", "execution_count": null, - "id": "223e020b", + "id": "e643ea69", "metadata": {}, "outputs": [], "source": [ @@ -32,7 +32,7 @@ { "cell_type": "code", "execution_count": null, - "id": "1ca8e914", + "id": "1b0fffba", "metadata": {}, "outputs": [], "source": [ @@ -55,7 +55,7 @@ }, { "cell_type": "markdown", - "id": "037a5256", + "id": "d1a169dc", "metadata": {}, "source": [ "### Model Description\n", diff --git a/assets/hub/snakers4_silero-vad_vad.ipynb b/assets/hub/snakers4_silero-vad_vad.ipynb index db0eeb3b2fa5..83ec083b978d 100644 --- a/assets/hub/snakers4_silero-vad_vad.ipynb +++ b/assets/hub/snakers4_silero-vad_vad.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "bb0fd16b", + "id": "a4268e07", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -22,7 +22,7 @@ { "cell_type": "code", "execution_count": null, - "id": "212d3342", + "id": "e073be9d", "metadata": {}, "outputs": [], "source": [ @@ -34,7 +34,7 @@ { "cell_type": "code", "execution_count": null, - "id": "27ef74aa", + "id": "8adf2b00", "metadata": {}, "outputs": [], "source": [ @@ -63,7 +63,7 @@ }, { "cell_type": "markdown", - "id": "965c01c1", + "id": "6963bff7", "metadata": {}, "source": [ "### Model Description\n", diff --git a/assets/hub/ultralytics_yolov5.ipynb b/assets/hub/ultralytics_yolov5.ipynb index 873a64ac9276..fa39fb4d897c 100644 --- a/assets/hub/ultralytics_yolov5.ipynb +++ b/assets/hub/ultralytics_yolov5.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "a0180524", + "id": "1c32e755", "metadata": {}, "source": [ "### This notebook is optionally accelerated with a GPU runtime.\n", @@ -29,7 +29,7 @@ { "cell_type": "code", "execution_count": null, - "id": "99c50335", + "id": "1ef68660", "metadata": {}, "outputs": [], "source": [ @@ -39,7 +39,7 @@ }, { "cell_type": "markdown", - "id": "3209a0a5", + "id": "953b653d", "metadata": {}, "source": [ "## Model Description\n", @@ -82,7 +82,7 @@ { "cell_type": "code", "execution_count": null, - "id": "2c778684", + "id": "c3dd5584", "metadata": {}, "outputs": [], "source": [ @@ -112,7 +112,7 @@ }, { "cell_type": "markdown", - "id": "fc6c1715", + "id": "d328eadf", "metadata": {}, "source": [ "## Citation\n", @@ -125,7 +125,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a4d290d8", + "id": "14ad32c4", "metadata": { "attributes": { "classes": [ @@ -150,7 +150,7 @@ }, { "cell_type": "markdown", - "id": "2845b328", + "id": "9329814d", "metadata": {}, "source": [ "## Contact\n", diff --git a/case_studies/amazon-ads.html b/case_studies/amazon-ads.html index afb1691e229c..19fe8366a880 100644 --- a/case_studies/amazon-ads.html +++ b/case_studies/amazon-ads.html @@ -310,7 +310,7 @@
-

November 07, 2024

+

November 08, 2024

Amazon Ads

diff --git a/case_studies/salesforce.html b/case_studies/salesforce.html index 69fad66d84a4..a05a59689bc1 100644 --- a/case_studies/salesforce.html +++ b/case_studies/salesforce.html @@ -310,7 +310,7 @@
-

November 07, 2024

+

November 08, 2024

Salesforce

diff --git a/case_studies/stanford-university.html b/case_studies/stanford-university.html index 91290664ac78..d45558504037 100644 --- a/case_studies/stanford-university.html +++ b/case_studies/stanford-university.html @@ -310,7 +310,7 @@
-

November 07, 2024

+

November 08, 2024

Stanford University

diff --git a/ecosystem/index.html b/ecosystem/index.html index 159e9edc1121..427989c5b161 100644 --- a/ecosystem/index.html +++ b/ecosystem/index.html @@ -373,13 +373,13 @@

-
+ -
+ -
+ -
+ -
+ - -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+
-
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+
-
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+
diff --git a/feed.xml b/feed.xml index 07674302eaea..8c46ef7d74c2 100644 --- a/feed.xml +++ b/feed.xml @@ -4,7 +4,7 @@ Jekyll - 2024-11-07T12:57:53-08:00 + 2024-11-08T13:27:09-08:00 https://pytorch.org/feed.xml diff --git a/join.html b/join.html index 32f362fd8b47..9468e979abb1 100644 --- a/join.html +++ b/join.html @@ -318,7 +318,7 @@

Join the PyTorch Foundation

-

According to statistics from MIT Sloan, 75% of top executives believe AI will help their organizations grow and gain a competitive edge. Since 2020, there has been a 14X increase in the number of active AI startups, and venture capitalist-funded startups have increased by 6X.  The PwC Global Artificial Intelligence Study indicates that AI has the potential to contribute $15.7 trillion to the global economy by 2030, with 45% of the total economic gains coming from product enhancements that stimulate consumer demand.

+

According to statistics from MIT Sloan, 75% of top executives believe AI will help their organizations grow and gain a competitive edge. Since 2020, there has been a 14X increase in the number of active AI startups, and venture capitalist-funded startups have increased by 6X. The PwC Global Artificial Intelligence Study indicates that AI has the potential to contribute $15.7 trillion to the global economy by 2030, with 45% of the total economic gains coming from product enhancements that stimulate consumer demand.

By joining the PyTorch Foundation, you can help build and shape the future of end-to-end machine learning frameworks alongside your industry peers. PyTorch offers a user-friendly front-end, distributed training, and an ecosystem of tools and libraries that enable fast, flexible experimentation and efficient production.

As a member of the PyTorch Foundation, you'll have access to resources that allow you to be stewards of stable, secure, and long-lasting codebases. You can collaborate on training, local and regional events, open-source developer tooling, academic research, and guides to help new users and contributors have a productive experience.

@@ -417,72 +417,96 @@

Join the Membership that fits your goals

- Hold one (1) seat on PTF Governing Board + one alternate (1) representative + Guaranteed one (1) seat on the PTF Governing Board + Checkmark icon - Appoint one (1) voting representative in any subcommittees or activities of the PTF Governing Board + Guaranteed one (1) voting representative on the PyTorch Technical Advisory Committee (TAC) + Checkmark icon - Enjoy most prominent placement in displays of membership including website, landscape and marketing materials + Guaranteed one (1) voting representative in any other subcommittees of the PTF + Checkmark icon - Receive greater insight into PTF strategy and activities through engagement with the PTF leadership team - Checkmark icon + Enjoy most prominent placement in displays of membership including website, landscape and marketing materials + Checkmark icon + - Opportunity to host “PyTorch Day”, including on-demand webinars and livestream + Add resources to the PyTorch Infrastructure team and get the ability to execute self hosted runners for tests on your own hardware/soc/systems + Checkmark icon + + + + + Receive greater insight into PTF strategy and activities through engagement with the PTF leadership team + Checkmark icon + - Create an individualized amplification plan upon membership announcement with the PTF team + Opportunity to be considered for a PTF Board seat (Premier are guaranteed a seat) + Checkmark icon Checkmark icon - Participate in Marketing, Community, Thought Leadership opportunities + Opportunity to be considered for a PTF TAC seat (Premier are guaranteed a seat) + Checkmark icon Checkmark icon - Receive discounts on PTF event sponsorships and training courses + Create an individualized amplification plan with the PTF team + + Checkmark icon Checkmark icon + + + + Participate in Marketing, Community, and Thought Leadership opportunities + Checkmark icon Checkmark icon + + + + Receive discounts on PTF event sponsorships and training courses + + Checkmark icon + Checkmark icon + Checkmark icon - Demonstrate your support for the PTF by displaying your logo on the PTF website and in marketing materials + Your company logo displayed on the PTF website and in marketing materials + Checkmark icon Checkmark icon Checkmark icon - Internship opportunities  + Opportunity to host PyTorch on-demand webinars and livestreams + Checkmark icon Checkmark icon Checkmark icon - - Opportunity to be considered for a PTF Board position
- (Note that premier members automatically receive a seat on the board) - Checkmark icon - Checkmark icon - Checkmark icon -