diff --git a/.all-contributorsrc b/.all-contributorsrc
index 005022f607..ed984ed15b 100644
--- a/.all-contributorsrc
+++ b/.all-contributorsrc
@@ -692,7 +692,8 @@
"profile": "https://github.com/kratman",
"contributions": [
"doc",
- "infra"
+ "infra",
+ "bug"
]
}
],
diff --git a/.github/release_checklist.md b/.github/release_checklist.md
deleted file mode 100644
index f461d471e0..0000000000
--- a/.github/release_checklist.md
+++ /dev/null
@@ -1,14 +0,0 @@
-- Run `scripts/update_version.py` to
-
- - Increment version number in
- - `pybamm/version.py`
- - `docs/conf.py`
- - `CITATION.cff`
- - `vcpkg.json`
- - `docs/source/_static/versions.json`, and check if any links fail
-
- - Update baseline of registries in `vcpkg-configuration.json` as the latest commit id from [pybamm-team/sundials-vcpkg-registry](https://github.com/pybamm-team/sundials-vcpkg-registry)
- - Update `CHANGELOG.md` with a summary of the release
-
-- Update jax and jaxlib to latest version in `pybamm.util` and fix any bugs that arise
-- If building wheels on Windows gives a `vcpkg` related error - revert the baseline of default-registry to a stable commit in `vcpkg-configuration.json`
diff --git a/.github/release_reminder.md b/.github/release_reminder.md
new file mode 100644
index 0000000000..2515166837
--- /dev/null
+++ b/.github/release_reminder.md
@@ -0,0 +1,9 @@
+---
+title: Create {{ date | date('YY.MM') }} (final or rc0) release
+---
+Quarterly reminder to create a -
+
+1. pre-release if the month has just started.
+2. non-pre-release if the month is about to end (**before the end of the month**).
+
+See [Release Workflow](./release_workflow.md) for more information.
diff --git a/.github/release_workflow.md b/.github/release_workflow.md
new file mode 100644
index 0000000000..04f0667773
--- /dev/null
+++ b/.github/release_workflow.md
@@ -0,0 +1,74 @@
+# Release workflow
+
+This file contains the workflow required to make a `PyBaMM` release on GitHub and PyPI by the maintainers.
+
+## rc0 releases (automated)
+
+1. The `update_version.yml` workflow will run on every 1st of January, May and September, updating incrementing the version to `YY.MMrc0` by running `scripts/update_version.py` in the following files -
+
+ - `pybamm/version.py`
+ - `docs/conf.py`
+ - `CITATION.cff`
+ - `vcpkg.json`
+ - `docs/_static/versions.json`
+ - `CHANGELOG.md`
+
+ These changes will be automatically pushed to a new branch `YY.MM`.
+
+2. Create a new GitHub _pre-release_ with the tag `YY.MMrc0` from the `YY.MM` branch and a description copied from `CHANGELOG.md`.
+
+3. This release will automatically trigger `publish_pypi.yml` and create a _pre-release_ on PyPI.
+
+## rcX releases (manual)
+
+If a new release candidate is required after the release of `rc0` -
+
+1. Fix a bug in `YY.MM` (no new features should be added to `YY.MM` once `rc0` is released) and `develop` individually.
+
+2. Run `update_version.yml` manually while using `append_to_tag` to specify the release candidate version number (`rc1`, `rc2`, ...).
+
+3. This will increment the version to `YY.MMrcX` by running `scripts/update_version.py` in the following files -
+
+ - `pybamm/version.py`
+ - `docs/conf.py`
+ - `CITATION.cff`
+ - `vcpkg.json`
+ - `docs/_static/versions.json`
+ - `CHANGELOG.md`
+
+ These changes will be automatically pushed to the existing branch `YY.MM`.
+
+4. Create a new GitHub _pre-release_ with the same tag (`YY.MMrcX`) from the `YY.MM` branch and a description copied from `CHANGELOG.md`.
+
+5. This release will automatically trigger `publish_pypi.yml` and create a _pre-release_ on PyPI.
+
+## Actual release (manual)
+
+Once satisfied with the release candidates -
+
+1. Run `update_version.yml` manually, leaving the `append_to_tag` field blank ("") for an actual release.
+
+2. This will increment the version to `YY.MMrcX` by running `scripts/update_version.py` in the following files -
+
+ - `pybamm/version.py`
+ - `docs/conf.py`
+ - `CITATION.cff`
+ - `vcpkg.json`
+ - `docs/_static/versions.json`
+ - `CHANGELOG.md`
+
+ These changes will be automatically pushed to the existing branch `YY.MM`.
+
+3. Next, a PR from `YY.MM` to `main` will be generated that should be merged once all the tests pass.
+
+4. Create a new GitHub _release_ with the same tag from the `main` branch and a description copied from `CHANGELOG.md`.
+
+5. This release will automatically trigger `publish_pypi.yml` and create a _release_ on PyPI.
+
+## Other checks
+
+Some other essential things to check throughout the release process -
+
+- If updating our custom vcpkg registory entries [pybamm-team/sundials-vcpkg-registry](https://github.com/pybamm-team/sundials-vcpkg-registry) or [pybamm-team/casadi-vcpkg-registry](https://github.com/pybamm-team/casadi-vcpkg-registry) (used to build Windows wheels), make sure to update the baseline of the registories in vcpkg-configuration.json to the latest commit id.
+- Update jax and jaxlib to the latest version in `pybamm.util` and `setup.py`, fixing any bugs that arise
+- Make sure the URLs in `docs/_static/versions.json` are valid
diff --git a/.github/workflows/create_release.yml b/.github/workflows/create_release.yml
deleted file mode 100644
index 8d029d3bc5..0000000000
--- a/.github/workflows/create_release.yml
+++ /dev/null
@@ -1,50 +0,0 @@
-name: Create GitHub release
-
-on:
- push:
- branches: main
- workflow_dispatch:
-
-jobs:
- create-release:
- # This workflow is only of value to PyBaMM and would always be skipped in forks
- if: github.repository_owner == 'pybamm-team'
- runs-on: ubuntu-latest
- permissions:
- contents: write
- strategy:
- matrix:
- python-version: [3.8]
-
- steps:
- - uses: actions/checkout@v4
-
- - name: Get current date
- run: |
- echo "VERSION=$(date +'v%y.%-m')" >> $GITHUB_ENV
- echo "TODAY=$(date +'%d')" >> $GITHUB_ENV
-
- - name: Fail the job if date < 20
- if: env.TODAY < 20
- uses: actions/github-script@v6
- with:
- script: core.setFailed('This workflow should be triggered only at the end of the month, or else it will create a release for the wrong month.')
-
- - name: Set up Python ${{ matrix.python-version }}
- uses: actions/setup-python@v4
- with:
- python-version: ${{ matrix.python-version }}
-
- - name: Install dependencies
- run: |
- pip install wheel
- pip install --editable .
-
- - name: Get Changelog
- run: python -c "from scripts.update_version import get_changelog; get_changelog()"
-
- - name: Create release
- uses: softprops/action-gh-release@v1
- with:
- tag_name: ${{ env.VERSION }}
- body_path: CHANGELOG.md
diff --git a/.github/workflows/publish_pypi.yml b/.github/workflows/publish_pypi.yml
index 54dd70d5a7..919a00d6ef 100644
--- a/.github/workflows/publish_pypi.yml
+++ b/.github/workflows/publish_pypi.yml
@@ -1,18 +1,18 @@
name: Build and publish package to PyPI
on:
- push:
- branches: main
+ release:
+ types: [published]
workflow_dispatch:
inputs:
target:
description: 'Deployment target. Can be "pypi" or "testpypi"'
default: "pypi"
debug_enabled:
- type: boolean
- description: 'Run the build with tmate debugging enabled (https://github.com/marketplace/actions/debugging-with-tmate)'
- required: false
- default: false
+ type: boolean
+ description: 'Run the build with tmate debugging enabled (https://github.com/marketplace/actions/debugging-with-tmate)'
+ required: false
+ default: false
jobs:
build_windows_wheels:
@@ -130,15 +130,12 @@ jobs:
build_sdist:
name: Build sdist
runs-on: ubuntu-latest
- strategy:
- matrix:
- python-version: [3.8]
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
with:
- python-version: ${{ matrix.python-version }}
+ python-version: 3.8
- name: Install dependencies
run: pip install wheel
diff --git a/.github/workflows/release_reminder.yml b/.github/workflows/release_reminder.yml
new file mode 100644
index 0000000000..204ace0b68
--- /dev/null
+++ b/.github/workflows/release_reminder.yml
@@ -0,0 +1,21 @@
+name: Create a release reminder
+
+on:
+ schedule:
+ # Run at 10 am UTC on days-of-month 1 and 28 in January, May, and September.
+ - cron: "0 10 1,28 1,5,9 *"
+
+permissions:
+ contents: read
+ issues: write
+
+jobs:
+ remind:
+ runs-on: ubuntu-latest
+ steps:
+ - uses: actions/checkout@v3
+ - uses: JasonEtco/create-an-issue@v2
+ env:
+ GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
+ with:
+ filename: .github/release_reminder.md
diff --git a/.github/workflows/update_version.yml b/.github/workflows/update_version.yml
index 7488c40aa2..472de06f0e 100644
--- a/.github/workflows/update_version.yml
+++ b/.github/workflows/update_version.yml
@@ -2,51 +2,73 @@ name: Update version
on:
workflow_dispatch:
+ inputs:
+ append_to_tag:
+ description: 'Leave blank for an actual release or "rc1", "rc2", ..., for release candidates."'
+ default: ""
+ schedule:
+ # Run at 10 am UTC on day-of-month 1 in January, May, and September.
+ - cron: "0 10 1 1,5,9 *"
jobs:
update-version:
# This workflow is only of value to PyBaMM and would always be skipped in forks
if: github.repository_owner == 'pybamm-team'
runs-on: ubuntu-latest
- strategy:
- matrix:
- python-version: [3.8]
steps:
+ - name: Get current date for the first release candidate
+ if: github.event_name == 'schedule'
+ run: |
+ echo "VERSION=$(date +'v%y.%-m')rc0" >> $GITHUB_ENV
+ echo "NON_RC_VERSION=$(date +'v%y.%-m')" >> $GITHUB_ENV
+
+ - name: Get current date for a manual release
+ if: github.event_name == 'workflow_dispatch'
+ run: |
+ echo "VERSION=$(date +'v%y.%-m')${{ github.event.inputs.append_to_tag }}" >> $GITHUB_ENV
+ echo "NON_RC_VERSION=$(date +'v%y.%-m')" >> $GITHUB_ENV
+
+ - uses: actions/checkout@v4
+ if: github.event_name == 'schedule'
+ with:
+ ref: 'develop'
+
- uses: actions/checkout@v4
+ if: github.event_name == 'workflow_dispatch'
+ with:
+ ref: '${{ env.NON_RC_VERSION }}'
- - name: Set up Python ${{ matrix.python-version }}
+ - name: Set up Python
uses: actions/setup-python@v4
with:
- python-version: ${{ matrix.python-version }}
+ python-version: 3.8
- name: Install dependencies
run: |
pip install wheel
- pip install --editable .
-
- - name: Get current date
- run: echo "VERSION=$(date +'v%y.%-m')" >> $GITHUB_ENV
+ pip install --editable ".[all]"
- name: Update version
run: python scripts/update_version.py
- - name: Create Pull Request
- id: version_pr
- uses: peter-evans/create-pull-request@v5
+ - uses: EndBug/add-and-commit@v9
+ if: github.event_name == 'schedule'
with:
- delete-branch: true
- branch-suffix: short-commit-hash
- commit-message: Update version to ${{ env.VERSION }}
- title: Update to ${{ env.VERSION }}
- body: |
- - [x] Update to ${{ env.VERSION }}
- - [ ] Check the [release checklist](https://github.com/pybamm-team/PyBaMM/blob/develop/.github/release_checklist.md)
-
- - name: Make a PR from develop to main
+ message: 'Bump to ${{ env.VERSION }}'
+ new_branch: '${{ env.NON_RC_VERSION }}'
+
+ - uses: EndBug/add-and-commit@v9
+ if: github.event_name == 'workflow_dispatch'
+ with:
+ message: 'Bump to ${{ env.VERSION }}'
+
+ - name: Make a PR from ${{ env.NON_RC_VERSION }} to main
+ if: github.event_name == 'workflow_dispatch' && !startsWith(github.event.inputs.append_to_tag, 'rc')
uses: repo-sync/pull-request@v2
with:
+ source_branch: '${{ env.NON_RC_VERSION }}'
destination_branch: "main"
- pr_title: "Make release ${{ env.VERSION }}"
- pr_body: "**DO NOT MERGE UNTIL #${{ steps.version_pr.outputs.pull-request-number }} IS MERGED.** Make release ${{ env.VERSION }}"
+ pr_title: "Make release ${{ env.NON_RC_VERSION }}"
+ pr_body: "**Check the [release workflow](https://github.com/pybamm-team/PyBaMM/blob/develop/.github/release_workflow.md)**"
github_token: ${{ secrets.GITHUB_TOKEN }}
diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml
index 288f139afa..61a585178b 100644
--- a/.pre-commit-config.yaml
+++ b/.pre-commit-config.yaml
@@ -4,7 +4,7 @@ ci:
repos:
- repo: https://github.com/astral-sh/ruff-pre-commit
- rev: "v0.0.288"
+ rev: "v0.0.290"
hooks:
- id: ruff
args: [--fix, --ignore=E741, --exclude=__init__.py]
diff --git a/CHANGELOG.md b/CHANGELOG.md
index b4f13b48a6..971b248ab7 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -11,6 +11,7 @@
- Fixed a bug that caused incorrect results of “{Domain} electrode thickness change [m]” due to the absence of dimension for the variable `electrode_thickness_change`([#3329](https://github.com/pybamm-team/PyBaMM/pull/3329)).
- Fixed a bug that occured in `check_ys_are_not_too_large` when trying to reference `y-slice` where the referenced variable was not a `pybamm.StateVector` ([#3313](https://github.com/pybamm-team/PyBaMM/pull/3313)
- Fixed a bug with `_Heaviside._evaluate_for_shape` which meant some expressions involving heaviside function and subtractions did not work ([#3306](https://github.com/pybamm-team/PyBaMM/pull/3306))
+- Fixed bug causing incorrect activation energies using `create_from_bpx()` ([#3242](https://github.com/pybamm-team/PyBaMM/pull/3242))
- The `OneDimensionalX` thermal model has been updated to account for edge/tab cooling and account for the current collector volumetric heat capacity. It now gives the correct behaviour compared with a lumped model with the correct total heat transfer coefficient and surface area for cooling. ([#3042](https://github.com/pybamm-team/PyBaMM/pull/3042))
- Fixed a bug where the "basic" lithium-ion models gave incorrect results when using nonlinear particle diffusivity ([#3207](https://github.com/pybamm-team/PyBaMM/pull/3207))
- Particle size distributions now work with SPMe and NewmanTobias models ([#3207](https://github.com/pybamm-team/PyBaMM/pull/3207))
@@ -22,12 +23,15 @@
- Error generated when invalid parameter values are passed ([#3132](https://github.com/pybamm-team/PyBaMM/pull/3132))
- Parameters in `Prada2013` have been updated to better match those given in the paper, which is a 2.3 Ah cell, instead of the mix-and-match with the 1.1 Ah cell from Lain2019 ([#3096](https://github.com/pybamm-team/PyBaMM/pull/3096))
+## Optimizations
+- Improved how steps are processed in simulations to reduce memory usage ([#3261](https://github.com/pybamm-team/PyBaMM/pull/3261))
## Breaking changes
- The class `pybamm.thermal.OneDimensionalX` has been moved to `pybamm.thermal.pouch_cell.OneDimensionalX` to reflect the fact that the model formulation implicitly assumes a pouch cell geometry ([#3257](https://github.com/pybamm-team/PyBaMM/pull/3257))
- The "lumped" thermal option now always used the parameters "Cell cooling surface area [m2]", "Cell volume [m3]" and "Total heat transfer coefficient [W.m-2.K-1]" to compute the cell cooling regardless of the chosen "cell geometry" option. The user must now specify the correct values for these parameters instead of them being calculated based on e.g. a pouch cell. An `OptionWarning` is raised to let users know to update their parameters ([#3257](https://github.com/pybamm-team/PyBaMM/pull/3257))
+- Numpy functions now work with PyBaMM symbols (e.g. `np.exp(pybamm.Symbol("a"))` returns `pybamm.Exp(pybamm.Symbol("a"))`). This means that parameter functions can be specified using numpy functions instead of pybamm functions. Additionally, combining numpy arrays with pybamm objects now works (the numpy array is converted to a pybamm array) ([#3205](https://github.com/pybamm-team/PyBaMM/pull/3205))
- Added option to use an empirical hysteresis model for the diffusivity and exchange-current density ([#3194](https://github.com/pybamm-team/PyBaMM/pull/3194))
- Double-layer capacity can now be provided as a function of temperature ([#3174](https://github.com/pybamm-team/PyBaMM/pull/3174))
- `pybamm_install_jax` is deprecated. It is now replaced with `pip install pybamm[jax]` ([#3163](https://github.com/pybamm-team/PyBaMM/pull/3163))
diff --git a/README.md b/README.md
index 1104c27386..1d92b4c357 100644
--- a/README.md
+++ b/README.md
@@ -14,7 +14,7 @@
[![code style](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/charliermarsh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)
-[![All Contributors](https://img.shields.io/badge/all_contributors-62-orange.svg)](#-contributors)
+[![All Contributors](https://img.shields.io/badge/all_contributors-63-orange.svg)](#-contributors)
@@ -264,7 +264,7 @@ Thanks goes to these wonderful people ([emoji key](https://allcontributors.org/d
Tom Maull 💻 ⚠️
ejfdickinson 🤔 🐛
bobonice 🐛 💻
- Eric G. Kratz 📖 🚇
+ Eric G. Kratz 📖 🚇 🐛
diff --git a/docs/source/examples/notebooks/models/compare-comsol-discharge-curve.ipynb b/docs/source/examples/notebooks/models/compare-comsol-discharge-curve.ipynb
index 6582e3e5b1..e23e1ee15f 100644
--- a/docs/source/examples/notebooks/models/compare-comsol-discharge-curve.ipynb
+++ b/docs/source/examples/notebooks/models/compare-comsol-discharge-curve.ipynb
@@ -24,16 +24,13 @@
{
"cell_type": "code",
"execution_count": 1,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Note: you may need to restart the kernel to use updated packages.\n"
- ]
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-09-16T18:29:52.808793Z",
+ "start_time": "2023-09-16T18:29:52.652390Z"
}
- ],
+ },
+ "outputs": [],
"source": [
"%pip install pybamm[plot,cite] -q # install PyBaMM if it is not installed\n",
"import pybamm\n",
@@ -54,7 +51,12 @@
{
"cell_type": "code",
"execution_count": 2,
- "metadata": {},
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-09-16T18:29:52.814163Z",
+ "start_time": "2023-09-16T18:29:52.810Z"
+ }
+ },
"outputs": [],
"source": [
"C_rates = {\"01\": 0.1, \"05\": 0.5, \"1\": 1, \"2\": 2, \"3\": 3}"
@@ -70,7 +72,12 @@
{
"cell_type": "code",
"execution_count": 3,
- "metadata": {},
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-09-16T18:29:53.239553Z",
+ "start_time": "2023-09-16T18:29:53.042900Z"
+ }
+ },
"outputs": [],
"source": [
"# load model and geometry\n",
@@ -110,18 +117,29 @@
{
"cell_type": "code",
"execution_count": 4,
- "metadata": {},
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-09-16T18:29:54.214804Z",
+ "start_time": "2023-09-16T18:29:53.240926Z"
+ }
+ },
"outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/var/folders/z4/5lmf5d5d23sc2gkhs__zfnfc0000gn/T/ipykernel_2839/4153409347.py:5: MatplotlibDeprecationWarning: Auto-removal of overlapping axes is deprecated since 3.6 and will be removed two minor releases later; explicitly call ax.remove() as needed.\n",
+ " discharge_curve = plt.subplot(211)\n"
+ ]
+ },
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9YAAAIjCAYAAADmwYOsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5xdx33f/c+cenvdvdt3URa9kQBYRIm0RHVZzbZsy4kjO7StKJEj5ZHkx3riRMVx/NiylEe25VhyHCtWMy3TVqNISqQkiqRIECRAAgSIDuxie7+9nzPPH7NEXYAgibIA5v164QWce+aUC2B37/fMzG+ElBJN0zRN0zRN0zRN014e40rfgKZpmqZpmqZpmqZdzXSw1jRN0zRN0zRN07RXQAdrTdM0TdM0TdM0TXsFdLDWNE3TNE3TNE3TtFdAB2tN0zRN0zRN0zRNewV0sNY0TdM0TdM0TdO0V0AHa03TNE3TNE3TNE17BXSw1jRN0zRN0zRN07RXQAdrTdM0TbuKCCEGhBBvuNL3oWmapmnaSTpYa5qmadophBD/SgjxtBCiKIQYE0LcL4R4zZW+r0ttPrBX5t/3hBDiy0KIyMs4dk4I8X0hRM9LOLYuhGg54/VnhRBSCLHk5bTVNE3TtMtJB2tN0zRNmyeE+AjweeCPgTagF/ifwLuu4G1dTu+QUkaAzcBNwH95Gcd2ABPAX76EY48Bv/bChhBiAxC8CG01TdM07bLQwVrTNE3TACFEHPhD4INSyn+RUpaklA0p5feklL8332aNEOJhIURWCLFXCPHOU44fEEL8nhBitxCiJIT430KItvke74IQ4iEhRPKU9r8vhBiZ33dACPH6F7vG5SKlHAHuB9bP39PvCSH++dQ2Qoi/FEJ8foFjq8A9wNpT2n5cCHFk/r0+L4T4hTMO+yrwvlO2fwP4yjlu76W01TRN07TLQgdrTdM0TVNeBQSAby20UwhhA98DfghkgP8IfF0IseqUZr8EvBFYCbwDFU7/M9CC+pn7oflzrQJ+F7hJShkF3gwMXOA1Lrn5YdxvA56Zf+lrwFuEEIn5/Rbwq6iQe+axofl92055+QhwOxAHPg18TQjRccr+bUBs/qGCOX/8185xey+lraZpmqZdFjpYa5qmaZqSBqallM1z7L8ViAB/IqWsSyl/DNzLKcOSgb+UUk7M9/g+CjwppXxGSllDBfYb59t5gAusFULYUsoBKeWRC7zGOQkh3imEePeFbi/g20KILPAY8FPUkHiklGPAI8Avz7d7C+rvascCx+ZRDxf+7IUdUsp/klKOSil9KeU/AoeAm8+49gs90W8E9gMj57nPl9JW0zRN0y45Haw1TdM0TZkBWuZ7YxfSCQxJKf1TXhsEuk7Znjjlz5UFtiMAUsrDwH8CPgVMCiHuFkJ0XuA1zuedwLtfwvaZ3i2lTEgp+6SU/0FKWTll398Dvz7/51/n7N7qd0spE6gHBr8L/FQI0Q4ghHjffIGx7Hz4Xo/qxT/VV4F/BfwmLz60+6W0ZX5ovTzHr8de7HhN0zRNezE6WGuapmma8gRQ5dzBcxToEUKc+rOzl5fZWyql/IaU8jVAHyCBP32l15BS/raU8jcvdPsl+jawUQixHng78PVz3IMnpfwXVK/8a4QQfcD/QoXt9Hz43gOIM44bRBUmexvwL+e7kZfSdr79a6WU4hy/rvmK75qmadqlp4O1pmmapgFSyhzwCeCvhBDvFkKEhBC2EOKtQojPAE8CJeD/nn/9tah51He/1GsJIVYJIe4UQrioMF9BBdGLdo2L7ZSiZN8Atkspjy/UTijvApLAPiCMenAwNb//3zJfFG0BvwXcKaUsXcAtvZS2mqZpmnZJnWu4m6ZpmqZdd6SU/0MIMYFaZurrQAHYAfx3KWV9vkL3/wT+H1Qv8vuklPtfxqVc4E+ANUADeBx4/0W+xqXw98BvA3ctsO97QggPFaIHgd+QUu4FEEJ8DjUiwEcN3f7ZQiefn2d+QV5KW03TNE271ISU8krfg6ZpmqZpVwEhRC+qWFi7lDJ/pe9H0zRN0xYLPRRc0zRN07QXNT/v+yPA3TpUa5qmadrpFtVQcCFEALWch4u6t3uklJ88o00S+DtgOWpe2l1Syj2X+141TdM07XohhAijKpwPopba0jRN0zTtFItqKLgQQgBhKWVRCGGj1tH8sJRy2ylt/gwoSik/LYRYDfyVlPL1V+iWNU3TNE3TNE3TtOvcohoKLpXi/KY9/+vM5L8W+NF8+/3AEiFE2+W7S03TNE3TNE3TNE07aVEFawAhhCmEeBaYBB6UUj55RpNdwC/Ot70Ztf5n92W9SU3TNE3TNE3TNE2bt6jmWANIKT3gBiFEAviWEGL9GXOo/wT48/nw/RzwDNA88zxCiPcD7wcIh8NbVq9efalvXdM0TdM0TdM0TbtG7dixY1pK2brQvkU1x/pMQohPAiUp5WfPsV8Ax4CN56tQunXrVvn0009forvUNE3TNE3TNE3TrnVCiB1Syq0L7VtUQ8GFEK3zPdUIIYLAG1DrZZ7aJiGEcOY3fxt4RC/7oWmapmmapmmapl0pi20oeAfw90IIExX6vymlvFcI8QEAKeUXgTXAV4QQHvA88FtX7G41TdM0TdM0TdO0696iCtZSyt3AjQu8/sVT/vwEsOJy3pemaZqmaZqmaZqmncuiCtaapmmapmmapmna4tFoNBgeHqZarV7pW7lsAoEA3d3d2LZ9wcfoYK1pmqZpmqZpmqYtaHh4mGg0ypIlS1C1o69tUkpmZmYYHh5m6dKlF3zcoipepmmapmmapmmapi0e1WqVdDp9XYRqACEE6XT6JffQ62CtaZqmaZqmaZqmndP1Eqpf8HLerw7WmqZpmqZpmqZp2qL1wAMPsGrVKvr7+/mTP/mTBdvs37+fV73qVbiuy2c/+9lznqtYLPLv/t2/Y/ny5axbt4477riDJ5988hXfo55jrWmapmmapmmapi1KnufxwQ9+kAcffJDu7m5uuukm3vnOd7J27drT2qVSKf7iL/6Cb3/72+c932//9m+zdOlSDh06hGEYHD16lH379r3i+9Q91pqmaZqmaZqmadqitH37dvr7+1m2bBmO4/De976X73znO2e1y2Qy3HTTTeet5H3kyBGefPJJ/uiP/gjDUFF42bJl/PzP//wrvk/dY61pmqZpmqZpmqa9qE9/by/Pj+Yv6jnXdsb45DvWnXP/yMgIPT09J7a7u7tf9tDtvXv3csMNN2Ca5ss6/nx0j7WmaZqmaZqmaZq2KEkpz3ptMRZT0z3WmqZpmqZpmqZp2os6X8/ypdLd3c3Q0NCJ7eHhYTo7O1/WudatW8euXbvwff/EUPCLRfdYa5qmaZqmaZqmaYvSTTfdxKFDhzh27Bj1ep27776bd77znS/rXMuXL2fr1q188pOfPNETfujQoQXnbL9Uusda0zRN0zRN0zRNW5Qsy+ILX/gCb37zm/E8j7vuuot161TP+Re/+EUAPvCBDzA+Ps7WrVvJ5/MYhsHnP/95nn/+eWKx2Gnn+9u//Vs++tGP0t/fTygUIp1O82d/9mev+D7FQmPWrzXBzpXytz57N//q5l429yUJ2Bd/srqmaZqmaZqmadq1Zt++faxZs+ZK38Zlt9D7FkLskFJuXaj9ddNjff9z49y7ewzHMnAtg1f3t3DTkhRdiQDpiMON3UksS4+M1zRN0zRN0zRN016a6yJYr+uM8fCn3sT2YzPc8/QwPz04xc8OTfPAnvETbRzTYFlrmJaIQ92TvPuGTjZ2J1iSDhEJnHstNE3TNE3TNE3TNO36dl0Ea4CIa3Hn6jbuXN0GqLLts6U6TxyZ4Uf7J0kEbQZnyzw7lGW2VGf7sdkTx5pCcPPSFCvbIkQCNvGAxds3dtKRCCzKUu+apmmapmmapmna5XPdBOszCSFIR1zevqmTt286vVx7vtJgPF/lyGSRB5+fYMfxOUq1Jv+8c4RirQnAH9+/n7BjEgvaOKbBe7Z0szwTIRV2WNsRJRZ0rsTb0jRN0zRN0zRN0y6z6zZYn08saBML2qxsi/LWDR0nXpdSsm+swFMDsxgCjkyV+PH+CcbzVT734MHTztGbCrG8NYwvJZ2JEO++oZNlrRFaIo7u5dY0TdM0TdM0TbuG6GD9EgghWNsZY23nyZLtn3qnKvVerjc5OlXie7tGGZwpYZkGR6ZK7B/LI4F/2H4cANMQJII2r1nRwtKWMA3PZ0NXglf3p4nqudyapmmapmmapmlXHR2sL5KQY7G+K876rvhprzebPoemikzkqxybLnHPjmGqDY+nB+b47q5RTl3trDXq4vk+K9uivG5VhqUtYUKOyea+JCFH/1NpmqZpmqZpmnb9eeCBB/jwhz+M53n89m//Nh//+MfPavPwww/zrne9i6VLlwLwi7/4i3ziE584q12xWOSjH/0oDz30EIFA4MQ61rfccssruked1i4xyzJY0xFjTUeM166Cf/vqpSf2VepNHj4wxUShSrnucXSyxP17xnhuOMe2oyeLpwmgJxWiLx1irlznNf0tvLq/hSXpMJ3xAKaplwnTNE3TNE3TNO3a43keH/zgB3nwwQfp7u7mpptu4p3vfCdr1649q+3tt9/Ovffee97z/fZv/zZLly7l0KFDGIbB0aNH2bdv3yu+Tx2sr6CgY502hxvgs7+yCYBcpcGB8QL/snMYQwgKtSYHxvMcnCiyZyTPF3969MQxXYkgG7ritMcDFGsN3ry2nc19SVJhPZ9b0zRN0zRN07Sr1/bt2+nv72fZsmUAvPe97+U73/nOgsH6xRw5coQnn3ySr3/96xiG6pxctmzZiXO/EosqWAshAsAjgIu6t3uklJ88o00c+BrQO9/ms1LKL1/ue73U4kGbm5emuHlp6rTXm57PeL7K8FyFHYNzfH/3GLGgzaHJAg/um8DzJffsGAEg7Jg0fcmrlqfZ2J0gHrTwfcmb17fTkwzp0K1pmqZpmqZp2oW7/+Mw/tzFPWf7Bnjrn5xz98jICD09PSe2u7u7efLJJxds+8QTT7Bp0yY6Ozv57Gc/y7p1607bv3fvXm644QZM07w4936KRRWsgRpwp5SyKISwgceEEPdLKbed0uaDwPNSyncIIVqBA0KIr0sp6+c868xhKExAtO3S3v1lYJkG3ckQ3ckQty5L88HX9Z/YV603eeZ4jkKtwfBche0Ds2w/NsuB8QKPHJzCn5/P/d/vU0uFpcIO5YbHOzZ2sro9Sti1SIRsbl2axrb08HJN0zRN0zRN064seWpRqnkLdRBu3ryZwcFBIpEI9913H+9+97s5dOjQ5bhFYJEFa6n+1orzm/b8rzP/JiUQFepvMwLMAs3znrhWgL/cDG/6I9j8PjAu/hOKxSDgWLyqP31i+67XnJzPXW/67BvPs+3IDLYpOD5b4amBWSYLNb7+5CAN7+Rfs2MZ9KZCOKZB3fP59Vt6WdISJhqw6EmGyMQCl/V9aZqmaZqmaZq2CJynZ/lS6e7uZmho6MT28PAwnZ2dZ7WLxU6u3PS2t72N//Af/gPT09O0tLSceH3dunXs2rUL3/dPDAW/WBZVsAYQQpjADqAf+Csp5Zn9/F8AvguMAlHgV6WU/nlPmuiD9pVw73+Cx/8Cbvn3KmDb109AdCyDTd0JNnUnztrn+ZKxXIXtx2bZMThHxLUYmCmxczDLdKnGp773/Gnte+cLqdUaPgHH4Je39NCTCpEK2XQlgrqYmqZpmqZpmqZpF8VNN93EoUOHOHbsGF1dXdx999184xvfOKvd+Pg4bW1tCCHYvn07vu+TTqdPa7N8+XK2bt3KJz/5Sf7wD/8QIQSHDh3i+eef513vetcrus9FF6yllB5wgxAiAXxLCLFeSrnnlCZvBp4F7gSWAw8KIR6VUuZPPY8Q4v3A+wF6e3vh394Pe78F//J+uP/34If/BXpuhlgXrHwLrHgjuJHL8RYXHdMQJ4aX/+Lm7tP2SSmZKtYYnCnz8P5JDk0WcW2T47Nl9o/lqTV9Hjk4faK9IWBlW5TuZIhSrUl7PMDbNnTQkwqSCjm0Rl09t1vTNE3TNE3TtAtiWRZf+MIXePOb34znedx1110n5k5/8YtfBOADH/gA99xzD3/913+NZVkEg0HuvvvuBXPH3/7t3/LRj36U/v5+QqHQieW2Ximx0Jj1xUII8UmgJKX87CmvfR/4Eynlo/PbPwY+LqXcfq7zbN26VT799NNqIzsM+78H2SE49ghMnDL5Pjk/dLrnFljzdmhbB4klcJGHCVxLitUGw9kKQ7MV7ntujJliDccyGZotc2iycGJe9wuc+eXHepJBxvNVVrVFect8MTXXNmiLBjAMHbw1TdM0TdM0bTHYt28fa9asudK3cdkt9L6FEDuklFsXar+oeqzni5E1pJRZIUQQeAPwp2c0Ow68HnhUCNEGrAKOcqES3XDrv1d/lhKGn4bxXVCehdFn4OADMDcAu+9+4a4gtQyWvBqSy1TIXn4nZNZes3O1X4pIwGZ1u83q9hhvXHt6cTjf95ko1JjI1xiaLfO9XaNUGh5SwnMjOQZnyjw9MMfXnzx+4piQY7KmI0ZnPMCRqRJblyR57apWOhNBBLCsNYKth5prmqZpmqZpmraILKoeayHERuDvARMwgG9KKf9QCPEBACnlF4UQncD/AToAgeq9/tr5zntaj/WLkVIVO5s5BAOPw86/BysAhTEonxzyjOlCoge8BvS/AXpfBamlkF4BwfhLfu/XI8+XjGYrjGQrDM6UuX/PGEioNX2Gs2WGZitnHeNaBktbwrTFXIZmK9zWn+aWpWnaYi4AG7riBJ1F9bxI0zRN0zRN065ausf6pPP1WC+qYH2pvKRgfT5zg7Dvu2BYkB+F40/AyE5Awqn10yIZyKyDSJuK/ut+ATpumN/Ww5wvlO9LJgtVRnNVjk4V+fG+SSzToFxvcmy6xNGp0lkl401D0JUIko44TBVq3LGilY3dcWJBm4bnnwjhep63pmmapmmapr04HaxP0sH6YgXrc2lUYe4YHP4RHPg+RNph9ihMPg/eKctrWwEVyvtfD61rIJSEaBcsvR2CiUt3f9ewfLXBaLbCwfECDx+YIuyaZCtNDo4XODxVxPflWeE7aJskQjaFapPblqdZ0RbBMQ2KtSZvWtfOspYwyZB90Uvwa5qmaZqmadrVRgfrk3SwvtTB+lyadRh+SoXr6YNw4H4YexbcqCqedmrkC7dCIAZmADb+MqT7Idqh5nI7oct/79eIhuczWahxYCzP9oFZIq7FXLnBnpEcz4/lCTkm08U63hlV1kxDIKVkU3eCnlQIKSWFWpNfvLGL3nSYkGOSjjikQo7u/dY0TdM0TdOuWTpYn3TdB+uNN26Uu5/ZfaVv43SNKhz5MQxtg2AKZg7D4YegNAV+8/S2iV4VtCUQ64B1vwjp5ep1XUDtFfN8yfBcmedGchhCMJmvsmNwjudGcrRGXSbyNUbmKngLfK2kww6ZWAApJbWmz89v6KAt5uL5krBrcVt/C60RF8fSvd+apmmapmna1UcH65Ou+2AdWhqSX/r+l/g3a//Nlb6VF/dC8bTZI7D7m2pIuRtVwXtsN0jvlMZC9XL3vUYFba8B7Rth+WvVcHQ9lPmikVIyka8xU6oxlq3y1OAsB8cLtMeDTOar7BnJMVOq40t51hJjoIqumYZgS1+StliAuVKdoGPy8xs6yMwH8Y5EgJ5k+PK/OU3TNE3TNE07h8UQrO+66y7uvfdeMpkMe/bsOWe7r3zlK3zmM59BSomUkrvuuouPfexjL+uaV/VyW5eKEILPPPUZZquzfPCGD2IZi/hti/mw3Hmj+nWqZgPmjkJ5BmaOwM6vQKOswvfhh8CrnWxrBVVvdnIJLHutqlgupVqjO7MWzEX8d7AICSFojwdojwdY1xnnDWcsLfYCz5fMlGrsGJxjcLpMImQzka/x2OEppgs18pUGhyeLjOeqSODe3WOnHR91LVqiLvlqg6hrcfuKVloiLsNzZToSQX5uZQstERfbFGSiASy99JimaZqmaZp2jfvN3/xNfvd3f5f3ve9952xz//338/nPf54f/vCHdHZ2Uq1W+epXv3rZ7vG66LHesmWLfOcX3sk9B+9hWXwZ//MN/5OuSNeVvq2Ly/fg2KOQH4ZmVQXv3f+oiqVVc+q1FxiWWiqsVoKuLbD0DhXAnRB03wSO7jW91F6oeD5bajBRqPLE4WlmSw0iAYvpYo2nB+aoNT0kkC03FjyHaQg6EwFaIi7juSpdySCvWpY+EcRXtUW5sS9JOuwQsk0cW08b0DRN0zRN016axdBjDTAwMMDb3/72c/ZY33HHHXzqU5/izjvvvCjX0z3WCxBC8MlXfZK2UBt/9exf8e5vv5v3rHwPv7zql1kWX3alb+/iMEw1BPxUb/l/1e++r4ql7b1H/blRVhXLj/wYjv4EDt5/ykECYl0Q74ZqFpa/DnpuhXiPei26cE+t9tIYhqA9HqQ9HmQtMV63KnPOtvWmz/BcmfFclZrnM12o8eP9k/hSErRV8bVcpUGu0mDH4BznelYWtE26k0FSYYej0yVWt0e5oSdBIuRwaKLAjb0J1nXG5yuiqx5x09CF2TRN0zRN0zTlT7f/Kftn91/Uc65Oreb3b/79V3yePXv2sGXLlotwRy/PdRGsX/CBTR8gHUjz+Ojj3H3gbr6272u0BFv43Rt+lzcueSMxJ3alb/HSMAxI9cHtHz17n5RQnlXVyvf8i+qtrmZh/DmYOgBT+2HbX59s74QhtRxCLSqgr3yTmtcd64Jkn+7tvgQcy2BZa4RlrZETr/3y1p4F23q+ZKZYY9dwlnLdw5eSqUKNH+2bJOxaOKbBVFENSd85OMdjh6dPBPG7nxo667qZqEs0YDEyV2F9V5y1HTGCjsmRqSKvWpZmTUeMkGPS9CXLWyOE3evqW4qmaZqmaZqmAdfJUPCFltuaqczwX3/2X9k2to2G38AUJr3RXta3rOffrP03rEqtwhDX+fxVKdUw8uwgDD0J+++HaDuUJmFiDxTGzz4m3KqCtxtRw8/X/gJkVqulw+K9YNmX/31o5+T5ktlSnUOTBWp1n5rnM5qr8NihKRJBBwmMZivsGckRdExKNY9Kwzvn+WIBi5BjkS3XWd0RoycVwhDqHLctb6E3FcIwoFBpsrkvQXs8SNS1cCxDL1umaZqmaZq2CF0tQ8Fvv/12Pv3pT1+xoeDXbbB+QdNv8tz0czw6/Chfff6rVD01FzlqR2kNtbKxdSNvX/Z21qXXEXEiC57julUvQWUOcsNw9KdqaHmyD3IjKnhXs2cfk1wCyaVqnrffhE2/po4JJiHRB3bgcr8L7SUq15oMz5Up1JoUax7HZ0o8PThHa8Sl6UsGZ0o8N5KjJeJSbXhMFWuUaucO4y9oi7m0RFykhOlijdf0t9AeD6hzFGq8cV0bmWgAz5f4UrKhK04soIata5qmaZqmaZfG1RKs77vvPj7xiU9w77330t7eTq1W40tf+hIf+tCHXtb1dLBewPmC9akaXoMjuSMcnDvIzomdfOvwt/Clf2J/yArRn+jnju47WJ1azYrECjoiHbqn7VwqWVXBPDsIh38Ew0+pIeNzA2qO96kF1V6Q6FU9215dVS7f+F5VaM1wVCBPXGNF564TzaZPodYkX20wOFNiz0ie1qhLpeFxYLzA7uEsfekw5brHwHSJ4WyFsGOSrzbxFlq/bJ4Q4JoGdc9nVXuUeNCmXPfIlRu8fk2GWNAmV2lQqXvcuVptN5o+jmWwpjNGxLF0MNc0TdM0TTuPxRCsf+3Xfo2HH36Y6elp2tra+PSnP81v/dZvndXuy1/+Mp/73OeQUiKE4K677uIjH/nIy7qmDtYLuNBgfaaG12CiPMFAfoBdU7v42vNfwzZs5mpzJ9oErSAbWzayPLEcy7C4rfM21resJ+7GL+ZbuDaVZ6A0rQqrHX4Qpg+qudu5IbVmd6N09jHhVlVIrV6EQBzWv0cF70YFWlao+d76Qcc1Q0pJrtJgJFvB8yXFapODkwUOjhdZ2hKiUG2ydyzPkaki/a0R8pUmx2ZKzJXqBGyTYq153vMLAbYhkMCKTJRY0GKmWKfp+9yxopXI/PxywxBq27WYLdcIOzYbuuJEAhYByyCk55ZrmqZpmnaNWgzB+krQwXoBLzdYn0upUeKp8af46vNfJWSHmCpPcXDuIA3/5LJISTeJKUxuar+JG9tupDfay/L4ctrCbbqH+0J5TSiMngzeuRGwgyp4Dz+thqLLM4YYOxGIdare8mg7rHyL2i5NqfW7l7waAgkdvq8TTc9nIl9lNFclaJvkKw2eG8kxkq3QmwqRrzR4ZijLVKFGdzJEvqrWGa/Um7i2SeFFesxfIASkQg6RgEW+0iBgm6zrjBMNWAzOlIgHbbYuSant6TItUZcbehJE59tnYgG6k0FcPddc0zRN07RFRgfrk3SwvsjBeiGFWoGfDP8EU5hMlCfYPradJ8eexDZtKs3KiXZhO0x/op9MKINjOLy257WsTK6kO9qNYzqX9B6vOVLODzU/rpYNK06phJMfUWt6+4358O2ffpwdVvO7413Q+yoVvOeOQ/dW6LtNbQcSqpq6dl2TUlKue0wXa6rHvNbkueEc+WqDTDRAsdbkiSMzVJse3ckghWqTpwfm8KUkGXIo1pqMZit4Up5zGbRTWYbAl5KQY9GVCBJ2TQZnyrTHA6ztiBEJWOwZybO0JczG7jgR1+LAeIHlmQir2qLzwb5OVzJIOuzqkK5pmqZp2iumg/VJOlhfhmB9LlJKJsuTPDL8CD8Y+AGdkU6GCkM8P/M85Wb5RDuBwDZtbmy9keWJ5cTdOC3BFm7tuJWuSBemYV6R+7/qeU0ojsPg46rQmtdQPd/7vwemo+Z5F8bODt+ghp1n1qie7+wQ9NwCXVvU65ar9tnBy/+etKtSrelRqDY5PFmg2vBxLTVU/fEj0xhCkI44FKtNHj00TdAxSYZsSjWPXUNZXNvANg2KtSaF6vmHt7/AEBB2LUq1Ji0Rl85EkIBtcHiyyKq2KP2ZCI5lsmckxw09CVa0RbBMwcB0mQ1dcXpSIQK2Qb3p0xkPEnD09yBN0zRNux7pYH2SDtZXMFifS7VZZe/MXixhcbxwnIcGH2LX1C4yoQzHC8cpnTK/2DZsEm4C13R5Q98b6I310hJoYVVqFR1hXTztFfMaMPE8lKehVoDZI7D3OxCIqSJqc4MqnC8k1AKhtOo5774J2jdAIAqVHCx5DbSugnBGFWLTtItA9aI3KdU88tUG+8byGELgWCa5cp2fHZkhEbKJuBZzpTpPHJ0hHXFxLYNcpcHB8QIhx8KTas66dwE/AwQqpLuWQbbSoC8Voj0eQABHpkts6U3Smw7R9HwOTxa5rb+FnmSQpi+ZyFfZ3JukLRbAsQSuZRJxLf19S9M0TdOuEjpYn6SD9ebN8umdO6/0bVwwKSW7pnaxY2IHyUCSgfwAPzr+IyZKE0gpqfv1E22DVpC+WB+WYdEabOX1va+nJ9pDd6Sb1lCr/vB6sTSqKniXZ2H6EBx8QAVqr6aKrg3vACekesXP6v0Waoh6erla49sKqHOteLMK3m4U3Bi0rNLrfGuXlZSSSt2jUGtSqXvMluocGC8QckwQMJGvsfP4HO2xAIYQTOQr7B7O0RZTy+JNF2uMZCsEbJNqw6PhXdjPE9cyiAVtDAH5SpPVHVHSYYd602eqUOPmpSkysQCe71Oue9yyNE1r1CXsmqRCDrGgrb+3aZqmadplooP1Sdd9sN6QTMpnBwcxY7ErfSuvmC99xkvjfO/I9xjID5BwEwzmB9k+vp2aVzutrSlMlsaX0hPtoek3WRpfym2dt9ET7aEj0oFt6BB30fmeWk5s6EkwXajlYHQXDD42X1RtTvWA1/JnHyvM+WHmAVX1fNlrVcVzgGYN+t8E8c75XvKULsCmLTq1pke23KBc96jUPSYKVQ5NFEmHbRqeZGB+qbVlLWEavs/AdJkDEwX6UiFqTVVobqZUx7UMas0FpmfMs01BIuRgCkG14bF1SZJU2KHhSRqez+tXZ2iJugRsk5awQ08qhGXqmgmapmma9nLoYH3SdR+s1weC8tt33MGSu/8BK5W60rdzSUgpydVyZGtZhgpD/NPBf6LcLBO0ggwXhjmcPXzWMTEnxpr0GnqiPVSbVdan17OlfQs90R7CdvgKvIvrSK0ElVkoTsLoThj8GST61Guju+aXHkup/adUmz9NvFsNM5e+Wm5szTvUfHC/qeaAL/05iLSBG7m8703TLoJqw2NwpszB8QKtUZdctcGzQ1n2DOdY1xUjV2mwezjHwEyJnmSIbLnBZKHKQkXchYBkyMEQqubhbf0tpMMO1YZH2LF47epW2mMBMjGXWED3hmuapmnaqa50sB4aGuJ973sf4+PjGIbB+9//fj784Q8v2PYrX/kKn/nMZ5BSIqXkrrvu4mMf+9jLuq4O1gvY2NYmv9nRid3ZSe+X/w67re1K39Jll61mGS+PU2qUGMoP8fX9X8c1XaSUHC8cJ1vLntbeFCZdkS42tG6gK9JFtVllc2Yza9JryIQyWIaeM3xZSKl6uMd3QzChgvbAYzCxB9IroDgBE89BaQaQCxdhMyzVG955A0QyUM2p11a+FcItah55KA2dN0IwCbpQnnaVKtUaHJ8t41om08U6jx+Z5uhUiSUtYaaLNZ4emGWqUCMetJku1hdc59wQsCQdpi0WoFRrEg1avHFNG+3xAKYhWNoSZmlLBNPQ4VvTNE27PlzpYD02NsbY2BibN2+mUCiwZcsWvv3tb7N27drT2t1///38wR/8Affeey+dnZ1Uq1W++tWv8ju/8zsv67o6WC9g69at8pG//muGPvDvEY5D3z/ejdvbe6Vva9Hwpc/e6b3kajnKzTKHsof49uFvE7WjlBolxkvj+JwMbKYwMYXJsvgy1qTX0BpsxZMeW9q3sDKxktZQK4bQwy4vO99TRdRGn4GZwxBMqeB99KdqPfBIRgXz2WNqbviChKqWbrnQsUkF7+KEOtfy16mh6rWi6i1v36CXJdOuaiPZCgPTJUxDMJGv8oM948yU6qQjDuO5KntH89SbPmf+lLRNQXs8QKMpaYu5/NzKVrqSQRpNyar2KBu64wRs/YBK0zRNuzZc6WB9pne961387u/+Lm984xtPe/2OO+7gU5/6FHfeeedFuY4O1gt4oSr45P/4/5j5m7/BiEbJfPSjJH75PQhTf/h5MYVagcdGHwOg3Cizd2YvPz7+Y5KBJLlajqnK1GntLcPCFCarkqtYkVxBKpBCCMHNbTezPLmcdCCth1peac0GVLOqiNqxx1R4jmSgNAWHH4JGWfVel6Zh9ihIb+HzCFMFazcGbetVEM8eh+QStUZ4KKXWF08vh8xatW25l/Odator4nk+s+UGE/kqD+wZJ19tEHYtRuYqPHxgEs+XlBveWeuUt0Rcak2P3lSI25an6UoEmS3VubE3yebeJLGgroyuaZqmXR1ODZjjf/zH1Pbtv6jnd9espv0//+cLajswMMAdd9zBnj17iJ1RPyuVSnHs2DHi8fhFua+rOlgLIQLAI4ALWMA9UspPntHm94B/Pb9pAWuAVinl7LnO+0KwllKS//73yf7jNyk/9RR2Xx8dn/ok4Ve96tK8oevEdHmax8ceJ2AGyNay7JzYyc9Gf0YmlGG6Ms1s9fR/GtuwMYXJhpYN9MX7CFpBTGHyqo5X0RProT3Ujm3qwmqLSqOqgnhpCo48rIJ3IKa2D9ynArYdUkF99hic1cd3KqGOTS5VQXvmiFoTvHOzGu4+e1T1lretV+HeCat2mrZINTyf8VyV+/eMU6k3EUIwPFfmh3snMA1BodakfkYxtrBr0mhK+jNhNvclaY8FGM1VedWyNDf2JmiLBbB1wTVN0zRtEVgswbpYLPJzP/dz/MEf/AG/+Iu/eNZ+HaxPIdTj+7CUsiiEsIHHgA9LKbedo/07gP9LSnne/v4z17GWUjJ39z8y8elPAxB9y1to+cC/I7B69cV6K9opRgujPDH2BHE3zmR5km1j29g5sZP2cDtTlamzgjeAJSxWp1fTGe7ENmwsw+J1Pa+jI9JBR7iDhJvQvT2LWb2ignhlFo78WAVvy1VD1fd9DwLxk8uOjT+n5nw3q+c+n2GrQmyBGBTGVO93Zq0K83NHoedWFc6dCNRL6s+RNj1MXVsUpJRM5ms8dniaUr1JreFzdLrEj/ZNnFhfPF89fb63QBVdW5IOs6YjRirsMJmvcsfKVjZ0x2mLBmiNOhj6/7imaZp2iS2GoeCNRoO3v/3tvPnNb+YjH/nIgm1uv/12Pv3pT+uh4GcSQoRQwfrfSymfPEebbwA/kVL+r/Od68xgDeqDTv4HP6C6axdz//hNZLmMs2wZrf/pw0Tf8AaE/rBy2YwVx9g5uZNUIMV4aZxHhh9h78xeemO9TJQmGCoM4Z0xFFkg6Iv10RHuQAhB0Ary2p7X0hHuoDXYSle0C9fUQ46vKl5DDRsffQbV4y0hNwyHfqjmdhuW2h55Wg09b1ahkuWcvePCOBm008vVvHDDUsuhLXkNpJapNvkxWPJqSPSCFQInqKqt6+8B2mWUK9d5dihLqdYkX22yf7zAwwcmiQdt8tUmw3PlBdcJb4u5LGuJEHFNJgs1Xrc6Q38mQsS1cEyDdZ0x4iHnCrwjTdM07VpxpYO1lJLf+I3fIJVK8fnPf/6c7e677z4+8YlPcO+999Le3k6tVuNLX/oSH/rQh17Wda/6YC2EMIEdQD/wV1LK3z9HuxAwDPQvNAxcCPF+4P0Avb29WwYHB895TS+XY/hDH6a8fTtIid3XS+Ld7yb+rndhd3ZehHelvRKFWoEjuSPYps14cZwHBx9kID9AZ6ST8dI4B2YPUPfrZx2XDqTpCHfQ8Bsk3AS3dd1GW6gNx3BYEl9Cb6xXh++rXbMB2UE1NL1RVhXUh7apIC4lzB2Doe1qDXGvrnq7C2OAWLiC+gtMRw1DN2219nj3TRDtmD/HOKx4kzqn76mA33OLml/uxsAOXLa3r10/fN/n2HSZbKXOTLHO7uEcjx6aojXqMlducHSqyFx54aX5Qo5JxLUo1ZrcsixNbypE0/fJlhu8dX077fEAliEI2hbLWsJYln6opGmapp10pYP1Y489xu23386GDRtOjNT64z/+Y972tred1fbLX/4yn/vc55BSIoTgrrvuOmcP94u56oP1C4QQCeBbwH+UUu5ZYP+vAr8upXzHi51roR7rM0kpqR0+TP3QIWa/9nUqO3cCENy6hfjb30H0zW/CSiZfzlvRLrGm32SmMkPdqzNWGuP7x77PdGWa1mArY6Uxnpl8hrpXP6vXGyDpJpFI0oE0m9s20xZqo9KssCy+jPWt62kLtek1va9Fvg/1AuRGYWq/msfdKMHUQdUjnlqmgvr0IZjcp0J0rQClSWieq6L6KcIZNV/ca6jjlt6hhr9X81DLwaq3qe1GBRDQc7PadiLghNQYYE17iTzPJ1tpMF2s89xIlqeOzdGdDJKtNNgzkmP/eIFU2GGmWDtr6PkLDAHxoI1pCKoNj1uXpUmGHIq1JsVqk5/f2EE0YFOsqRC/dUmKaMAi7FiEHFNP0dE0TbsGXelgfaVcM8EaQAjxSaAkpfzsAvu+BfyTlPIbL3ae1f0b5P7Dz72ka09+9rPUjhyhPjBI/dgxAJzly4m/+11EX/c6nOXL9QeIq0jTb1LzakyUJ3jg6AOUmiXibpyJ0gQPHX8IgUAiF5zvbQiDpJtkVWoVbaE2pivTrEqt4sbMjbSF2mgJtpyofK5dBxo1qOXVHPLpQzC5F+K96rWxXTCxVy1FVs3B1D7IDkOsQ22XZ87fU/6CcOvJ4O170PcqtV2cVPuX36mWOqvMqYcCXVvmg3kY3KgO5tqLqtSbHJsp0/R85srzwXssz9KWMLPlOs8N5zg+W6Y9HmSuVGeqUMO7gM8L6bBDNGBRrnv4UrK1L0UkYDEyV8aX8Jr+FoKOyUi2gm0KblqSJuyYzFUaRF2LZa1hQo5F0DII6KCuaZq2KOhgfdJVE6yFEK1AQ0qZFUIEgR8CfyqlvPeMdnHgGNAjpSy92Hl7W1fJr33he9zxqytf8j1JKSk98QSjH/sYwg3QHBsDwAiHCd92G9E3vZHQLbdgZzIv+dza4lPzajw6/CiVZgVTmIyXxvnW4W8RtsNquzzOZHnyrOMsYdEebicdTDNbnWVtai1rW9aSDCSRvmRVahW9sV4idkR/ULye+b4q6OY3VdAe36OGsid61fbQNsiNQMtKtT32rArP4Va1XZq6gGAuVBX1F3rI7cDJ4J09rgJ536vVdmEcohlo36QKw1lBNQRezy/XziClpFBtUKh5FKoNDo4XGM1W6UgEyFeb7BiYZSJfZVlrhEK1yXMjOfKVBumIQ7HaZKpYo+nJ864XsJCoaxFyTQrVJrZpsKQlTMAyGJotE3It1nbECNgGhyaKxEM2G7rUGuIHxgu0RBzWdsYJ2AaD0yVaoi7LWiMELJPpYo1U2KYtFsSxDDzfJ+xYBHWY1zRNO4sO1iddTcF6I/D3gAkYwDellH8ohPgAgJTyi/PtfhN4i5TyvRdy3qUdq+XH3vU/ue2X+rnxjb0v+/6klDQnJpj9+68w+/d/jxEM4pdUrjficcKvfjXhW24heMMm3P5+vUb2NUhKyXRlmmwtS7lZZig/xPeOfo+4E8cwDEYKI+ye2o1t2tS8s4cMu6aLlJIl8SUsiy8j6kTJ1/JsbttMf6KfdDBNJpgh4ugAri1AStUz3qypoD36DJRnIdKqQvSxn0K9qHrQXwjqXlOF6FperVd+IcE8mFDHlOdUSG9bpwL5zCFI9J0M6rkhNWy+dZXatsM6mGvn1fR8yg2P0bkK2UqdiGtTqjXZNZylXPfoTASp1D2eODJNw5f0pcKU6012DM4hBHTEg1QbHgfGCxiGIBawqDZ8pgo1EOBLedaa4i+FEGCbBo2mT9AxiQdtHNNgLF+lJezQNj8f/fBkke5kkO5kCNMQ7B3Ns6wlTG86hCFg70ieFW1RelJBkLB/osCKTITORBCAY1MllmcitMUCgGQsW6U7FSIVdtQD/ZpHOuIQCViYCEwDHMvQVeA1TbsidLA+6aoJ1pfK1q1b5R+9//9wZOckt/3Scm58Y98rPqdfV8WyaocOMft3XyZ/332YsRheLqcamCbBGzYR2ryZwMaNBDdt0r3a1xEpJZVmhYH8AD8+/mOSgSRNv8nh7GEeHX6UTChDpVlhrDR2zgDeFmoj4kQo1otsbd/K0thSQnYIU5hsbN1IZ6RTz//WXrr6fKG3ag6Gn1IhPRBX2wd/AKal5ohXcyqoWwE1xLyag/zIhV3Djase8PKMqsaeXqGGqE8fhLb5pdLc+f2ZtapqezCpwrsODtorIKWk7vlM5KrUPYljGlSbHruHs9iGQSriUG34PHFkmmjAJhNzqTd9Hj00TUvEpT3mUmv6PHJoirZYgNaIS7Xp8eTRWTJRl2TYoVL32DuaJxm2CTsW1YbHSLZC0DExENSaPnXvAqZ8vAy2KTCEoN70iQVtgraJLyVz5TqdiSAR16LeVOuq97dFiAZsyvUmw7MV1nfFiAVs8tUGQ7MVbuhNEAtYZMsNhrMVNvcmiQYs5sp1RuYqbF2SJOyo7fFclS19SYKOyez81ICN3XFcyyRbbpCrNFjdHsW2DIrVJpWGR28qhG0a1Joevi9JR10sQz0wtg0DyxT6AbKmXSV0sD5JB+utW+W2bU/ylf/8BJV8nTveu5INr+2+qNeQ9TrYNo2hIWb+9n9TeOgh7K5Oqvv2Q1MVibHa2nBXr8Lu7CKwZjWhrVtx+vp0z/Z1rOE1OJo7qoZZNgrsnd7LIyOP0Bfto9QocSh7iKO5o9jGwj3gjqGW0VmRXEFHuANDGNS8Grd13kZ7uJ2IHSEdTNMV6SJg6WrV2iskpQriLwTzgcfUEmZOWA1Z3/c9VR09EFeh+ciPIZQG01VD4C8kmDsRiLarIF6chLb10LJCFXWr5FSF9pZ+CLVCJAOWXkpKW1yklDQ8n8b80PdyrclItkLANrFNQaHa5NBkkVTYIWCZZCt1nh/N05UIEnYt5kp1do/kWJIOEXYtZkp1dg9l6c9ECLkW04Uaz43kWNEWIWibTBVq7B8v0J+J4JgG06UaR6dKLEmHMQzBXKnOWK5CeyyABIrVJrlKg7Br4fmSetO/oPnzl4JpCJBqpEEkYGEZgmrDp+n7ZKIBLFOQKzdoeD696TCWIZgs1Gh4Pv2ZCJYhGJmr0PQlazqiGEIwOFvG9yXrOmOYhsGRqSJCwLrOGJZhcGiigGkI1nXFMYXgwEQB1zJY0xHDMgT7xwuEHJNV7VFMQ3BookDYsehvi2AIwZGpIrGATd/8/QzMlIgFbLqSQUxDMJqtEAvYtEZdLFMwU6wTCVgk5osCVhoeAcsk7FqYQmAYapSEIQSWITAM/bBBW3x0sD5JB+v5quDPPzbCrh8PMztaYsXWDHf82ioCYfuSXtuvVpn5X/+L0pPbsTs6qO3fT+3wYV4YqyYCAazWVpzeHiKvuxO3fznOsmVYra36Sa52gpSSUqPEvpl9PD3xNB2RDmars+ya3MXu6d0siS1hrjrHSHGEqldd8BwRO0LADNCUTW5uv5l0MI3v+wgheE3Xa2gJtpBwE2RCGWzz0n5daNcpKaFZh2ZZze8+9lNwYmCYan3xA/ep+eaGqYaZjz57sohbo7zwOZ0oxLvmw30Wem9VQdwOq3G93Tep4eqB2GV8o5p29ZBShWshwPOhUG0wV1bD9H0pmS3VmCrUyMQC+BKm8jXG8xWWtUTwkYzOVRjJVVjbEcPzYXCmxEi2wqaeBJ4vOTpVZDRb5cZetX1osshEvsqNvUk83+fgRJHpQo0b5vcfmCgwV6qzoSuh9k8WKVQarO6I4fmSI1NFynWPZS1hfCkZnClTb/p0JYN4vmQ0q4J2a9Sl6UmmizWkhEhAPUgoVhtIwDIMmr6Pvwg/BhsCAraJZQiKtSZh11LV+oVgLFelNerQElHLhR6ZKtGTCqoHJxL2jeVZnonQEQ/i+T57R/Osao/SmQjSaPo8P5ZnTUeM9niAetPn0GSR1e1RMlEXz5cMzZZZ3REjE3XxpWSmWGdZa5hk2MEQAkNAIuhg62X5ris6WJ+kg/Upy235ns/OHwyy/d5juEGLN9y1jr516ct6P+WnnqKybx9mJErtwH6y/3SPGlrePLn8iXAcAmvW4CxfjhmPEdiwgeD69dhdXbqHWzunht9gojSBbdhMV6d5avwp9kzvYVVyFTPVGXaM72CoOERrsJWZygyFRmHB88ScGC3BFjzfwzRMbuu8jXQwTcNrEHWj3Ji5kXQgTTKQ1GuBa5dHaQqOPwl2CJoVmNgDh3+k5nw3K2qY+fQh1TverJx9vBUEJHRuhvQyte03oP+NKnjHu9TwdP1AU9OuK9VGk6YnsUwDX0qmCzUknOjRH5otYwhBKuzQ9CWHJgo4lkEmGsCTkueGcwQdg86ECvY7BuaIBW2654P+40fUNIPuZAhPSh45OEV7LEBPKkTT83n4wBRdySDdySANz+fhA9MngnK16fH44Rm6k0FaIi6VhsfO43N0xIPEgzaVhsf+sTwtUZewY1FpeByfKRMPqdoA1YbHbKmOa6sQ3PAk3kV6kmCbAtNQUx9aIi7RgIXvS2ZKdTZ0xWmNqmkWY7kqr1qWIhNTQX62XOfmJSnSERchwDUNlqTDBBz92XYxu9LBulqtcscdd1Cr1Wg2m7znPe/h05/+9IJtv/KVr/CZz3wGKSVSSu666y4+9rGPvazr6mC9gIXWsf7H/76dubEyXtNn7e2dvOpdywlErkwvnWw0aObz0GxSP3KEyc//OQiB4brUjh7Fm54+0Va4LkY4jNu/nNDNt+AuW4rd24ezpA8zErki969dvcZL4xzLHSNiR5iuTPPoyKMMF4bpjfUyW53lmclnKNQLmMKk3Fy4x9AUJh3hDlLBFKV6iagTZUvbFlKBFKVGibZwG2tSa0gFUqQCKd0brl169RKM71U94rFONSz9+DYY3g6xLlXErTAOZ9WoFpDuV73mpq162Ne+S21H29Xvln6QpGna1avp+TQ9iY+kUveYLNQIOSaGEMyV6xydKpEKO5iGYKpQY+9ont5UCMsUjOeq7B7OsiITwTQNRrOV+UJ9EQxDMDpX4fBkkY5EgFrTZ6ZYp1hrvvhNoVYAcCyDSsNja1+SlqhLreFTrDV56/p2OuenSrTHA3TGA3pU52V2pYO1lJJSqUQkEqHRaPCa17yGP//zP+fWW289rd3999/PH/zBH3DvvffS2dlJtVrlq1/9Kr/zO7/zsq6rg/UCFgrWjbpHcabK84+Pseuh45i2wda3LWHTnT1Yi+ipmfR98t+/D79WQyCpHjjI3De+gRGJ4OfznFr+1EynsXu6QULohhsIbNyA80Lojkav4LvQrgXlRplnp55lvDhOPBBnrjrHjwZ/RKlZoj3czlx1jt1Tu2nKJr7v05QL/zC1DVsF8UCKudocmVCGG1pvIBlIkq1m6Y31sjq1mmQgSTKQxDZ0ENcugfIcjO5UQ8jzI3DkYRW8W1ZCblitQd5YoOc70q4KsgmhCrutfrvaDqUgtVzN+9Yf+DRN04CTUw3KdY/RbIUjU0UyUZdKw+fgRIHdwzlWZCJkKw32jOROVNyfKzeYyFdpLtDDHrAN2mIBDCHwfMlb17fTmw4Rsk16UiFu6ElgmXqo+sV0pYP1qcrlMq95zWv467/+a2655ZbT9t1xxx186lOf4s4777wo19LBegELBetTPfm9ozz9/QEAwgmXm9+xlNW3tmMs0i9KKSU0m8hmk+qevcz83d9hZTLge1T3H6D63HNnHWNEIrjLl2N1dCAch9DWrQRWr8Lp68OMx6/Au9CuZVJK8vU828e2U2wUiTkxZqozPHDsAQxhkAqkTvSIG8Kg4TfwpLfguVzTpSPcQTKQZLw0zpLYElanV5NwEkxVpliRWMGyxDLibpy4EycRSGCIxfm1q11FpFS92o2yCtoH7oPJfarXOjcMI09DrchZvd5WQAVthKp03v96tW2H1bJkqWVqbXFN0zTtvKSUzJUaFGoNJvI1Hj8yzYHxAl2JIBOFGjsGZ5kp1pGS0yrxW4agOxnEMARR1+IdmzpZ0RalLxWiNxXUy9a9DKcGzEe/eZDpoeJFPX9LT4Tbf2Xledt4nseWLVs4fPgwH/zgB/nTP/3Ts9qkUimOHTtG/CJlGx2sF/BiwVr6ktFDWYQBj//LESaO5QlGbDa/pY+1r+nECViX8W5fGen7NCcnwbLwZmcpb3+K7D/+I87SJXj5ArWDB/FmZ08/yLJwlizBXbYMM53CCIcJ3rgZd+kS7K4uDFcPfdQuLV/65Gt5Hh99HCkljuUwU5nh3qP3EnfiBO0g05Vpdk3uwrVc6l6dht9Y8FwCQdyNE3Ni5Gq5E2uGh+wQk+VJ1qXXsTS+lKgTxTIseiI9JANJTGPxjFTRrhKNqhp2nhuCvd9SgTvarn4/+hPV4+3Vzz4u3Kp6tSNtsOR2Fby9OrSsgu6tEGrRy45pmqZdIM+XjOer/HjfBIcmi4Rdi+MzZX52eJpirXlar7dtCm5emmJ1uypouaUvyZ2rMwRs/RngfBZDsH5BNpvlF37hF/jLv/xL1q9ff9o+HawvgxcL1qfyPZ+vfXIbjapHtdjACZiseXUnm17fQzR19fcyeMUS1ed2I8IRvOkpij/9KYUfPoi7YgXNqSnqQ0OnFVEDVUjNXbUKZ8kSzEQcMx4nuHkLTm8Pdns7wrp6Hjxo1wYpJbl6jp3jOzENE9MwGS+N88OBH9IWbsM1XcaKYzw18RRJN0lTNpmrzp03jEfsCDW/Rl+sj65wF47pMF2Z5sbMjfTGenFNF8/3WJlaSWuwlZgb08PUtfOTUgXm/CjsuhtqeQimVBDf913VplmHRun040wHEGpYeccm9Xt+FDJrVJXzSJtqk+5Xy5BpmqZpC5JSMlducGC8wD9sP85Evkql4XFgvECtqXq5TUOwIhPBMgWvXt7CL2/tYXlrWM/jPsViGgoO8OlPf5pwOHxWUbLbb7+dT3/603oo+KX0UoI1gO9L6pUmuakKT983wMBuVTysZ22KNbd1sGxTK6Z9bfYm1MfGKT/+M+yeXprjYxQe+hGlbdsIrFpJY2SUxtjYafO6MQyE6xLcuAG7uxszGsVszRC68Ubsrk61bJjuedEWgbpX53jhOAA1r8bx/HEeHX6UrkgXCBjIDbB9fDtdkS7qXp3J8iRztbnznlMgaA21kg6kMYVJvp7nhswNtIXaTlxnU+smWoItROwIyUCShJvQBdy0k6SEahb23at6vw0TssdVD7gdBGFCaVIVYFtIIA7hjKqa3rIS2tZBIAG54yqUt65WbYQJyaVqLrj+nqxp2nWu6flsOzrLoYkCM6U6zw5leezwyWLBiaBNyDF564YOfu3mHpa3Rq7roH2lg/XU1BS2bZNIJKhUKrzpTW/i93//93n7299+Wrv77ruPT3ziE9x77720t7dTq9X40pe+xIc+9KGXdV0drBfwUoP1qfIzFX72T4cJxx2O7Z6mOFfDcgxW3dLOqls7aF8aQxjXzxda7ehRyk89hdPXR2N4mNz376N24ABOby/1kWG8qenTDzAMjGCQwPr12B0dCNfBamsndMMm7M5OrI4OPdRcW7QqjQpNv0mxUeRo7ig7J3bSGemk7tc5MHuAnRM76U/2U/NqDOQGGC4ME3NjFOqFc84ZBwhaQVzTpek3WZNeQ8JN4Pkeda/OTe03kQgksIRF2AnTG+1V88fduF7a7Hr1wnzvahaaVcgOw/PfAjcOpqV6wI89Cm4UvAZUZkH6C59LmGpN73pZzfd+oQJ69jh03gjJJWBYUJqGjo2qirodVG2inSqk62Cuado1qNH02T9eYN9Ynp8cmOQHe8dPrHOeDjtEAxa/+eqlvGdLNxH3+hqteaWD9e7du/mN3/gNPM/D931+5Vd+hU984hMLtv3yl7/M5z73OaSUCCG46667+MhHPvKyrquD9QJeSbA+le9LfvLVfRzYNo5hCrymJBRzWLqphdWv6qBtyfUVshdS3v0ctX3PY7e30xgdJfvt79CcnDyx3ZyYOOsYEQzirliB3dkJQuD0dBO84Qbszk7szk7MWOwKvBNNe/mklAwXh9k3s4+OcAeFRoFdU7t4ZuIZNrdtplBX24ezh1mZWEmunmOsNEZlofWXT2Fg0BJqORHEhRBsat1EzI3h+R5BK8jq1OoTc8xfCOQBUy9Ncl1p1lWhNXzwPZgbgEMPQqxDBeu5YzDwGEQ7AAnFKSiMqkDtv9jSOEIFba+uQnk4o0J8YQy6NqttrwaFCei5GcItKuxXc6oHPZgCYagHApEOCETVsHb9/1PTtEVGSsngTJknj83wrZ0jbDumahTZpmB9Z5wlLWE+9qZVdCWDV/hOL70rHayvFB2sF3CxgvULSrkatmNybPc0P7vnEJWCmrcZijl0r06yfHOGnjUpbFcXQjhTZe9e6sPDWIkkjbFR5r7xD8hqFaslTWN0jPrg4OlDzVFzvJ2+PuzOTqTn4SxbRnDTxvng3YXV2qKHm2tXvWqzSraaJebGyNay7BjfwaHsIda1rCNXy/HYyGMM5YdY37qeXC3H7qnd5Ot5Em6CbC17zvnjAI7hYBs2ruWyNL6UuBOn6lWJ2lFVYd1N4BgOraFWWoIquOsh69cZKcH3wa9DbgTGn1PDxqUHM0dg8HE11BwJM4dg+Gk1x9trqPnf2UFVlK1ZU3PJXzSgn0IY6vrRNnCiKrRXs9C5WS2HVs1CeRaWvAbskBoWX83CkjtUyK9mVSG57i1gBVWvvmGq3nc7pNYet0PqNU3TtJepXGuyeyTHT/ZP8s2nh5grNzCF4NUrWnhNf5p3buqiPX7112NaiA7WJ+lgfZGD9almRopkJ8o0Gz7Hdk9zZOckSDAtg/blMTqWJ+hdmyKzJIZp6fD3YqqHD+NlsxiOQ2N0jJm/+98Ix8WMxWiMjVLbt//sgwwDu6tLBe9aFXfVaoIbN2B1dKjwrYeba9coX/oYwkBKyfPTzzNaGqU31kuuluMHAz9grjqngnk9x48Gf0TNq9ET7SFXzzGQG6DpN5FnLhd1CtuwaQ22EnfjVJoV0oE0K5IrSAQS1Jo12sPt9MZ6SbgJ4m6cpJskbOuCL9c9r6GCsOlAs6J6zKf2Q3KZCs2T+2B8t+rhblZhYq/61bVFVVKfPqiCessqtT8/ApWsGobeqKge8ZfDdNVSZ15T9bKnlqlgXppS2503qu3scUCqQnFWAOYGVW9+12YV0nOjYLuQWau2K7NgR1QPvuWqUQJuBNyY2taBXtOuOb7v8/DBKZ4emOO7u0YZnqsggPds6eZf3dLLDT2Ja+pnoQ7WJ+lgfQmD9al8X/Lcw8M0aqqi+PD+WWZGVLVXyzHoWB6nfVmc3vVpMr3RRbtO9mIlpaQxMoKs18HzqB8/zvTf/i1WKo0RCFAfOk5199lreAOYqRRWJoNfrRJcuxZ3zWqsTAYznsDpX47T1oawde+cdv2YKk/R8BskA0lytRz3HrmXht9gaWIpuWqOfz70zzimQ2+0l2wtyxNjT+CaLqYwKdQL5wzklrCIu3EafoOWYAtLYktOXGNpfCn9iX6SgSQxN0Z7qJ2Em9BLnWkvTbWgeq3diAraM4chPwbpZWrd8bHdamh72wYVzIefguKkGoreqMDoThXUW1ep7al9as55pG1+GPu46nE3bHX8eR4+XRihgnkgroJ6ZVb1oCd654P7UTVEvmWl2p7Yo5Zty6xR26PPqiXZMmtUUB9/DuK90NKvtmeOqv3xLvXwoDKrhuSHUurhhumA5bzyv3dN0xYkpeTu7cd5YO8ETw3MUq57xIMW776hi4+/dQ1B5+r/GaeD9UmXPVgLITLAq4FOoALsAZ6W8lzVVC6tyxWsz1QrN9hx/wBu2KaUrXN87wy5KTWH0g6YtC+Nk+4K0706RduSGIGIDnavhJQSb0ZVzvWrVWoHDjL3j3djtbUjhKB29CiVp59GBIPIyhlzWYXATCXBlwTWrMFd0Y+RTGEEAgTXrcXu6VEVzs2r/5ujpr0cvvRp+I0Ty449OPggtmGTDqbJ1rJ89fmvkgllaA+3M1ed4/tHv09LsIWgHWSuOsd0ZXrB8woECTdB1avSE+1heXw5cTdOrp5jfXo9/cl+WoOtZEIZYk7smuoB0K4CUkJ5WgVvO6SC9uQ+9XusS/0+9KRql1qqhsIPPKLmsqf71fbRh1VPeXJ+/+DP1LliHWp7bJfqKQ/E1flyIyqIC+MiBXvUuayACtm1PASTEEqr68wNqpAf6wCEetDQulqFdSnV6IL2jaqN34TxPdB5w/z6602YOaj2R9tVb31+FFpXqvNLoZaTi3Wq4nrCVPPp9dexdo0qVBt8bdsg/9+Dh6h7Pumww/te1cev3tRDe/zqnYu9b98+Vq9efV39DJZSsn///isXrIUQrwM+DqSAZ4BJIACsBJYD9wCfk1LmL9pFL8CVCtZnKs5V2fXjYWLpADOjJQafU1XGXxBNucRbQ/SuT9OxPE5LTwRLL1h/UUnPA9/Hr9WpPr+X3PfuxenpRtbqVPbuofSzx7EzGby5Ofxy+fSDDQNh27j9y3H6+jBiMTAtQptvxOntxW5vx0yn9XxvTTuD53scnDuIbdoYGIyVxvjuke+q4G0FGS2O8tPhn5IKpPClz3RlmnKzfNZ5bMOmLdRGMpAkX8+zqXUTKxIriLtxbMNmTWoNndFOgtbV++FF004jJdQKqiCdECpoTx1QPdVOWPW4Dz2perxDKbVk27FHVMgNt0K9AEd/qkJwKK3ONfgztR1IqJA9+qxqb4fU/rljJ5doa5RVGyHOqn/ysrxwHjeqriel6mFPLjk51D83rIJ7MKmK3s0eU/Prg0n1kGPmKCy/E4IJNYx/blBtB2JqCkJxEvpepf5+amU1HaFl5fya70I95LCCurq9dkn5vlrO628ePcrDB6YAeO9NPXzszatoiVx90xOPHTtGNBolnU5fF+FaSsnMzAyFQoGlS5eetu9yBus/A/5SSnl8gX0W8HbAlFL+80W76AVYLMH6TLmpCoeenqC1N8LMcIkD28aYHTv5YVIYEIyqgmitPVHS3RFauiMEI3pI16UmpaR25CjFH/8Iu6cHP5envH07xZ/9DHf5cryZGeojI9A8o0CPEFgdHTidnQjXRSIJ33YbTmenGo7e1YWdyWA4+t9Q086l4TU4MHsAgKpX5VD2EA8ce4DuaDcNv8Gx3DEOzB7ANm3qXv2s48N2GCklq1OrWRJfQsgK0fSb3Nx+M72xXtpCbcTd+HXx4UDTLhqvqYJ2ZRYwVGG7F4JvKKmCeHkaJvZBolsNpS9OqB7vdL/aLoyp7ZZVau55YUw9KEgvB4QKxdlBNazd96EyNz/sf34puWbl3EvJvVRWAJDqfcU61cOKelGNTmhbp7bLs+o999yqRhUUJ1T4X/Jq9WCgOKF66XtuVvsrWbU0Xcsqtc38QwRXL1N3PfvusyP8jwcPcny2TMix+OWt3fyn168kHrp6Rqo2Gg2Gh4epVqtX+lYum0AgQHd3N/YZU0UvZ7Buk1KevZ7SFbZYg/WZqqUGM8NF4pkQkwN5nr5/gJmRIoGITTl38sNjOO7Q0hMlngmS6YuS7oqSaAvq3u3LrDE9TWXnTuyODppTUxR/+gilxx8nuHEjzYkJqgcP4ucXHpxhJpMYwSCYJuFbb8HKtCFcF6slTWDtWjX/O5nUH/w17Tx836fcLLN/dj+PDD9CZ7iTYrPI7qndPD3+NO0RNSx9pjKz4JzwznAnHZEOHMOh7tW5o/sOuqPdxJwYbaE2emI9WMb1tVappi16vqeG0DerUCuqqvCmowrjFSfUuu7xXrU9d0xVte/YpI6ZOgCzR1RhuheG9WcHoWvrydEAxXFVmK5ZU8dXc6r3v1GGal49UHg5rKA6VhhqxIAdVOvFmza0rVfbc4MqsHdtBiei7i2YVD34TkT10AfTan69E1YPM4JJPYf+KnF4ssj/e98+frR/koBt8Efv3sAv3tiFcZ0v1Xu1uZzBehx4DvgH4J+llLmLdvJX4GoJ1guplRu4IZtKoc4T3zrM9HCJZEeImeHiicJooEZXBSIO0XSArhUJkh0hku1hkh1h3KD+YHglyHqdxvQ0ZjhMY2KCwk9+QnX3bgLr1tGcmKT0xOM0xycwYjE1N/zMr0XDQAQCBFarQmtIiZlKEtqyFbstg5XJYLW1YQSuzaUdNO1imavOsXtqN2EnzGxllqcnnmb72Hb6k/1Mlac4kj1Crn72jytDGKQDaRzTwZMer+1+LW3hNgSCsB3m1o5byYQyhOzQFXhXmqZddr6neqyFoX6fPap61SMZFczHdqle6/RyFcSHtqvw37pyftj+NmjU5vdXYOxZdc5om9rOHlefBYRQDwYulBWYH/peVEPik0tUEJ89BrF2yKxTPeczh1U1/PaNql1hXG2nlqqh+HZY96xfYlJK/uaRo9yzY5hDk0U2dMX5v96wgjvXtF3pW9Mu0OUM1ibwBuC9wNuAJ1Ah+7tSysr5jr2UruZgfT6HdkyQm6wQbw0yN1bi2R8NAeA1ffzmyX/XcNwh2REmELHJ9EVp7YkSz4SIJFyEfkq2KMhGg+Kjj1E7egSnp5fmxAS5+76PNz2D3dVFc2KC+vHjamjcGYx4HDuTQXoeZjpFaPMWrJYWMA2c7m6cpUuxWlpUD7mmaQsq1UvU/TqT5Um2jW1j99RuliWWMVGaYOfkTsZL4zimQ6FeOOtYx3CwDIsbMjfQFmqj0qzgmi63dd5GKpgibIVpD7eTDCR1D7imaRemWVfBvVFWoblehMFtgFRz4utFOPwjNWQ91qlC9ZGfgBuGUIuabz+2S80pNyw1f/5CwroVUA8K3KgqpJdeDukVqgr/7FG1LF3bOjVHv15SvfuJHnUf2gXzfcn3do/y8X9+jkrD49++egkff+tqXEuPPl3srshyW0IIB3grKmS/DviRlPJfX5KLvYhrNVifqdnwqFc8AmGL/HSVh7++H9s1ccM2c2MlJgdP/0AoDIgkArT0RFTQTrqkuyIkMkHCcR26F5v62Bje9DRGKERzYoK5f/onZLmM3dVFY3KS0s8eB99HNpvgLTBUzbIwYzHc/n6slha8YhGnr4/g+nVYra2Y6TR2WxtGXM891bRzKTfKPDv5LIezh0kGkkyUJ3h0+FEmyhMkXbU9VZk65/EJN4GUkpAdYn3LelKBFNlqlmQwycaWjcTdOAYGraFWWoItxNwYtnH1zMPTNG0Ry42qKu2getaPPqxCuxNWc9kPPqCGvTsRNV/++DY11BwB1TkVzs/FCauHAcklqgfcDqs16Ptug/YNqnieG1PL3LmRS/9erxIHxwv83j/vZtdQlv5MhE+/cx2v7m+50relnccVW8daCLEC+DXg14GSlPLGF2kfAB4BXMAC7pFSfnKBdq8FPg/YwLSU8ufOd97rJVifj+9LBp+bxrAMDFMwO1Jk23eOEmsJIn1JbqqC7538v2DaBk7AJN0Vme/hDpLIhIhnQoTjjg7di5RsNsEw8ObmyN17LzSbmMkUzakpsvf8E0YwhBGN0pyapHF8aMFzCNvGbGlB1mo4vb24q1dhtbTiV6u4K1fiLl2KlWnFSqcRlu5907QzlRolxkvjCCGYrczy0OBD5Oo5eqO9zFRneHT4URp+g6gTZbY6S7aWPe/5DGEQskJ0RbqIuTGmylNkQhnWptcSd+NMlCbojnbTn+gnbIdBQEtAhfKwFdbrhGua9spJqcJ3vax60XPH4ciP55dVQ81HP/owRDvAb6i15UuTC5/LjanA3ihDzy2qBzyYUgXtlt4BqeVgXl+fLx4+MMnv//NuJvI1fuHGLj73y5v03OtF6rIGayFEL/CrqEAdBu4G7pZS7ruAYwUQllIWhRA28BjwYSnltlPaJIDHgbdIKY8LITJSynN85So6WJ+blBIhBJVinWcfPE40FQAhGD+a48C2ccIJl0qxftrQcss2iKQD2I5Jpi9KqjNCvDVIrCVALB3EtPX8nMVOSkljbAxZr4OUNMfHmfvGP2CmkpjRKPXRMYoPPoiRSECjgZfNLngeIxLB7urCTCTwcjkCa9fgLu/HSMQRhoG7fDlWeztWKqVDuKadw1R5ilwth2VY5Ot5fjj4QwSCzkgnuVqOHwz8gIAVoCXYQr6WZ/f0bmzDxpc+Na/2oud/YU54S7CFkB06EcT7Yn0ErSCD+UGWx5ezJL6EgBVgtjJLb6yXjkgHQSuIa7pEnShBK6h7zzVNu3DNuhqiXp6Csd1w6AdqPfR6SVWHH96hlk0rTnLaeu3CnA/sHiz9OdXjHeuExBLo3qIKvl2DBmZK/Kv/tY3RbJXXr87wuV/ZRCKkC9MtNpdzjvXjQBfwT6gw/bLTrBAihArW/15K+eQpr/8HoFNK+V8u9Fw6WL88jZqHMMAwDUYPZXnmh4O0LYlRr3qMHckxOZDHtA28xunzfiNJl3DCxXZN2pfHSbaHiLUEibcECURsPcz4KtQsFCg+9COMaAQhBLWjR8l95zs43T0gBPXhYeqHDoFlnb0EGahCLKaJ3dGB3dmJEQ7jl0oEN23C6evFiMcxYzGc7m7Mlha9HJmmXaBqs8ozk88AELSCFOoFHhh4gHQwTUughXw9zw8GfkB7uJ2EmyBXy7FjYgeJQAJLWBQbRfL1hVcvWIhlWPjSJ+bESLgJbMNmujJNb6yXTCiDIQxGCiOsSq2iLdwGEiYrk6xMriQTzKgHuc0KPdEeEm4C13QJWSGCdlDPP9e061WzDuO71JrrgYRahm3gMVXczY2d3vNt2GredzCp5oNv/FVoXw+tq6+JwC2l5KvbBvlv9z5PwDb51DvW8Utbuq/0bWmnuJzB+ueAR+QrOOl8AbQdQD/wV1LK3z9j/+dRQ8DXAVHgz6WUXznfOXWwvvi8hk9uukI05VKvehx9ZornfzZKz+oU5UKdscM58tNn16uzXZNYa5BQ1CYQdmjvj5NoDRJrCRJNBzAt3dt9tZL1OlJKZL1O7ehRig89hN3VjfQ9avv3U3z4pzjLliFrNerDw3hT556HKkKqyrLb34/d3o5wHWSjSWjzZuzODsxkErO1FTudxgiHL9db1LRrji998rU8vvTx8U9UTU+6SQJWgMnyJI+NPEZfrI+IE2GqPMXjo4+zNL6UoBVkpjLDnpk9tIfbMYRBvpZnpjqDJSyacoGHbOdhCQvLsGj4DdLBNBE7gi99srUsyxPLiTpR6l6d6co069LriLtxyo0ys9VZNrRuIOpEqTarFOtFVqVWEbEjeNLDlz4dkQ5CVoiAGcC1XFzTxRD6542mXRWqOTj4A1WcLZKB6YMw+DP1+guEqQqurf8ltTxZarlaVu0qXYrs4QOT3PV/ngLgf/zKDbz7xq4rfEfaCy5nsP4vqDA8d479dwIhKeW9F3CuBPAt4D9KKfec8voXgK3A64EgqvL4z0spD55x/PuB9wP09vZuGRwcfFnvSXt5auUGs2Nl0l1hirM19j0xxrFdU/SuTZOfqTBxNE+11DjruGgqQKw1QCBsE064tC2NEUur0B2KObq3+xohm02aM7OIgItfKFB57jlKP/0p7po1yHKZ8rO7qOzYgdvfj5fP0xgdRVarC55LBIMYoRD4PsFNm7BaVdEPKSG0dStWOo2ZTGC1tGCmUro3XNMusabfRCCQSGYrsxzNHyXhJJBIxkpj7J7azZL4EgxhMFQY4pnJZ1ibWntie8/MHtam1iKEYKQwwtHcUZbEl+BLn5nKDDPVGaJOlIbXoOot/H3hQrime+J+O8IdBKwApUaJSrPCmtQaXMtlrjpHuVHmxsyNOKbDTGWGqldlc2YzjukwW53Flz7r0utwTIdSo4QpTHpjvSfOH7JCRJwIrunq+e6adjEVJqAyCxN74en/rdYsb1Sg9sIoHKGqmHfeCMk+WPlWaFmhRtFdBQZnSvzf9+zmyWOzfOxNK/ng6/r15+BF4HIG63cB/zdQBXYCU0AAWAHcADwE/LGU8txdVaef75OoomefPeW1jwMBKeWn5rf/N/CAlPKfznUe3WO9+BTnqsxNlEm2hclPV9jz02EmBgu0L42Rn64wNVQ8a4i5MCCRCRFNB3ACFpFUgExflFhaze/Ww8yvXV6xSH1gADOVwpudo/zkk5S2bSN001a8mVnKO56mdugwTl8fzblZvOkF1gWfZ4TDCNcFIQhu3IiZSoLnIVyX0ObNmKkUZjyuKqWnUhiuXkJE0xaTFz63CCEo1UtMVaaIOTEafoPh4jADuQGWx5fTkA0Ozx3mcPYwmzKbqHt1Dswe4EjuCFvatlBr1jgwe4Ch4hAbWzdSa9Y4mjvKVHmKpYml1Jo1xkvjFBtF4m6carNKpVlB8vI/NwkEhjCIu3ECZoBio4ghDPpifQTMAOPlcWzDZnVqNa7pMlQYImgFWZtei2u6HC8cJ2JHTuwfL40Td+P0xfpwTZdys0zMjpEMJlXvvOliGZb+2ahdP3xfLQu2/Uvq92YNRp+FF5ZKjHVB76vU75t+VRVOW8SqDY//+I1neHDfBDcvSXH3+2/VRc2usMteFXy+GvirgQ6gAuxDDRE/71rWQohWoCGlzAohgsAPgT89tYdbCLEG+ALwZsABtgPvPbVX+0w6WF99ZkaK5KcrxFqDFGaqPPvQccq5OqmOMPmZKtPDRaR/+v9dwxTEMyFi6QCmY5DIhGjtiZ4oquaG9YeL60VjaorakSPYmTa8uVmKjzxK7dBBghs20Jydo/TEEzQnJrA7O/FmZ2lOT587iIdCYNsYrktg7VrMVApZrWImEgQ2bsA6M4gHApf53WqadrnUvBrFepGAFaDarDJUGGKuNkdHuIOaV+P5mefJVrP0J/upeTWenXiWQqPAqtQqal6NnRM7qTar9Cf7qXt1dk/tpuE36In2UPNqHM4eRkpJ3I1T82rMVmfVFJtXGOYDlgrZpUaJsB0mE8rgmi7DhWFagi30xnpxTIcj2SN0RjpZEluCYzgczR2lJ9qjgr8VYLw0Tne0m7ZQGwEzgIdH0k0ScSK6uJ22eHlNFbSzg6qXe/Dxk/O2k0th2esg0Qc3/VsIxK/svS6g1vB4xxce4+BEkXds6uSzv7xRr3d9BV2x5bZeKiHERuDvARMwgG9KKf9QCPEBACnlF+fb/R7wbwEf+Fsp5efPd14drK89k4N5qqUm4bhDfrrC0/cNIKUqnFaYVcH7zM8hpiVItIWIpoMYhiDVGaa1J0o0HSCaCujgfR2rj0/QHBtV1c3n5sj/8EGak5MEVq6gOTtL8ScP45fLWK2tKohPTZ0ziItQCGEYGNEogZUrVS97sYDd1k5g7VqsdAoRjWJn2rBSSRXcNU3TFiClxJe+Khrp1RjKD9GUTSJ2hKpX5bmp5zCEQSaUoepVeWL0CUJWiM5IJzWvxqPDjxJzYnREVPB/fPRxEm6ClmALNa/GrsldRN0oETuizl8YwjVdBOJlD7MPmAGiTvTEUPmOcAeZUAZTmAwVhlieWE5npBOA4/njrEquoiPSAcBkeZL+RD+toVYsYeFJj5ZQCzE7duLhgP45rb1izTrs/qZaImxiDxx7RC39ZViw/E7ofyMs+zm15vYiIaXkS48c5U/u389NS5J87bduwbV1uL4SrppgfanoYH39GT+aw/N8nIBFfrrCk985SiBi44ZsCjMVZkZKZx1jWIJ4S5BI0kVKaOmOkO6OEE0GiKQCRJKuLq6mAajia7kcZjhMc3aO3He/g2w0cHr78GZnyN//AFimCuozszQnJs55LhFQS9xZqRTOsmVYqSTNuSzOkr4TwdwIhbA7OtSfIxH9wVLTtEvO8z2GCkMYwsAxHfL1PDvGVUX5mBMjV8vxyPAjdEY6SbgJ5mpzPDryKL3RXmJOjNnqLDsnd6r562aAXC3HYGGQqB3Fx6fcKONJ7yXfl2u6ROwIlmFRqBfoi/WRCqTwpMdUZYr16fWkg2mafpOZygwbWzeSCqTwpU/dq7M0vpSYq4J6xIoQskN67vv1rjwH2/4KSlNqLe65AfV6+0bY/D5Y+26ItF7BGzzpT+/fz1//9Ajru2J854OvwdTDwi87Hax1sNZO4fuS8SNZTMvEMAWzYyWevm+AWItamzs3XWF6qLjgsaG4QyThIoHW3ijpzjCRpOrx1r3e2rnUjh+HWg3hunizs8z94zcxIhGsjOoBz377O1hJ1XvdnJ2lOTp6znMJ21ZBPJPB6e3FSCTwslkCK1bgLFuGmUxghMJYnR3YqRRGLIYw9AMhTdMWF8/3mKvOIYRQhemqM+yf3U9rsBXTMBkrjvHM5DMsiy/DNm2GC8PsmNjB6tRqLMNiqDDE8zPPszS+FCklk+VJxsvjRO0oVa9Kwz+7QOq5BMwApmFS9+r0RnuJOBFqzRq5eo7NbZuJ2BHKjTKFRoGb224m5qo5/VJK1qbXErbDhO0wESdCwAzozwFXMylVBfLH/wLKMzC1HxAQ7YA7/yus/0Wwr9yULykl//5rO3lg7zi/dnMPf/wLG/T/t8tMB2sdrLWXwPN8ZkdLOEEL6UumBvM8+6MhUh0RhICZ0SKTAwUMU+B7p3/9WI5BOO4iDEFrb5RUR4hwwlXBOx0gnHCx9NAd7Tyk79MYGVEbwqAxMU72nnuw29oxo1EaY6Pk7/0+VkcHwrFpTk7RHBs79wkNA2GaWG1t2F1dGJEIfrFIYM0atYZ4NIYRjWB3dqoK6vE4wtT/RzVNu7rlqjmGi8MqBHsNBvID7JvZx4rkChp+g0Nzh9gzvYdNmU00vAYH5g5wJHuENek1J+bPT5QmyIQzlBtl8nW1LN2LsYRF2AkjpcSTHquSq4g4EfK1PE3Z5Kb2m4jaUfL1PKYw2di6kZgTwzEd0oE0qWBKh/PFZOJ5+P5HYPQZaFbVOtvLXgu3/a5azusK+ewPDvCFnxzmDWsy/K/3bdX/Xy6jK1G8bCXw10CblHL9/Nzpd0op/+iiX+wC6GCtXUy+51Ocq+GGLbyGZPTQHM8/NkqmL0az4TN+NMfEsTxuyKJWPnsdVydoYVqClu4IsdYQgbBFIOyQ7lTzv8MJF9vVwUa7MLLZpDE+riqdex61gQHy934fp68Pw7GpHTlK4cEHcZYtBQmNsVGaY+PnPqEQYJrYHR3YbW2IYBC/WiW4fj12ZydGNIIZj2N3damCbfG47hHXNO2aV2lWmK3OErJCFBtFDsweYDA3yPLkcoqNIs9OPMtgYZD1Lesp1ovsnt7NVHmKJfElFOtFjheOU21WMYVJ3a+f91qO4WAIA9uw6U/2nxhaH7JCbGnbQsxVQ/FTgRSrU6uJuTFSboqYG9Prs18qvgcDj8LTfwfPf0e91nsb3PYfYeVb4DL/HJRS8p4vPsGOwTne96o+/vBd6y/r9a9nVyJY/xT4PeBLUsob51/bI6W8Iv/qOlhrl5OUknqlieWaSE8ytH+Og9vH6VieoF5pMLR/jtFDWVLtYcr5+oLreRumKrQWSQZwAia2a9K+LE4k5RJJqPneTtC6Au9Ou9rJRoPm5CRGNIqs1aju20/hoYdwV68Gz6O6dw/FRx4lsHYNslqjfvw4zclJFbgX+nlhGAjLxO7tw85kwLbB8whu2YLd1qZ6w1tbsdraMNNpvY64pmnXvbpX53D2MNOVadLBNPlansdHH2euNsfS2FJy9RxPjDxBpVmhPdxOvp7naO4oTb/5ovPSU4EUSTdJsVEkHUizoXUDCTfBbHWWrkgX61rWkXSTxN34iWH32ksgJRz5MRz5CTz/bcgNgROG2z4Er/4w2MHLdiu1hsdd/+cpfnZkhi/++hbesr79sl37enYlgvVTUsqbhBDPnBKsn5VS3nDRL3YBdLDWFptT12GdHCwwuGeajv44pWydI89MMnooS8fyBKVsjbnxEs362cPP7IBJJOFiOSZOwKRjRYJIwiUYc4gmA4TiDqGog9CFLbRXQNbrNGdmMJNJ/HKZyjPPUHz0MYKbNuEXi5S3b6f89NMEN27Ay+aoDQzg53LnPJ8IBMAwCKxejdXSol40DMK33KyCdzSG3daG1dqiC7Vpmqad4oXh5cV6kWcmn6HcLJNwE+RqOe47dh8AmVCGueoc28a2YQoTQxhka9kFl2wTCFqDrbSEWpirzrE0vpRNrZtoCbZQrBdZnV7N8vhy0sE0lqEf5p/Fa8LDfww/+3PwmxDOqHB98++A5V6WW6g2PH71b7ZxcLzA37xvC7evWBxF1q5lVyJY3w/8LvBPUsrNQoj3AL8lpXzrRb/YBdDBWruaFWarzI2XSGRCFOdq7N82xvRQkY7lcYrZGiMH56hXmqoz8YwvZ2EIbFcF79beKOGEi2EKIkmXdGeEcMIlHHd10TXtovHLZZpTU1itrTRnZyn97HHKO3cS2rIZb3aW4mOPUT90GHfVKpozMzSGhpD1hYdFCsdBBFyEZRPYsB4r3YKs1zEiEUJbNmOl0xjxOHZbG2YyqeeGa5qmLcDzPXZP76barGIbNrPVWb575LsErSBBK8hkeZInx5/EMRwqzcpZIVwgMIRBe7id1anVZEIZcjVV2G19ej3t4XZSgdT1+zmiWYehbfDwn8LgY2AF4Of/B2x6L1yGEQHHZ0u89s8exrVMtv3n1xMP6vXkL6UrEayXAX8D3AbMAceAX5dSDlz0i10AHay1a1mj5lEtNQjFHcq5OvsfHyU/WyPTG6WUrXFw+wSNWpNQ3KWUq1ErnT3vWwiIpAKE4y5SSiIJl8ySGOG4QzDqqH0JFydgXr8/OLVLwsvlaExOYsbjeDMzFH78Y+rHBgisXUtzZpriTx/Bm5nB7uigOTOjhqUv9HNLCMxkEgAjHCa4YQNmKoVfLGCm0gTWrMaMxzGiUVWBPR7HjMV0GNc0TTtFw28wUZzg4eGHcUw1dWeoMMQPB35IIpCg2qwyUhyh5tXOOrYt1MbK5EraQm00/Aa3dd7G2vRauiJd2OZ1EPakhAf+HzVEvDAGLavgzv8Ca995yS/9948P8N/ufZ7XrGjhf//GTXoZrkvoilUFF0KEAUNKWbhkF7kAOlhr2klD+2epFOpEkwFKuTq7fjwEQKwlQClbZ+xQFgRnVTwHVfXcMA3CcYdUZ4RQ3EH6kkRbkHhriHDcJRRzCEZtDFMXUNEuvvr4OM2JScxoFG9mmtx99+Plc7h9S2jOzFB8+GFko4ERjeDNzOIXF146D1BPlCwLMxzG7ulR4T47h9XWRmDVKrVdrmC3t2F3zBdui0YxolHMSEQtfaZpmnadqXt1DsweoOpVKdQL7Jvdx4MDD9IaaiVby3Isd+y04C0Q2IbNmvQa1qTW0BXpojXUyi3tt9ASarmC7+QSkRL2fQ8e+DjkR6DvNvilv4NYxyW97Ne2DfJfvr2HX93aw5++Z+Mlvdb17Er0WH9kgZdzwA4p5bMX/YIvQgdrTbtwlUId35fYrkk5V+eZBwexXYtwwqWUrbH30RECERvLNinn69QrZ/eAAwSjNsGog9fwSbSFSHWECcbUcfFMkEhCzQN3Q3oYunbp1I4cwSsUMONx/FyO7L/8C8K2cfqW4GWz5L7znfk1xTN4uRzVPXsQloVsNBbuGT+FCATA9zETCaz2doxwiObUNE5Pj1pjPBymOTeH09erKqqHIxgBFzOVwgiHMcNhRDCoq6prmnZNqTar7JrahS99pipTPDn2JI+NPEZLsIWR4gilRulE21QgRSaUwTIs3rrkraxNr2V1ajURJ3IF38FFkh2Cf/w3MPk8mA689uNwywfAvDTz1U+tFP4nv7SB997Ue0muc727EsH6G8BW4HvzL/088BSwGjXv+jMX/aLnoYO1pl0avudzbPc0lmviBizy0xWeefA4iUwIN2SRn6ky9PwsbtiiWfPxmguvARqM2kRTAQIRG6/hk+6OkMiECEYdQjGHcMIlFHewHT1sV7u0/GoVPE8tM1YokH/gATV8PN2Cl88x9/Vv4PT0YHd20MxmyX/nu9jdXZiJJF42S3XPHoxIBHwfv1y+oGsK18WIRTEcF69YxO7owMq0Iiyb5vQU7rJlWG3tCNPEy+Vwli7BamlFOA4YAqulFTMWxQgGMUIhHdY1TVu0pJTsmtrFDwd+SCaU4WjuKNvGtjFWGjutnWu6vK7ndaxvWX+iqFrcjV+hu36FZo/C9z8GR34EsW74zXshtfSSXGo8X+Xn//xRXNvgB//pDqIBPbLqYrsSwfoHwC9JKYvz2xHgHuAXUL3Way/6Rc9DB2tNu3IadbU0iGUbFGar7H98jFhLENMymBkpsu+JMdKdYYQQ5KYr5CYr5zyXZRsIQxBrDRJNBebX+5akuyJE0wEVxKNqXnggbOnh6Npl588XYjMcB69SobxtG2YigREM0hifIH///bhLlmAmEzTGx8k/8AMCq1djxmI0JycoPbENZ8kShOPgzc7QGBlFhILIWh288y+zcyoRCCAcB1mrYbW3Yybi4Eu8XA535UqsZALZbOLl8gTWrMFMJJDSR1ZruMuWYkRjCMfGCIUwo1FEMIgRDiNsW48w0TTtoqs2q2RrWQ7OHeSeg/ewd3ovhmEwXho/0aYv1sfa1Fo6Ih3c2nErN7fffPUsF1avwNd/CUZ2gmHBz38ONv3qJbnUzuNzvOevH+c9W7r5zHs2XZJrXM+uRLDeB2ySUtbnt13gWSnlmlOX4LpcdLDWtKuD1/ApzFZVz3XTZ3Iwz8EnJ8j0RfF9Ob802Qwt3RGaDZ/ibJVaeeGh6AhwAhZCQKojTDjhYtoGhilo7YkSjrsnhqsHY44uzKYtOtLz8ItF1QNt2zRnZqg8uwunsxNMk/rxQUqPP0Fg7VqEZVEfOEbp8ccJ3ngjwrSoDwxQfuYZguvWAdAYHaF+bAC7sxO/UcfPF5C1swsQvRgjEsEIhZBSIqtV3BX9GKEwfqWCXywQvHEzRjiEXyzhV6uEbrwBIxg88dDBXb5c9azbNkYkihEOYwQDupCcpmlnmanM8A/7/oH9c/uxDIu9M3tPhO2IHWFTZhOZYIZXd72a1/W87kTBtUUrexz+5d/B8ceh51b419+EwMXvif/4P+/m7qeG+IO3reZ37lh+0c9/PbsSwfq/onqnvzP/0juA7wKfA/5GSvmvL/pFz0MHa027NlWLDaZHCsQzIZo1j+H9cxzdNU3vmiT1msfYoSxjR3K09kaplZsUZqt4jYWHoxuWwHEthAEtPVFCMQfDEJiOQaY3RjBqE4jYBCOqOJvt6iCuXd38UonG5CRWSwuy2aR+7BjVvXtx166FRpPqvuep7NpN+JZbkI06lT17qe7dS/jWW/FrVWr79lMfGCCwfj1+uUxjeBhvbg4zkcCvVF56aDdNEAI7k8EIh/CKJZA+gTVrMYJBmtPTIATBG27ACIVoTk0hbJvghvVq6H6phBEO4/T0YASDJ3vZHUd/rWraNeTHx3/M3um9ZGtZdkzu4Ej2CACO4bChdQNRO8rbl7+dO3vvxDYW4VBo34O/ugVmDkFqGfyrb0LLiot6ielijTs+8xMcy+AnH30tyfAif+BwFbkiVcGFEFuBVwMCeExKecWSrQ7WmqYBFOdqzAwXSHVHqBYaDDw3zfCBOZZsSFMpNBjaN8vsWImWrgjlQp1StoZcOIdjWgaWY2BaBqnOMMGoA0icoEVLd5RgxFZhPKyCuBu2MfTyF9o1Tkp5IsQ2pqdpjo9jZTLIcpnK8/tojAwTWL0Gv1KmvGMHjbFxQps24ZfVtjczQ2DtGvxyherevWrOeVcXfrlEc2wc2ZwfoeKf4wtzIaaJEQwiGw2E42B3d6ugPjGBEYkQWL0KEQpRHzyOlUoRWLMGIxSkMT6O1dKCs2QpRjiEbDQwk0k1tD8UUuFd97Jr2hUlpWTnxE4OZg8yUhjhyfEn2T+7H4CwHebm9pvpCHfw62t+nZ5YzxW+21N4DTj0Q/jeh8Grwzv+Ata9+6JeYs9Ijnf/1c9424YO/uLXLutg4WvalVxuKwMEXtiWUh6/ZBc7Dx2sNU17OeYmSmTHy6Q6I1SKdQ4/PcHseJnuVUmqhQbHdk9TztVIdoSpFBsUZqpI/xzfU4WaI247Jol2VZjNb/oEog4tXRECEZtA2CYUc1TPeFRVUNc07STZbIJpIut16keP4uXzWOk0fqVC+ekdyGoFu7cXWalQfPxxaHo4S5eqIP/ENjAMNRS+XKb6/PNgGJhhNYzdm5t76TdkmmoJtlAIL5fDTCaxu7owgkHqw8PYnZ04fX0YgQCNsVHs7h6c7i5EIIBfqWC3ZjBTSTW8PhxWleNDuvicpr0S+2f3s39mP7und/OToZ8wXZkGYE1qDbd33c5re17L+pb1i2MkS/Y4fOnnoDILb/pvcNuHLurpP//QQT7/0CH+89vW8P47ll3Uc1+vrsRQ8Heihn13ApNAL7BfSrnuol/sAuhgrWna5TA3XqJSaBBrCVIt1dn3+BjVYoO2pTEqhQYHt4/jNSXx1iCVYoPsRPncQRwwTIETsIi1qMJszbpHOOGSng/itmsSSbpqnnjExgnqpcs07eXy63VkvQ4I/HKJyrO7wDSwkkn8coXCQw9ixuLYnR34pTL5++/Dam3Fam/HL1co/uQnWC0tmMkkfqlIbf8BjHAYhMCvVC68+JwQJ3rYzXQaK5NBOA7NqSncpUuxu7rm59xP8/+zd9/xcRRnA8d/s3tdp94syb1X3ADTsem9BAgQCKQQ0oBAOmmkAqmQAiGBlxAIJQRTTLfBNs24995t2Vaxeru+8/6xp2ZLsmRLVnu+n8/57rbMzsqr0z07z8y4R47EOWAAxKd+cw4YgJmcguGPT+fm88lngujXApEAr+14jcpQJR/v/5jVB1cDkJOQw6XDL+WioRcxOnV09/6e7FkMr98JJVvt6bgufAA66eZaeV2YE3/9Hgluk2U/Pg+3Q27YH6vuCKzXAOcA72mtpyqlZgE3aq1v7/SDtYME1kKInqiiqA4rZuFLchOoCbPug/0YioYW8A0f7sfpMUlM9RCoiXAwvxqlaDU9vX7Atvqpy8LBKMmZXlIHJOD1OzEcBknpbnxJbhk5XYguprUGy0KZJlY0SmjzZgyPx+4fXlFB9Xvv4xqYh5maSvRgCVVvvolrxAgcKclEig9Ss3Ch3drt9RItLSW0ebM9ertlYVVXty8dXikMv79hhHhnXh6O9HQwFLGKStxjx+DIyADDRAcCuEeNwpGehvIlYCYlYaakYCb67QH0JEAXfcBH+z7i2U3PotEsKVhCTMfwO/3cOuFWrhxxJTn+nO6pmBWDuT+FxY/A4FPhC291WnD92ur9fOuF1fzokrHcLgOZHbPuCKyXa61PjAfYU7XWllJqqdb65E4/WDtIYC2E6AuqSgIYpoHb5yBQHWb1+/n4El3409zUVYVZOz8/HlS7CFSHKdpVhek0Wh2wDcDpNklIceP2OYiEYqRm+0jOtuchN0xFcqaXhGR3PD1d5hIXojvV92GPBQKEtm2zp0IzDML5+dR+sgj3qJEop4vwrl3UfPghnkkTUU6nPUL8ipV4Ro0CrYkUFREtLMSIp8EfMUg3DHtguZwczORkQBOrrcM3eTJmaio6FkNHwngnTcJMTbXnZk9OxpmaipGUZA8iJ+ntoocpC5bx449/zMbSjZQFy1AoRqSM4IoRV3DTuJuO/wjjWsM/Z0LBaph4DXzmceik6cS+9NQyluwq5Y07z2BYhr9TyuyvuiOwfg+4CngAyMBOBz9Ja31apx+sHSSwFkL0N9rS1FWHMR0GTo9JTXmIjR8dIDHdg9vnoKokwIaP9pOW48fpNqkuC1K0qwqX10E0FMNqJUXddBj2qOgek1jEInVAAv40D063gWEokjN9+JJdeBKcDQ+3z4GSgduE6DG0ZWHV1WF4PGCaRPbtI7BmLe4Rw9HhMIGNG6lbvATv9OkQDhFYv57AmrV4J5+AFQgQ3rGTyP79ODIzidXUoOvqjnxQ08SRnW0H5rEY2rLwnTgdMzkFHY2gHE68kyfbg8MlJ+FITcVMSkI5HF3/AxH93r7qfczeNpv/W/d/aDQp7hSuHX0t142+jlx/7vGrSDQM834KSx6DE66Hq/7eKcH1mr0VXPnoJ4zJ9vPuPWd3QkX7r+4IrBOAAGAANwHJwH+01mWdfrB2kMBaCCHaprUmVBfFdBo4nAZVJUG2LS8iJduHYShK99ewZUkR2UMTMQxFeXEdRTur8Ke6iUYsgrURaO3PiQKX2wRFQ+BtmgaWZZExMJGEZBcOt4nL48CX5MLldeD2OXB5HTichqSgCtHDRQoLCW3bhmvIEGJV1dStWE5ww0YSZpxsv1+yhND27fimTydWWUlwwwaiZWWYycnEKivb7H9uJCaCYaAcDjzjxmEmJ2MFAhg+L94TJmOmpoDpwJmVhTMvFzMtDcPtPn4nL/qUskAZSwqX8O7ud1mwdwEWFqfmnMqdU+9kUuak41eRD38P838NA06ArywA89hvMN34z8Us3lnK63eewcS8zp87u7/ojsD6t1rrHxxp2fEigbUQQnS+aDiGMhWmaVBTFmTPhlIyBydiWZrCHZVsX1HM4AnpaEtTtLuK/VvKyRqaRDQco7o0SKguesRjGKbC5XVgOgy01qQO8OHxORti+PS8BNw+J6bD3i4hyY3L58DttQNzp8fElH7kQvQ49Wnt2rIIbtlCeM8eXHl5xCoqqV64gGhBIZ7x44lVVFD7ySfEqqpw5uURq6ggsn9/24PBORwYXi/uESMw09Kwaqox09PxTZmCmZYODhNnbi7OnBwcqakoZw+c61h0uw/3fcj9S+6nIlRBbaSWyZmT+eoJX+XMgWd2/cG1hr+fDsUb4MQvw6V/hGO8yVwZiDDrDwsZmennv189RW5aH6XuCKxXaq2nHbJsrdb6hE4/WDtIYC2EED1LsNaeniwly0s4FKNwRyX5m8sYMiGdaNgif3MZ+7eUM2JaFpFgjAM7KijbX8uA4UmEg3ZgHgm1b5Rl02lgmAqlFEkZHpxuEytmf6lPy03A6THRMY3DbZCU7sXlsQNyl8fE6XHYz2772ZQWdCG6XbS8HKu2FiMhgVhFBVVz52JV1+AaPIhYWRlV77yLjkZxZGYQKysntH273Y+8te+8DgdmUhLuESPs9PbKSlxDh+KdfAKOzEyM5GRceXkYSUny+98P1UZqmb11Ng+vfJiIFeGkASfxjcnf4MQBLcZWnScWhffug0//Bhc9CKd8/ZiLfGrRLn4+ZyNfPWs4914yrhMq2f8ct8BaKfV14BvAcGBHk1WJwCda65uPsL8H+BBwAw7gJa31fYdsMxN4DdgVX/Sy1vqXbZUrgbUQQvR+lqUx4n21a8pD1JQHyRqSSDgQI39TKQf31jB4Yjrhuii71h6kvLCOoZPSCQdi7N1YSk1FiJwRKUSCUUr21RAJxeKjp8eItjNINwyF02P3dzOdBknpHpweu1+602OSkuWzA3VL4/Y5SUhx43Q3D9LrA3en25Qv6UIcB1YggBUMopQiWlZG5Zw5oAycWZlES8uofOUVex5xv5/owYNE8vNbLEe5XDgyM7ECAVxDhtip6RkZWIEAnrFjcA8fjmPAAMyUFPnd7oNWFq3k1e2v8tH+jygJlDAubRz3n3E/I1NHdt1BLQteuBG2vgNX/BWm3XJMxYUiMSb9Yi6JbgfLfnxew99U0X7HM7BOBlKxBy37YZNV1e3pX63sT6EErXWNUsoJfAx8S2u9uMk2M4Hvaq0va2+9JLAWQgjRVLA2QiQUIzHNA0DB9grqqsNkD00mHIyybVkhwboog8amEQ5G2byogGjUYuDoVMLBGDtWFgN2Kno4GKMkvwYUOJwG4UC01YaxQ9UH3FbMwu114E/z4PI4CAej+JJcJKZ5GgJ5e4o0px2cex12wO514PI4cLikJV2IzqC1JlpWZo+WHo4QKSyg4n8v2YOqeb1ECg5QM38BRmIiOhzGqqo6vBClcGRk2NOnpacTq6rCO30a3nHjMAcMwBkfxE1+Z3unYDTIH5b/gf9u+S8GBjeOu5GvT/46ye4u6rd8YA08PgsMB3z5XcidekzFvbJqH/f8dw2P3jSNSyZ10/RivdjxDKzT2lrfkcHLlFI+7MD661rrJU2Wz0QCayGEED1IVUkAgKQML1prdqwoBkORMdBPJBhjzfx83D4H2cOSCAfs9wlJLjIGJhIORtmypBBfsgt/iodwMErZgVpMh4FlaXQrI7QfyuEy8CQ4cbpNIqEYCSluu8XcZRIORUlM85CQbLegGw6F1++KB+Zmk/R3CdKF6IhoVRU178/HSEgArQlt30blnNdxZmejw2HC+fnESksP20+53Tjz7HnMrUAdvhNPxD1qFM7MTBy5ubiGDsVwHefpnkS7WdrilW2vsKF0A7O3zSbBkcBXT/gqn5/weQzVBeN6lO6Ap6+CWAhuex9SBh11UTFLc/6fPsAwFHPvPhNDpsLrkOMZWO+icVzYQ/8qa6318HaUYQIrgJHAIy0MgjYTmA3sAw5gB9kb2ipTAmshhBA9mdZ2AG3EB1o7uLcad4KDxDQP0XCMdQv3k5ThITnTR7A2wsp395Ce5ycl20egJsza+fvIGOjHn+YhUB1mz7pSEtPt/uSh2gi1lWH7r3I7/uQrBcpQ9lRpCU4cToNoOEZiugdfshvTVFgxTWK6Jz63udHQct60Jd3pMWVUd9Hv6ViMSGEhOhSyR0Rft56que/iGjQIq7aO0NathHfvtn/xmn4nVwpHVhZmWhrEYiSccQbukSNxDMjGNWgwztwclNk5cxyLY7OlbAs3v3UzwViQkweczC9P/yV5/rzOP1DxJnj8HPBnwR3LwTz6Qfd+8+ZGHv9oF9+5YDR3njOqEyvZ9x33wcs6g1IqBXgFuFNrvb7J8iTAiqeLXwL8WWt92BWhlLoduB1g8ODB0/fs2XN8Ki6EEEJ0I601sYgVT003iUZiFO2qIinDi8fvpLo0yKZPD5A1OAlfoouKg3Vs/OgAuaNT8fqdVBbXsW15MQOGJ9tzoJcFKd5TTWKaB601wdoI0bDVrrooQ+Fw2TcL/KluPAlODEMRi1qk5Sbg8bsaBpZLzvTg9jkbRnRveLhNmQdd9GlWOAyxGLGyMmqXL6d63nu4hw0jevAggdWrWw68HQ57ejF/Ipgmieefj3vkCFxDhuIaNFBGOj/OtpZt5e1db/Pc5ucA+Orkr/LFCV/s/BuLj58D+1fA6ffA+T8/6mKqgxFOf3A+eale3rrrTLkB2gHdElgrpa4Azoq/Xai1fuMoyrgPqNVa/6GNbXYDJ2qtS1rbRlqshRBCiKNjxSyCtVFcXhOH0yRQE6ZgRyWZAxMxHIqS/Gp2rDzI4PFpGA6D4j1V7Fh1kGEnZGAYiuK91ezfUk7uqBSsmKaqJEBNeQiX10EkFGtXqrsywJfsxu11NNQpY1Aibp8TbVmAaph6zeE28Pic9lzonsYAXQbpEb2VDoftvt+FhdR88AE1H32Me+wYovv3U7d8BdHi4sP2cQ4ZgmvoEAxfAo7UFBLPPx/X0KE4srNRkvrbZfbX7Ocrc79CfnU+07On88ez/0i6N73zDhAoh3fuhTUvwC2vwfCzj7qo55fu5d6X1/HUF09i5piszqtjH9cd0209CJwEPBtfdCOwXGt97xH2ywQiWusKpZQXmAv8tmlQrpQaABRprbVS6mTgJWCIbuNEJLAWQggheoZwMEpdZZikDA/KUJTur+HA9gpyR6YQjVgUbKtg35Zyhk3OIBKyKNheQeGuKgaPTyMcsEd0ry4NkpzpJRyMEqyJtGuwOKfbxO1zgFIYBqTn+XEnOLGiFg6XScZAP26f3cfc43fh9TvtFnSfPY+6ED1V/ajnkT17qJzzOoENG3Dm5BDevZvQ1q32yNL1HA7MxER8p8zAPXIkzpwcPCecgHvoUJTD0X0n0YfkV+fz4JIHWVK4hBR3Cg/PepiJGRM77wDhWvjH2VB7EO5cAQkZR1dM1OL0B+fjchh8/INZ0mrdTt0RWK8Fpmitrfh7E1h1pHmslVInAP8GTMAAXtRa/1Ip9TUArfVjSqk7gK8DUSAAfFtrvaitciWwFkIIIfqOWMTCdNrBblVJgIqiOjIGJRIORNmzoZSy/fGp1wJRdq0poaI4wOBxaYTqIuzbUk6gJkJKlpdQXZTayhD6CJntylD4kly4fQ5iUQun2yQjz4/b5yQWtfAkOknJ8uH2OfAkOO2H305rlzR20Z2iZWWEtu8AK0Z4927K//sisbIylMvVbFox5XLhGj4cw+PBNXIkieecg2fsGBw5ORJwHaWNpRu5a/5dFNcVc9e0u7ht0m2dV/i8n8MnD8GgU+BL79hdBY7CrU8u5YOtB/nn56dzwYQBnVe/Pqy7AuuZ9aOAx0cLX3ikwLqrSGAthBBCiHra0g0Bb0VRHcHaMEkZPkJ1EXasPEigJkz20CRCdVG2LSsiEo6RMSiRUK0dmKPB7XMQqosSaWMOdKXAcNiDu6VkefEkOAkHoiSkuknP8+P1OzFMg8Q0D95Epz1Su0/S1sXxYdXVUfbMM0SKizHcHkLbt1H78SfNW7idTlyDB+E/eyaeceNwjx6Fe+RIGTitnT7e/zF3L7ibUCzE9WOu5wcn/QDnMQw61iAahrd/ACuehIsehFO+flTFlFQHufjPHzN6gJ9nbzvl2OvVD3RHYH0j8CCwAHsc0rOAe7XWL3T6wdpBAmshhBBCdAatNbGohcNpBxb7t1YQi8RIyvASrIuw/oP9GKYiPddPoCbMpkUFuDwmCclugrURSg/U2gO0t/H1y+k2SUixB3sLB6MkZXhJy03A63eiDEVylpfEVHtUdo/fKYG46DRWXR2RgweJlZYRXL+ekn/+E+VwECstRUci9kYOB54J4/GMH48jK4uk88/HNWKEtGy3IhAN8PfVf+dfG/7FlMwp/OP8f+Bz+o69YK3h+Rtg50L45hJIHXpUxTyyYDu/f3cLc+8+i9EDEo+9Xn3c8Zxu62/Ac1rrRUqpHOx+1gpYorUu7LQDdZAE1kIIIYToCWrKg6DA5XEQrImw7oP9eP1OElLcBKrDrJ2fT2K6F1+Si7rqMAe2VuD0mMTCFlYrA725PCb+NE9DIJ6e6ydlgA+v34nDZZCc6cOX5MKb5MLpkpZG0XE6EiGwdi0l//gnhtdLrLSUwIYN6EAAADM5Gff4cThSU0m88CISZpyMmZLSvZXuYX639Hc8s+kZhicP5z+X/IdEVycEsTs/hKcvh+yJ8LWPjyol/EBFHac/uICpg1N4+RunH3ud+rjjGVh/C7gByAH+CzyvtV7daQc4ShJYCyGEEKK30VoTqotiGAqn26S2MsSmRQUkpLhxeRxUFNexaVEBKVleTIdBdVmQkvwaTKdhT7nWAmWAL8lNYpobt8+JZWkyByeSkuXDl+TEl+xumBpNWiBFW6Ll5VS8NBsMRXjXLmo/WUS0oKBhvXPgQBwZGSRffRX+s87CmZPTjbXtfpFYhJ988hPm7pnLqJRRPHb+Y6R50o6tUMuCf18Gez6B6/8D4y4/qmLO+t0CiqqCrPrZ+fhcMohdW7ojFXwIdoB9A+ABngde0Fpv7fSDtYME1kIIIYTo6+oDcdNpoICyglq2Li0iNceHUoqSfTVsX15ExqBEtKWpKK6jpizUYlmGqfAkONFakzEokeRMLy6viekwyRzsx5/qISHZ3ZCeLoQVClG3fDk6FiO0cROVb7xBePv2hvVmZibOnBxSrruOhFNPxTUwrxtr230+2vcR9yy8hxR3Cs9e8izZCdnHVmAsCv+cCYEyOyXc3fGW8OW7y7j2sU954DOTuPHkwcdWnz6uW+axbnLwqcCTwAla627JP5LAWgghhBCiuWg4RlVJEG+Sk3AgRuGOSnasKiZzSCLRkEXhrkoKt1eSmOEhWBshVBttsRxfsgt/ihuH28Q0FbmjUkhM95KQ4iIxzUNCiruhT7roP7TWRPbvx6qqom7ZMsqefc4eiTwee5gpKTiHDCb91ltJOO20fpU6fu9H9/LGzjfI8+fx/KXPk+pJPbYCd30I/74cxlwKNz7X4d211lz8548IRS3mf+dsyVZpQ3e0WDuBi7BbrM8FPsBOC3+10w/WDhJYCyGEEEIcm/LCWvI3lZE+0E+wOsKe9aXkbyojb0wqgaowB/OrCVRHWtzX43fi8pgYpkHemBQS0zy4vA6S0j0kZ/nswFz6f/d5kdJSYiWl1C1bRunjjxMtKYFYDAwD58CB+KZPJ/XGG/BMnIgy+u788cFokBe3vMhfVv2FMaljePyCx49tQLNoGP44BoLlcPuHkNPxiZi++exK3lxXwF9unMIVk/tnNkF7HM8+1ucDNwKXAkuBF4BXtda1nXaQoyCBtRBCCCFE1woHo9RWhPCneqgpD7JjZTEFOyrJGZFMTXmIvRvLqK0I4XSbhOoOb/12uAycHgfZQ5NISvfgcJskpXvIHJxIYrpH+n33QbGqKsI7d1L94YeUPv4ExEceN1NTcQ0ZQuJFF5Jy1VV9tjV7/t753L3gbqZnT+fxCx7HYRxD/+bqYvj7qfbo4F+eBx28MbGntJYLHvqQCycM4C83Tj36evRxxzOwXgA8B8yun8O6J5DAWgghhBCi+1mWxjAUkVCMHSuLKCuoIy0ngZryEFuXFhKoDuNLdlNdGjxsjnDDULh8DrKGJJGY7sGITz2WPTSJxDQPviSX9PfuxaxQiEh+PsFNm6l+7z2q333XXuFwkDBjBp4J40m95RacGRndW9FOFLWinPPiOZSHyrl65NX84rRfHNvNo1XPwmvfgIt+C6d8rcO73/faep5fms+n955Dut999PXow7q1j3VPIIG1EEIIIUTvobVmz7pSasqC+FLsQHvDR/uJRS3cPidVpYHD+nwrBe4EJxkD/SRleDFMRcagRDIH+UnO9OL2ObvpbMTRCO3eTSQ/n7qly6h87TWixcWgFL4ZM0g871wSzz8fZ/YxDvzVA2wp28JrO17jmY3P8NUTvsodU+84+sJCNfDgIHAlwPd3g9mxFvDNBVVc9OeP+My0PP702SlHX48+TAJrCayFEEIIIfqU/E1lBGsjON0m1aVBVs3bi9Nt4nSbVB0MEKhp3t/bMBX+VDdZQ5NIzvCiDMgelkx6nh9/iltau3uwaFUVFc8/j1VVTfX8+YR37QLAO3kySVdcTtIll+BIPcYBwLqR1pr7Ft3HK9tf4aGZD3HekPOOvrAFD8AHD8KVj8DUmztcjwn32ZkC635+Iab8ThxGAmsJrIUQQggh+g1taXatKcGyNMqA8sI61s7Px+N3EotqqksD6CZTfRumwnQapOUkxFPN3SQke8gc4ic5w4th9t2BtHobrTUVs2dT8dzzWOGwPaWXaeIePZrMO+/Af+aZKGfvy05YkL+Au+bfhcf08PKVLzMocdDRFaQ1PH4O1B6EO1eAo2Mp3f9dtpf/LsvnsZunk5XkObo69GESWEtgLYQQQggh4kKBKNuWFWE6DGJRi+I9VWxbWoQ3yUWwNkIk2Ni/2zAU/jQPyoC80SlkDUkiJdtHSrbP7tctA6p1q+DmzeR/8w5ixcXoSAQzLY3ECy4g/bYv4xo4sLur125aa17Z/gp/WP4HBiUO4pmLn8Fluo6usLX/g5dvgxlfh4sf7HA95JpunQTWElgLIYQQQoh20FpTdqCWDR/tJzHdQ7AmyoHtFRTuqMQwFVas8buzw2WQOiCBhBQ3bq+DQePTyBjkJyXLh+mQVu7jRWtNrLKKwKqVlD//ArUffghAwllnknrDjfjPPgtl9o7p3N7f+z53L7ibq0Zexa9O/9XRFRKqgT+MAsMB39ls97kWnUICawmshRBCCCHEMYhFLDSausowu9aWsHVJIRmDEqkuC1K8p6rZYGrKAKfLJG90KunxwdMyBvpJzU7AdErA3ZWsujpK//1vosXF1Lz3PtGDBzGSk8n46u2kfu5zGJ6end4ctaKc/d+zqQpX8Yez/8CFQy88uoL2LIZ/XQjn/BTO+m7nVrIfk8BaAmshhBBCCNFFgrURindX4U10UlZQx9alhRRsr8SX7KLqYID6r9vKUCRnevElu/CnuBk6KYOMQX6Ss3wYMlBUp9ORCAW/+CWVs2eD1pipqaTeeCOpn7+5Rw929t6e93h0zaMcqDnAS5e/xMDEo0xpf+562P0R3L0BfD33fHsTCawlsBZCCCGEEN0gGomxeVEh+7eVk5zppbygjvxNZc3m6TZMhTfRGQ+0E0nPSyBjYCJOd+9IX+7pIqWlRHbupPT/nqRm4UJwOMi4/XbSvvgFzMTE7q5eiw7UHODq165mYsZEnrjgiaPr97zoEZj7I5hyE1z1aOdXsh+SwFoCayGEEEII0UMEasJUlwZRhqJ0Xw0r5+4hWB3BsjShusaU8pRsHxmD/PgSXeSMSiFnRDIJyR0b5Vk00lpT+MtfUbdiOeGt2zCSk0m59loyv/kNDJ+vu6t3mO8s/A5z98zlJzN+wvVjr+94AdEw/OMsCJTB3evBcZSDoYkGElhLYC2EEEIIIXo4rTXVZUGWzNlJuC6KMhQl+2qoLg02bONLduFNdJE7KoVhkzLIGpqI29f7ppfqbsGNGyn81a8JrFqFkZjIgJ/+hKTLL+9RI2JvKN3AN977BjErxpyr55DmSet4Idvfg/9cA1f/Aybf0PmV7GcksJbAWgghhBBC9ELa0uxYdZBQXYRo2KJgZyU7VhQ328blNRkwPJkhE9PJGppE5qBEGZW8HaLl5Rx86GGCGzcSXL8e75QpDPj5fXjGju3uqjXYVr6Nz77xWS4aehEPnPlAxwvQGh4aDxr49kboQTcOeiMJrCWwFkIIIYQQfURtZYhIOEZ1SZA960pY98F+nG6zMY1cQcZAP4MnpJMzIpkBw5PxJEirdmu0ZVHxv/9R+MtfgWWR+rnPkfXtezASesY0Vb9Z/Bte2PICfzjrD1w47ChGCX/iPNi3DD4/B0ac3fkV7EcksJbAWgghhBBC9FFaa6yYRaA6wpYlhax+L5+EJBflhXVYlv1dPyXLS96YVAYMTyZvTCqJaT172qnjTUejHPzbIwQ3bKD2449xDhxI7u9+i2/q1O6uGutL1nPTWzeR5knjzavfxOfsYH/wmiJ49DQYeCJ87r9dU8l+QgJrCayFEEIIIUQ/EwnFWL9wH+s/2k9Shpfi3VWEg/Zo5InpHgaNTSVndCqDxqbKoGhN1C1fzr477yJWUUH67V8h8447UM7ubfFftH8RX33vq3xl0le4a9pdHS9g4YOw8AH4xlLIGtP5Fewnek1grZTyAB8CbsABvKS1vq+VbU8CFgPXa61faqtcCayFEEIIIUR/Z1matfPz2b6iGF+SiwPbKhrSx1MH+Mgbk0ru6BQGjUnD4+/fqeOFv/glVXPnEistxTNhAnl/+iOuIUO6tU7f/+D7vL/3fd64+g1y/Dkd23nvUnjyfBh5PtzcZugk2tCbAmsFJGita5RSTuBj4Fta68WHbGcC84Ag8KQE1kIIIYQQQnSMZWmWvbGLwp2VGKbBge0VROPza2cNSWTwhHQGjU9jwLAkDLP/DYZmhULUfPABBT/9GUSjDPzbX0k49dRuq89r21/jJ5/8hBkDZvDEhU90bOdYBP46DaqL4NubICG9ayrZx7UVWDuOd2Xaou0ovyb+1hl/tBT53wnMBk46TlUTQgghhBCiTzEMxYwrhje8j8UsPnphK7WVIUK1UVa8vZvlb+3GdBoMnZTBkIlpDB6fTkJK/0gbN9xuki64gNqPP6bixf+x98u3kf2TH5P2uc91S30uH3E5b+56k6UFS9lZuZPhycOPvFM90wmfexEePQVWPgVnfqfL6tlf9agWa2hojV4BjAQe0Vr/4JD1ecBzwDnA/wFvSIu1EEIIIYQQnau6LMD7T20CoKKojtrKMABJGR5GTs9m2JQMsockoYy+PYVTrKaWmoULqHr9DWo++IDUz91I9r33dku/69JAKZe8fAmn5Z7GQ7Me6ngBT14EFXvgHpl662j0mhZrAK11DJiilEoBXlFKTdRar2+yycPAD7TWsbYmcFdK3Q7cDjB48OCuq7AQQgghhBB9UGKal6u+PQ2wRx7ftaaEj/+3DbfXwep5e1n57h4cToPhUzMZPWMAA0enYjr7Xsq46U8g+bLLSLr4Yg7cey/lzz1PaNduBj32dwz38W29T/emc96Q85izYw4ri1YyLXtaxwrQFlQdgF0fwnCZeqsz9bgW66aUUvcBtVrrPzRZtguoj6gzgDrgdq31q62VIy3WQgghhBBCdJ5gbYSlb+xiw4f7MUxFNGzhcBmk5/qZNDOPoZMzcXt7XBveMat6+20Kf3M/sZISEs44g4GP/O24B9fv7HyHH3z8A8aljeP5S5+nrcbGw+xbDv++HCZcDVc92nWV7KN60+BlmUBEa12hlPICc4Hfaq3faGX7p5BUcCGEEEIIIbqFFbOwLM2+zeV8Mns7FUV1oMEwFQOGJzP65GxGnZSNy9N3gmwdiVA5Zw4FP/kp3hOnM/jxxzE8x29ecK01z29+ngeWPsAj5z7CWQPP6lgBr90B61+G724Ft79rKtlH9abA+gTg34AJGMCLWutfKqW+BqC1fuyQ7Z9CAmshhBBCCCG6nbY0laUBAlURdqwqZt2CfVgxjcNpMHRyBiOnZTF0UkafSRffd9e3qJ47F+/06Qz+vyeOa3AdsSJc+eqVOA0nr175asdarbe8Dc/fABf8Bk67o+sq2Qf1mj7WWuu1wNQWlj/WwuZorb/Q1XUSQgghhBBCHJkyFCmZPlIyIWdEMqNPyqZwZxXlBbVsX1nM9uXFmE6DUSdlM/rEbPLGpPTqabyyvvdddDRKzYIF7PvmHQx67O/HbUAzp+Ek0ZnIxrKNLDqwiNPzTm//zumj7OeV/5bAuhP1qBbrriIt1kIIIYQQQnSfusoQ7z+9CSumKdpdRSQYw+EyGHtqDlPOG0xypre7q3jUKmbPpuDHPyHxwgvJe/ihjrUeH4NFBxbxvQ++x4T0Cfzzgn92bOf3fwkf/RHuWgVpHZi2q5/rNangXUUCayGEEEIIIXqGaCTGsjd3s/LdPShAa8gZmcy403IYfdKAXpkqvm3mLKKFhWTd+0PSb731uB33iXVP8OeVf+aly19iTNqY9u9YuR8enmjPZ33OT7qugn2MBNYSWAshhBBCCNGjhANRwsEomxYVsGruXiKhGJ4EB2NOyWH8Gbmk5SR0dxXbrW7tOg7+/vfUrVjBoH88hv/MM4/LcQtrC7nk5Us4NedUHjnvkY7t/KfxEKyAH+aDYXZJ/fqatgLr3nc7SAghhBBCCNHrubwO/KkeTrp0GFfcPYUTzhlI3phU1i3Yx/O/WMJ/fvYp25YVEYtZ3V3VI/KdMIlBj/0d9+jR7P/W3YR27Dgux01wJqDRfLz/YwprCzu2c/ZECNfCrg+6pnL9jATWQgghhBBCiG41YFgyZ352NBfdPonP338qiWlugjUR5v7fBv7zk09ZMmcnwdpId1ezTUZCAmlfuBWrro49t36BWGVllx8z0ZXI0xc9jVKK/2z8T8d2/uzT4EmGVc92TeX6GQmshRBCCCGEED2GP8XDLfefzhd/ezqXfOMEvIkulr+1m6d++AkfvbiVmvJQd1exVUmXXELyZz5DrLycwl/9+rgcc1LmJC4YegEvbXuJ6nB1+3d0emDC1bDlLYgEuq6C/YQE1kIIIYQQQogex3SaDDshg4u/NonRM7IZPiWT9Qv388xPFjH3/9ZTVdLzgkHD5SL3/t+Q8c1vUPXGG1S+8cZxOe7IlJHURmp5btNzHdvRdEGkDtbP7pqK9SMSWAshhBBCCCF6rMQ0D+d/cQIXfHkCN/3yFDx+J9uWFfOfny3m/ac3UV0W7O4qHib1xhtRCQkU/OSnRIqKuvx4Jw04iTRPGs9vfp6I1YGU+RO/DA4PbH+/6yrXT0hgLYQQQgghhOgVkjK8fPZHJ3Hx1yYxaWYe25YW8cxPPuXDF7b0qD7YZkoKvhOnQyxGwb0/QltdOwDb1Kyp/OK0X1AaLOXDfR+2f8essXY6+I73IRruugr2AxJYCyGEEEIIIXqNhGQ3w6dkcuZnR3Pel8ajLc26hfv5z08/ZeW7e4hFun8UcaUUg//xD7J//CNqFy2i/Lnnu/yYZ+SdQbonvePp4GMugWAlbH6zayrWT0hgLYQQQgghhOiVRk7L4oafncz1Pz6JAcOT+fSVHTzzs0/Zv6W8u6sGQMr11+MeN46iBx8ktHNnlx+vNlLL0sKlFNV2IP08ZYj9vOSxrqlUPyGBtRBCCCGEEKLXSs/1kzEokcvumEx6bgKB6jCvPrSK957aSF1V96c3G14vaE3hL3+J1rrLjuMwHHzvxO8BMGfHnPbvmDsZhpwGZdvBinVR7fo+CayFEEIIIYQQfcJ1PzqJG396MtMvHsK2ZUU8/eNFbP60oNvqo5Ri4CN/I/v736du8RKq33uvS4/32bGf5aQBJ/HytpexdAdS4k/6CtSWwN7FXVe5Pk4CayGEEEIIIUSfYDoMUrITOOXKEcy4ajixiMX7/97Ee//aSDgQ7ZY6OVJTSb3pc7hGjKDoN/djhbp2Hu7Tck5jX80+lhUua/9OI84BwwGL/tJ1FevjJLAWQgghhBBC9DnTzh/CjT+bwUmXDWPr0kJe+NVSinZVdUtdlMOB4XYTLSyk9Mknu/RYfqcfgGc3Pdv+nbwp9rRbuz6ELkxX78sksBZCCCGEEEL0SWm5CZx82TDOuXUc1WVBZv9uOavm7e3Svs6tyfred/FOn0bp40906dzWV426is+M+gyf7P+EylBl+3c8/xcQqYMDK7usbn2ZBNZCCCGEEEKIPm3EtCwmnpnH4InpLJq9nYXPbSEWO77TciWceiq5Dz4I0SjFf/xjlx3H4/Bw/ZjrCVth3tr1Vvt3nHiNnQ6+sQMDn4kGElgLIYQQQggh+jSny+Tsm8Zw6ddPYNqFg9n40QHe+OsaQse537Vr0CC806dTNed16lat6rLjDE4cTIIzgSfXdSDt3JsKqUNh2ROSDn4UJLAWQgghhBBC9AvKUAybnAnA/i3lvPz7FVSXBY9rHVyDB6Pcbop/+9suS0lPcCaQk5BDYV0hm0o3tX/HgSfaQXV1YZfUqy+TwFoIIYQQQgjRbwwYnsxnf3wSl981mZryELN/u5zKg3XH7/g//QnZP/wBgdVrqFvcNdNbKaX414X/wqEcvLP7nfbvePlf4Id7ISmnS+rVl0lgLYQQQgghhOhXMgclMmhcOhd+ZQKBmgiv/mnVcWu5Vg4HyZ/5DGZGBsV/eqjLjpPiSeHkASfzzq532t8y7nCD6eiyOvVlElgLIYQQQggh+iXTNHB5TEJ1UV57eBW1lV07x3Q95XKB1gTXraNu+fIuO05dtI4DtQc6lg4ujkqPCqyVUh6l1FKl1Bql1Aal1C9a2OZKpdRapdRqpdRypdQZ3VFXIYQQQgghRO+WNyaVWx44ncvvmkJtZZg5D68mUBPu8uMqpcj5za8xU1IoefTvXXacz4//PAYG7+55t8uOIWw9KrAGQsA5WuvJwBTgIqXUKYds8z4wWWs9BfgS8MRxraEQQgghhBCiz3C6THJGJDPxrFzKC2uZ8+fVhINdP1p44syZpH/lNmoXLSKwZk2XHOOCoRdwcs7JvLfnvW6Zu7s/6VGBtbbVxN864w99yDY1uvGqSDh0vRBCCCGEEEJ0lC/RTfpAP6X7apj/9ObjEogmX3EFyuWi8Je/6rJjzBw0k73Ve9lctrnLjiF6WGANoJQylVKrgWJgntZ6SQvbXK2U2gy8id1q3VI5t8dTxZcfPHiwS+sshBBCCCGE6N2mXjCY6354IqdcNYIdK4tZ835+lx/TTEvDTE4muGEDwY0bu+YYygTgP5v+0yXlC1uPC6y11rF4mvdA4GSl1MQWtnlFaz0WuApo8faO1vqfWusTtdYnZmZmdmWVhRBCCCGEEH2AYRpMOCsXX5KLRbO3s39reZceT5kmw+a8hpGURMnfH+uSY1wx4grGpY1jzcE1kg7ehXpcYF1Pa10BLAQuamObD4ERSqmM41QtIYQQQgghRB9mmgb+NDfeRBfvPr6emvKuHSnckZpK2s03Uf3ee4R27ur08n1OH9eOvpY9VXvYVrGt08sXth4VWCulMpVSKfHXXuA8YPMh24xUSqn462mACyg9zlUVQgghhBBC9EEOl8k13z+RK++eSiRs8e7j64hFrS49pmv0aNCa4oe6Zl7rGQNmoFD8Z6Okg3eVHhVYAznAAqXUWmAZdh/rN5RSX1NKfS2+zTXA+ng/7EeA67XkNAghhBBCCCE6iWEo0nITmHbBYAp3VrH4tR1derykc8/FPWoUdUuXYoU6v4U805eJUooP9n3Q6WULW48KrLXWa7XWU7XWJ2itJ2qtfxlf/pjW+rH4699qrSdoradorU/VWn/cvbUWQgghhBBC9EUp2T5cXgdr3s/n4N7qLjuOcjrJ/tG9WJWVVL/zTqeX73P6uGf6PZQFy9hevr3Tyxc9LLAWQgghhBBCiJ5i1InZ3PTLU/D4XSz4z2asWNelhPtOOQVHTg4lj/2jS8q/bPhlKBTz9s7rkvL7OwmshRBCCCGEEKIVvkQXZ1w7koN7q1k1b2+XHUcphXI6Ce/aRXDTpk4vP8ObQaonlf9t+V+nly0ksBZCCCGEEEKINjnd9lzQS1/fRUVxXZcdJ+/PD6M8Hsqff6FLys/yZXEwcJCKYEWXlN+fSWAthBBCCCGEEG0YekIGl3x9Eg6nwcJnN3fZfNDeceNIuvQSKl9/nVh15/fp/ukpPwXg04JPO73s/k4CayGEEEIIIYRog1KKYZMzOfUzI9m/pYKNnxzosmP5TjoJHQh0Sav1hPQJJLuT+WjfR51edn8ngbUQQgghhBBCtMOA4UkoBYte2k44GO2SY3jGj0e5XFT897+d3jJuGiZu0827u9/F0l07N3d/I4G1EEIIIYQQQrRDWq6fUSdlEw7GWDs/v0uO4Rk9muyf30dk/34CK1Z0evnTsqYRtsJsKdvS6WX3ZxJYCyGEEEIIIUQ7GIbi/C9NYNjkDFbO3UugJtwlx0m+8EKU10vFK692etk/OPkHAHxy4JNOL7s/k8BaCCGEEEIIITrghHMGEQnGWP7m7i4pX3k8oBRVb7yBjkQ6tewMbwZj08ayYO+CTi23v5PAWgghhBBCCCE6wIhHUes/3E91WbDTy1emSeIF56NDIWoXLer08iuCFawtWUt1uPNHHu+vJLAWQgghhBBCiA7IHZXKtT88ERQsfWNX1xzjl7/ESE6m8s03O73s60ZfB8CSgiWdXnZ/JYG1EEIIIYQQQnRQ9tAkJp09kC2fFlB2oLbTy1cuF4mzZlL97lysQKBTy/7ipC/id/r5eP/HnVpufyaBtRBCCCGEEEIcBY/fidaw6JXtXVJ+pKAQHQpR/d77nVqu03AyJWsKC/MXdvqUXv2VBNZCCCGEEEIIcRQGj08je1gSe9aVdkmrddYPvo+ZmkrVO293etlFtUWUBkvZWbmz08vujySwFkIIIYQQQoijkDUkiUu/eQKm02BNF8xr7R0/nuQrrqDmw4+IVVZ2atnfmv4tAEkH7yQSWAshhBBCCCHEUfL6XQyZmM7mTwsIVHf+vNbek06CSISqtzq31frsgWczMmUkn+yX+aw7gwTWQgghhBBCCHEMqksCWDHNug/2dX7hhgKg4qWXOr3o4cnDWV60nEisc+fK7o8ksBZCCCGEEEKIY3DBbRMZNC6N9R/sJxqJdWrZiWecQdoXv0hw40YiRcWdWnZZsIyIFWFD6YZOLbc/ksBaCCGEEEIIIY5BSraPqRcOJlAdYduyok4tW7lcpFx3LWhNdScPYvbDk38IwKriVZ1abn8kgbUQQgghhBBCHKOkdA9Ot8nyt3Z3+hRWZkoKht9PxcuvdGq5Y9LGMDRpKCuKVnRquf2RBNZCCCGEEEIIcYy8iS5cXpOqkiD7NpV3atlmUhLK6SC0bRux6upOLTvDm8HigsXErM5NYe9velRgrZTyKKWWKqXWKKU2KKV+0cI2Nyml1sYfi5RSk7ujrkIIIYQQQghRz+VxcPMvT8WX5GL1+3s7tWzlcDDwkUfAsqj9uHOnxwpGg4RiIbZXbO/UcvubHhVYAyHgHK31ZGAKcJFS6pRDttkFnK21PgH4FfDP41tFIYQQQgghhDicw2UycWYeezeUUVZQ26lleydPxkxOpnrBgk4t94EzHwBgedHyTi23v+lRgbW21cTfOuMPfcg2i7TW9bkVi4GBx7GKQgghhBBCCNGqukp7LusNH+3v9LK1UlS/Oxcd67y07aHJQ8lNyJV+1seoRwXWAEopUym1GigG5mmtl7Sx+ZeBzh0aTwghhBBCCCGO0sSz88gY5Gf78mKsmNVp5SrTxDt5MjoUIrBmTaeVC+Bz+vh4/8edPuhaf6J66g9PKZUCvALcqbVe38L6WcCjwBla69IW1t8O3B5/OxE4rAwheokMoKS7KyHEMZBrWPR2cg2L3kyuX9Hb9aRreIjWOrOlFT02sAZQSt0H1Gqt/3DI8hOwg+6LtdZb21HOcq31iV1UTSG6lFy/oreTa1j0dnINi95Mrl/R2/WWa7hHpYIrpTLjLdUopbzAecDmQ7YZDLwMfL49QbUQQgghhBBCCNGVHN1dgUPkAP9WSpnYQf+LWus3lFJfA9BaPwb8DEgHHlVKAUR7wx0MIYQQQgghhBB9U48KrLXWa4GpLSx/rMnr24DbOli0TMklejO5fkVvJ9ew6O3kGha9mVy/orfrFddwj+5jLYQQQgghhBBC9HQ9qo+1EEIIIYQQQgjR2/TpwFopdZFSaotSartS6ofdXR8hOkoptVsptU4ptVoptby76yPEkSilnlRKFSul1jdZlqaUmqeU2hZ/Tu3OOgrRmlau358rpfbHP4dXK6Uu6c46CtEapdQgpdQCpdQmpdQGpdS34svlM1j0Cm1cw73ic7jPpoLHB0DbCpwP7AOWATdqrTd2a8WE6ACl1G7gRK11T5m7T4g2KaXOAmqAp7XWE+PLfgeUaa0fjN/kTNVa/6A76ylES1q5fn8O1Bw69acQPY1SKgfI0VqvVEolAiuAq4AvIJ/Bohdo4xr+LL3gc7gvt1ifDGzXWu/UWoeBF4Aru7lOQgjRp2mtPwTKDll8JfDv+Ot/Y/+RFKLHaeX6FaJX0FoXaK1Xxl9XA5uAPOQzWPQSbVzDvUJfDqzzgPwm7/fRi/5jhIjTwFyl1Aql1O3dXRkhjlK21roA7D+aQFY310eIjrpDKbU2niouabSix1NKDcWeaWcJ8hkseqFDrmHoBZ/DfTmwVi0s65t576IvO11rPQ24GPhmPE1RCCHE8fN3YAQwBSgA/tittRHiCJRSfmA2cLfWuqq76yNER7VwDfeKz+G+HFjvAwY1eT8QONBNdRHiqGitD8Sfi4FXsLs4CNHbFMX7TdX3nyru5voI0W5a6yKtdUxrbQGPI5/DogdTSjmxA5JntdYvxxfLZ7DoNVq6hnvL53BfDqyXAaOUUsOUUi7gBmBON9dJiHZTSiXEB25AKZUAXACsb3svIXqkOcCt8de3Aq91Y12E6JD6gCTuauRzWPRQSikF/B+wSWv9pyar5DNY9AqtXcO95XO4z44KDhAfiv1hwASe1Fr/pntrJET7KaWGY7dSAziA5+QaFj2dUup5YCaQARQB9wGvAi8Cg4G9wHVaaxkgSvQ4rVy/M7HTDzWwG/hqfX9VIXoSpdQZwEfAOsCKL/4Rdh9V+QwWPV4b1/CN9ILP4T4dWAshhBBCCCGEEF2tL6eCCyGEEEIIIYQQXU4CayGEEEIIIYQQ4hhIYC2EEEIIIYQQQhwDCayFEEIIIYQQQohjIIG1EEIIIYQQQghxDCSwFkIIIVqglIoppVYrpTYopdYopb6tlDLi605USv3lKMpcqJQ6sfNr26E63KKUWh8/r41Kqe8ep+P+Uil1Xvz13UopXwf3V0qp+UqppCbLrlZKaaXU2CbLZiql3miljBeUUqOO9hyEEEKI1khgLYQQQrQsoLWeorWeAJwPXII9rzFa6+Va67uOZ2WUUmYnlHExcDdwQfy8pgGVx1pue2itf6a1fi/+9m6gQ4E19s9/jda6qsmyG4GPgRvaWcbfge938LhCCCHEEUlgLYQQQhyB1roYuB24I95y2tAqqpQ6O96yvVoptUoplRhf/n2l1Lp4a/eDTYq7Tim1VCm1VSl1ZnzboUqpj5RSK+OP0+LLZyqlFiilngPWKaUMpdSj8dbmN5RSbymlro1vO10p9YFSaoVS6l2lVE4Lp3Iv8F2t9YH4eQW11o/H9/+KUmpZvL6z61uUlVJPKaUei9dvq1Lqsrbq3Nq5x8u5Vil1F5ALLIif25eVUg812fcrSqk/tVD3m4DXmmznB04HvszhgbVfKfWSUmqzUupZpZSKL/8IOE8p5Wjp/1kIIYQ4WvKHRQghhGgHrfXOeCp41iGrvgt8U2v9STzYC8Zbhq8CZmit65RSaU22d2itT1ZK1beAnwcUA+drrYPxVOXngfqU8ZOBiVrrXfEgeigwKV6PTcCTSikn8FfgSq31QaXU9cBvgC8dUteJwIpWTvHlJkH2r7ED1r/G1w0FzgZGYAfEI1ur8xHOHa31X5RS3wZmaa1LlFIJwFql1Pe11hHgi8BXW6jf6Ycsvwp4R2u9VSlVppSaprVeGV83FZgAHAA+ie/7sdbaUkptBya38XMQQgghOkwCayGEEKL9VAvLPgH+pJR6Fjs43RfvS/wvrXUdgNa6rMn2L8efV2AHrABO4G9KqSlADBjdZPulWutd8ddnAP/TWltAoVJqQXz5GOygeV68cdYECjp4bhPjAXUK4AfebbLuxfgxtymldgJjgV2t1Lmtcz+M1rpWKTUfuEwptQlwaq3XtbBpmta6usn7G4GH469fiL+vD6yXaq33ASilVmP/nD+OryvGbjGXwFoIIUSnkcBaCCGEaAel1HDsALIYGFe/XGv9oFLqTew+wIvjQbUCdCtFheLPMRr/Dt8DFGG3pBpAsMn2tU2r0Vr1gA1a61OPcBobgOnA/BbWPQVcpbVeo5T6AjCzybpDz0W3Uee2zr01TwA/AjYD/2plm6hSyoi3OqcD52DfDNDYNxK0Uqq+/3SoyX5Nf84AHiDQwfoJIYQQbZI+1kIIIcQRKKUygceAv2mt9SHrRmit12mtfwssx27NnQt8qUk/5bRDyzxEMlAQbxX+PHag2JKPgWvifa2zaQx+twCZSqlT48dzKqUmtLD/A8DvlFID4tu5432eARKBgnha+U2H7Hdd/JgjgOHx47VW5/ace3X8eABorZcAg4DPYaeUt2RL/NgA1wJPa62HaK2Haq0HYbegn9HKvk2Nxr7BIIQQQnQaabEWQgghWuaNpxE7gSjwDNDSoFp3K6VmYbeMbgTe1lqH4inSy5VSYeAt7BbZ1jwKzFZKXQcsoHkrdVOzgXOB9cBWYAlQqbUOx/tf/0UplYz99/1hDgkgtdZvxQPy9+IDemngyfjqn8bL2wOso0ngix3UfgBkA1+L96tusc5a63face7/BN5WShVorWfFl70ITNFal7dy7m9i30jYjp32/eAh62djB+b/bWV/4uce0Fp3NE1eCCGEaJM65Ma7EEIIIXowpZRfa10TT4deCpyutS7swuM9BbyhtX6pq44RP84bwENa6/dbWZ+D3Up9/jEc4x6gSmv9f0dbhhBCCNESabEWQgghepc3lFIpgAv4VVcG1cdD/FyWYs9R3WJQDaC1LlBKPa6USjpkLuuOqMDOPBBCCCE6lbRYCyGEEEIIIYQQx0AGLxNCCCGEEEIIIY6BBNZCCCGEEEIIIcQxkMBaCCGEEEIIIYQ4BhJYCyGEEEIIIYQQx0ACayGEEEIIIYQQ4hhIYC2EEEIIIYQQQhwDCayFEEIIIYQQQohjIIG1EEIIIYQQQghxDCSwFkIIIYQQQgghjoEE1kIIIYQQQgghxDGQwFoIIYQQQgghhDgGElgLIYQQQgghhBDHQAJrIYQQQgghhBDiGEhgLYQQQgghhBBCHAMJrIUQQgghhBBCiGMggbUQQgghhBBCCHEMJLAWQgghhBBCCCGOgQTWQgghhBBCCCHEMZDAWgghhBBCCCGEOAYSWAshhBBCCCGEEMdAAmshhBBCCCGEEOIYSGAthBBCCCGEEEIcA0d3V+B4SElJ0SNHjuzuaghxVGpra0lISOjuaghx1OQaFr2dXMOiN5PrV/R2PekaXrFiRYnWOrOldf0isM7Ozmb58uXdXQ0hjsrChQuZOXNmd1dDiKMm17Do7eQaFr2ZXL+it+tJ17BSak9r6yQVXAghhBBCCCGEOAYSWAshhBBCCCGEEMdAAmshhBBCCCGEEOIY9MrAWil1lVLqcaXUa0qpC7q7PkIIIYQQQggh+q/jHlgrpZ5UShUrpdYfsvwipdQWpdR2pdQP2ypDa/2q1vorwBeA67uwukIIIYQQQgghRJu6Y1Twp4C/AU/XL1BKmcAjwPnAPmCZUmoOYAIPHLL/l7TWxfHXP4nvJ4QQQgghhBBCdIvjHlhrrT9USg09ZPHJwHat9U4ApdQLwJVa6weAyw4tQymlgAeBt7XWK7u4ykIIIYQQQgjRp1mWprYiRHVpkNxRKd1dnV6np8xjnQfkN3m/D5jRxvZ3AucByUqpkVrrxw7dQCl1O3A7QGZmJgsXLuy82gpxHNXU1Mj1K3o1uYZFbyfXsOjN5PoVrQlVaSr3aAKlEK6FSC1oy1439hqF6VTdW8G43nIN95TAuqX/Nd3axlrrvwB/aatArfU/gX8CjBkzRveUScWF6KiFCxci16/ozeQaFr2dXMOiN5Prt3+zYhbRiIUV1cSiFpFQjD3rS9mypJCDe6tBQcZAP9mjfCRnekjK8JKU6SV3ZAqmo2eMc91bruGeEljvAwY1eT8QOHCshSqlLgcuz83NPdaihBBCCCGEEKJXKNlXw+p5e9m2vAgrdnh7ZebgRE6/diSjTswmIcXdDTXse3pKYL0MGKWUGgbsB24APneshWqtXwdeHzNmzFeOtSwhhBBCCCGE6Km01uzbXM6qeXvJ31iGw20y/vRckjK8GA6F6TBwOA2yhiaRlpPQ3dXtc457YK2Ueh6YCWQopfYB92mt/08pdQfwLvZI4E9qrTcc77oJIYQQQgghRG+itWbfpnKWvL6Tol1V+JJcnHLVcCacmYcnwdnd1es3umNU8BtbWf4W8FZnHktSwYUQQgghhBB9QTQSIxaxcLpNDNPu/3xgWzlL5uziwLYK/GluZt40hrGn5GA6e0b/6P6kp6SCdwlJBRdCCCGEEEL0dgf3VvPan1cRqo0CYDoNHC6DUG0UX7KLs24YzfjTcyWg7kZ9OrCWFmshhBBCCCFEb1ZRXMfrf12N02Vy4sVDiYRiRIIxwqEYqQN8TDgjF4fL7JRjaa0JbduGZ/ToTimvP+nTgbW0WAshhBBCCCF6q9rKEK//ZTXagiu+NYXUAV036Fhw0yYKf/Vrghs2MOKdt3Hm5HTZsfqiPh1YCyGEEEIIIURvFKqL8PpfVlNXHeGqe6Z2WVAdq6ig+M9/puK/L2ImJzPgpz/BkZ3dJcfqy/p0YC2p4EIIIYQQQoieSluasoJaCrZXUHEwgGkamA6F4TDYvbaE8sI6LrtjMtlDkzpcdu3ixey/+x58p55C6o034jvpJJRSDevDu3dT9e5cyv71L2JVVaR+7nNk3nkHZnJyZ55iv9GnA2tJBRdCCCGEEEL0NDtXH2Tjxwco2FFJOGAPSOZwGlhaY0U1AKbD4LwvjmfQuLQOlx/Zv5/9d9+D8nqpXfQp1W+/g2vkCFI/ez2xinKq571HaNs2AHynnEL2vffiGSP9qo9Fnw6shRBCCCGEEKInObi3mncfX48/1c3IE7PIHZFMzsgUEtM9KKXQTYProxjl2woEyL/zTnQsxtB/PYkjO5uqt96m/LnnKLr/fjAMfNOnk/2je0k891yceXmdfYr9kgTWQgghhBBCCHEcRCMx5v1rIx6/k+t+eBIev/OwbZRSmE7Vwt5HprWm4Gf3Edq0mYF/fxTX0KEApFzzGVKu+QyhHTswU1JwpKcfy2mIFvTpic6UUpcrpf5ZU1PT3VURQgghhBBC9EHa0lQerCMSih1x28Wv7qS8oJZzbxnXYlB9rMqfeYaq118n8647SZw587D17hEjJKjuIn26xVr6WAshhBBCCCG6imVp3vr7WvasKwXAk+DEn+YmOdPLCbMGkTsqpWHb/M1lrHk/n0ln5zF4QseC2+jBg+z98m24R48m6zvfPmwqLB2NUvHKKxT99nf4zzuX9K9+tcPnUhWu4q2db7HowCIenvUwhurTbbCdrk8H1kIIIYQQQgjRHpal2bK4kN1rSzjz+tH4U91H3GfxqzvYs66UqecPxp3goKYsRHV5kAPbK9mx8iCDJ6RzypXDScrwMP/fm0jJ9nHqNSM7VC8dDrPv7nsI79lDeM8eqt97j/QvfYn0276McrmofP0NSv7+dyJ79+KdPJncBx9EGe0LirXWrCxeyeyts5m7Zy6hWIixaWMpCZSQ5cvqUD37OwmshRBCCCGEEP3a3g2lLHp5B6X77S6kNeVBrv7ONBwus9V9ti4tZNXcvUw4K4/TDgmWI+EY6xbsY+W7e3jx/mUkZXioqwxzzQ+m42yjzJYU/fZ3BFasIPePf8A3ZQrFf/wjJY8+SsXs2SiPm8ievbjHjWPgI3/Df845zabUOpJffPoLZm+bjd/p58oRV3LN6GsYnz6+Q/UTtj4dWMs81kIIIYQQQojWVB6s44PntpC/qZykDA8X3DYB02Hw9j/WMf/pTZz/5QktBqrFe6qY/8xmckelcOZnRx223ukymXbhECacmcuqeXtZO38fM64cTtaQjs1HXfHqq5Q/+yxpX/gCyZdeCkDen/5E6s03U/zHP6EjEbL/9j38557LxrKNvLvyIW4ZfwsZ3owjn3uoktd2vMZlwy/jp6f8FJ/T16G6ieb6dGAtfayFEEIIIYQQLdFaM+/JjZQX1nHGdaOYeFZew/RWp1w5nMWv7iQt18+Jlwxttl9tZYi3/r4OX6KLi26fiOloPe3a7XNy8gW5DPzwMWLPl7D/3VTM1DTM1FT8s2binTCh1X0DGzZQeN/P8c2YQdZ3v9NsnW/aNIY++5+G9xXBCu6afxfFdcW8tOUl7ph6B58d81kcRuvh3tu73iZqRbll/C0SVHeCPh1YCyGEEEIIIURLdq8rpWhXFbNuHsv4M5pnuE67cAhlB2pZMmcnaTkJDJ2cQeHOSnatPsj2FcWE6iJc8/3peBNdRzxO8UMPUf3mG3gnTya4oYBoeTlWVRXV777D8Ndfb3GfWGUl+++8CzMtjbyH/oRytB62aa352aKfURYs4w9n/4HZW2fzwNIHeGX7K/x4xo+ZkjWlxf3m7JjDqNRRjE0be8RzEEcmgbUQQgghhBCiX9GWZslrO0nO8jLm1AGHrVdKMevzY6koDjDvXxtwuk0C1REMh2LgmDSmXjCYjIGJRzxO7ZKllD/9DKk338yAn/y4YXnZ089QdP/9hHbuwj182GH7Vb42h8iBAwx5/jkcaWltHuOFLS+wIH8B3z/p+1w49EIuGHIBc/fM5XfLfsctb9/CY+c9xml5pzXbZ2flTtaVrOO7J363Q32yRetkDHUhhBBCCCFEv7J9RTGl+2s4+fJhmGbLIZHDaXLJ1yeRMTCRgWNSueC2CXz592dy+Z2TGTgm9YjHiNXUUvCjH+EcMpisb9/TbF3iBecDUD13bov7Vr35Ju6xY/FNndrmMbaUbeEPy/7AmXlncvO4mwH7psCFQy9kzlVzGJQ4iN8t+x1RK9psv9d3vI6hDC4ZdskRz0O0T58OrJVSlyul/llTU9PdVRFCCCGEEEL0AFbMYsnrO0nPS2DU9Ow2t01IdnPN96dzwW0TGXViNi5v+xN+i3/3OyIFBeQ+8CCGr3kfZueAAXgnT6Zq7ruH7RfOzyewZg3Jl13aZvl1kTq+9+H3SHIn8eszfn1Yy3OCM4F7pt/DjsodvLzt5YbllrZ4fcfrnJZ7Gpm+zHafj2hbnw6stdava61v9/v93V0VIYQQQgghRA+weXEhlcUBZlwxHGUcOQ1aa02spobIgQMEt2yhbtkyouXlbe5T89FHVLz4Imlf/AK+aS23OideeCGhjZsI5+c3W1715lsAJF3SdmvyX1b9hd2Vu3ngzAdI87ScLn7u4HOZljWNR1Y/Qk3YbmxcWriUoroirhxxZZvli47p04G1EEIIIYQQQtSLRSyWvbGLrKFJDD3hyFNShfftZ/usc9h64klsP+dcdl15FXs+fwv77/pW68eoqqLgJz/FNXIEmXfd1ep2TdPB1xxcw99X/526SB1Vb76Bd/p0nG1MGay15t3d73LB0As4JeeUVrdTSvH9k75PWbCMJ9c/Cdhp4InORGYOmnmEsxcd0e8GL9u5+iDblxdx8hXDScmSYeWFEEIIIYToL9Z/tJ+a8hDn3DruiIN26WiUA9/7HlZNDVnf/Q5GcjJmUjJ1K5ZT/vQzBLdsxTNm9GH7lT3zDNGiIob+7a8Ybner5bsGDsQzYQLFb77G17xPUBOpYdXiV7ln216yf/bTNuu2r3ofJYESTh5w8hHPeULGBC4dfilPb3yaS6urmbfnLS4ZdA4eh+eI+4r263ct1msX7GPb8mJe+NVSVryzm1jM6u4qCSGEEEIIIbpYqC7Cird3kzcmhUFj2x5pG6DksX8QWLWKAT//Oem33UbqddeRdOEFZH7jGyi3m/LnnjtsHysYpPzZ50g4+yy8kyYd8Rh61imwcRsDa908eOaDjF9RSkzBvOE1aK1b3W9l8UoApma1PbhZvW9N/RZoi9u3/4eAjnLl4qfhkRkw72dQtrNdZYi29avAOhazKNpVyagTsxg6MZ3Fr+7kf/cvo3BnZXdXTQghhBBCCNGFlr21m0BNhNOvGXXEbetWrqTk0UdJvvKKwwYRM1NSSLrsUirnzCFWVdVsXeWcOcTKykj/4peOeIyyYBm/cs8D4NfRy7lk2CVcvD2RfePS+PWWv3LX/LsIxUIt7ruyeCVJriRGpIw44nEAcvw53OIdQrHDwSBvFlNm/gISB8Cnj8ILN7erDNG2fhVYl+TXEA1bDJ+axUVfncTFX5tEsDbK7N+vYNHs7cQi0nothBBCCCFEX1NeWMu6+fsYf3oumYPbnn86Vl3Nge9+D2deHtk/bTklO/Vzn0MHAlS++mrDMm1ZlP3rKTzjx+Ob0XaKdl2kjjvev4N13lKsEYNxf7yKwKrVWAWFnPL57/Ht6d9m4b6FzN3d8nRcK4tWMjVrKoZqZzgXDfHlnasZrNx8buIXUad+A255Dc79KRRvgOqi9pUjWtWvAuuC7RUA5IxIBmD4lEw+d98Mxp+Ry6p5e3nxgWWU7KvuxhoKIYQQQgghOtvH/9uOw2Uw44rhbW6ntabw578gUlRE3h9+j9nK7ELeCRPwTp5M+XPPoy27ca5m4QeEd+0i7UtfOmL/7V8t/hUbSjfw+7N+T9YlVxBYuZKyp55Cud0knn8et064lUxvJgvyFxy2b2mglN1Vu9udBg7AlrdIqCvjzVMf5ObxTVqoh51lP+/+qP1liRb16cC6fh7rQDxFo2B7JUkZHhJSGgcRcHkdzLppLJd+8wQCNRH+98By6XsthBBCCCFELxKoDrP41R28+qeV5G8qa7Zu97oS9m4o5aTLhuFLcrVZTu3HH1P15ptk3nkH3smT29w29abPEd69m9pPPwWg7MknceTmkHThBW3uVxepY+7uuVw/5npmDZ5F0oUXgtZUz52Lf+ZMTL8fQxmcPehsPtn/CeFYuNn+q4tXAzA9e3qbx2lm5TOQNBBGzGq+fMAJ4EmGXR+0vyzRoj4dWNfPY51YV4cViVCwo4KckSktbjt0UgY3/uxkhk3OYPGrO/n3Dz/hoxe3cnBvdZsDBwghhBBCCCG6R015kI9e3MrTP1rEinf3UF5Yx5w/r+bD/24lEo4Ri1p88tJ2UrJ9TJo58IjlVb3xBkZyMulf/vIRt0286CLMtDTKn3uewLp11C1fTtott6Cczjb3W1KwhLAV5tzB5wLgHjkS13C7JT3p0sa5q2cNmkVdtI4lBUua7b+yeCUuw8n4d34Or999xHpSkQ875sPUm8Awm68zTBh6Juz68MjliDb1i+m2VCjMnseeJVA9mNxWAmsAr9/FhV+ZyN4NZWxadID1H+5n7fx9pOUmMGJqJgPHppI9NBnT2afvRwghhBBCCNHjrZq7l8Wv7QANo2dkM+3CISSmefj0lR2sXbCPfZvKyB2dSkVRHZfdMRnT0fZ3eB0OUz1/AYnnnXfE4BjAcLlIufZaSp94AquyEsPvJ+Xaa4+43wf7PsDv9DMta1rDspTPXE3Z08/gP/vshmUzcmbgdXhZkL+AMwee2bB85d6FTAoGce1fAMqAs78PSa3Pec3qZ+3nKTe1vH7YWbD5DSjfA6lDjlh/0bJ+EVhbPi+7Xv0ERg0mZ2Rym9sqpRgyMZ0hE9MJ1kbYvqKYLYsLWf7Wbpa9uRuH0yBnZDJ5Y1IZOCaNzMF+DFMCbSGEEEIIIY6XLUsKWfTydoZPyeT060aSlO5tWHfm9aMZekIG7/97Exs+3N/w3f5IahcvxqquJvGC89tdj9Qbrqf0iSfs1uovf6nVPtn1LG3x4b4POS33NJxmY/Ce9uUvk3brrc0Cerfp5oy8M1iYv5CfnPITDK2pW/gAm6r38CU88LkX4bnP2oHzWd9r5YAWrHoWhp/detDctJ+1BNZHrV8E1rG0NCrTx+C0AiSnt92voilPgpOJZ+Ux8aw8grURDmyrYP+WcvZtKWfxqzuBnbg8JrmjU8kbncKAEclkDko84t0wIYQQQgghxNEp2F7B/Gc2kTsqhQtum9Did+9B49K44acns/7D/Yw9ZUC7yq2aOxcjIYGE009vd12cubn4z5lFzcIPSPv854+4/aayTRwMHGTmoJnNliuloIVW8lmDZjFvzzw2lKxn0rz7Wbd3PrGcbKae/1sYer6dxr3yGTjjO2C0EIPsWgiVe+G8+1qvVOZYSMi008GnytRbR6tfBNaYJtWDppC8Zx1lT+4n46u3d7gIT4KT4VMyGT4lE4C6qjD7t9pB9v7N5exeW2IfymGQOTiRAcOTyB6WzIDhyfhT3W0VLYQQQgghhGiHyoN1vPXYOhLTPFz8tUltNmh5EpycePHQdpWro1Fq3nsf/6xZGK72N8QB5Nx3H+Ev5eMccOQA/sP8D1Eozsg7o11lnzXwLExlMn/zS0za+jYrJ1+CqtrAlNxT7A2m3Qov3wa7P4ThMw8vYOUz4EmBsZe1fhCl7FbrXR+C1vZ70WH9IrDWFlTXGgzOdlDyt7/hnzUTz+jRx1SmL8nFqBOzGXViNgA15SEKd1ZStKuSwp1VrFu4n9Xv5QPgT3UzYHgyWUOSyBzsJ2NQIp6EI/fbEEIIIYQQQtiCtRHe+NtatNZc9s3Jnfp9um75cmIVFR1KA6/nyMzEkZnZrm0X7lvI5MzJpHpS27V9sjuZ6dnTWbBvId8CVrodjE4dTaIrPhf3uMvtwHnl04cH1jUH7b7TJ34JnJ62DzTsLFg/G0q3Q8aodtVNNNcvAmsraj+Puv0qale9wL477iT9ti+TdMmlmP6ETjmGP9XNyOlZjJyeBUAsYlGyr4bCnZUU7qqkcGcl21cUN2yfmOYhY5CfzMGJZA5KJGNQIgkpriPOeSeEEEIIIUR/Ew5GefuxdVSVBLjy7qmkZPs6tfzquXNRXi/+M8888sZNRGIR/rvlvxQHirln2j1tfpcvritmY+lGvjXtWx06xqxBs/ht4VJ2Zo5gTfkWrhxxZeNKpwcm3wDLn4S6MvCl2cstC177ht0CfeKXjnyQ+n7Wuz6QwPoo9ZvA2uE0GDAhj+Cf/kTRb35N4c/uo+jB35J08UWkXHMt3imTUS31SzhKptMge1gS2cOSmMwgwJ5fryS/hoP51RzMr6Ykv4Zda0sgPpuXN9FJ6oAEUgf4Gp9zEvCnuFGGBNxCCCGEEKL/CVSHef2vayjZV8P5XxxP7qiUTi1fWxZV8+bhP/NMDK/3yDsAWmve2/seD614iPxqO0t1SOIQrhl9Tav7fLTvIwDOHnh2q9u0ZFbOafwWeCw9g0Co4PD5q6d+HpY8Bmv/C6d83V728R9h21y45A+QOebIB0kdBsmD7HTwk27rUP2Erd8E1tnDkzAdBgmnzGDYnDkE16yh/KWXqHrrbSpnv4wjMxP/zJn4Z80i4dRT2v1L1RHeRBeDxqcxaHxaw7JwMErpvhoO5tdQsq+a8oI6tq8oJlQXbdjG4TJIHZBASraPpHQP7gQnbp8DT4ITT4IDt8+JJ77M4TJbOrQQQgghhBA9ViQUI1gbwZ/qbtbqW1Ua4PW/rKG6LMglX5vE0BMy2l2mjkapnjcPMzkZz6RJmImJLW4XWLWK2MESEi+8oF3lbinbwv1L7mdl8UpGpozk0XMf5V8b/sUfl/+RMweeSZYvq8X9Fu5bSG5CLiNTRrb7HADyyvYwOhTmbQoAmJI1pfkGAyZC3nQ7HXzG1+xW5wX3w6Tr2h8k1/ez3vK23drdiQ2O/UWvC6yVUuOAbwEZwPta678faR8rBjkjUpqWgXfKFLxTppD9wx9S/d571CxYSNVbb1Hxv/+hPB78s2aSfPkV+M88o13z2B0tl8dBzsgUcprMr621JlAdoaKolrKCOioK6ygvrKVgRwXbV4TRlm61PNNhYDgUhqEwTIUyFC6PA5fXgdvnaAi+DQUYCqXs7ZwuE6e78VG/r2HYz063ictj4vI6cHpMu0yPKVONCSGEEEKIDtFas39LOfmbyikrqKXsQA1VpUHQkJThYciEdIZMysCb6OStv68jGo5xxbemkNvk+/KRhHbt4sAPfkhw7Vp7gVK4RgzHe8Jkki69BH+Tkb+r585FuVz4z555xHKD0SBfe+9rWNriZ6f+jKtHXo3DcDA4aTDXzLmG+5fcz8OzHm5xvyUFS7hyxJUd7/q5Yz6zAiG2ul3k+fMYkNDCIGnTboHXvwWbXoc37oH0UXDZwx0biGzYWfbUXcUbYMCkjtVRHN/AWin1JHAZUKy1nthk+UXAnwETeEJr/WBrZWitNwFfU0oZwOPtOrCm1fmrTb+flKuuIuWqq7DCYeqWLqNm/vtUvf0O1W+/g5mSQtIll5B08UV4p05FObr+R6aUwpfkwpfkIndU84ENtNZEgvYdvVBdlGBdhFBtNP7efm3FNJZlP3TMIhyKEa6LEqyLUl0aJBqOoS2N1nZ5VkwTCcWwYq0H7K1xuIyGwN3lMXHGA+76QN5uVW98uBPiy/xOnG5T+pQLIYQQQvQToUCUzZ8WsP6D/VQU1WEYipQBPrKGJDH21BxcXgf7Npez6dMC1n2wHwBfsourvj2NjIFtzw9dT2tNxX//S9Fvf4dyucj9/e8w09IIrFlDcM1aat5/n8qXXybx/PPI/uEPceTmUjVvHgmnn96usZde3f4qJYESnrzwSU4acFLD8iFJQ/j65K/z8MqHmbdnHucPaT4I2rLCZQSiAc4eFE8DP7AKnL72pWnvmM+s5FH8g0KmZU1reZuJ18A7P4L/fQEcHrj+GXC372fWYGi8f/muDyWwPgrHu8X6KeBvwNP1C5RSJvAIcD6wD1imlJqDHWQ/cMj+X9JaFyulrgB+GC/ryBQMGNZyYN2U4XLhP+N0/GecTva991Lz8cdUvf46FbNnU/7cc5jJySScdRb+mWfjP/NMzKSkdh2+Myml7CDW2/n/dbGoRSQUIxqONQTn2ooH3uEYkUCMcDBqPxpe28+RQOPrqpII4YAd9EeCsVaPZ5gKd4ITj8+Bx18feDsbUtw9Cc54wN4YuNefu9NtYki/cyGEEEKIHi0ajrFvczk7Vx9k2/IiomGL7GFJnPuFcYyclnVYN8bJ5wwiGolxYGsFxXuqGX1yNkkZ7euiGaus5MD3f0DNBx+QcNpp5DxwP85sewaf+hZqKxym7F9PUfLYY9RcehnJl19O9EABiXfedcTyI1aEf63/F5MzJ3Ni9omHrb91wq28u/td7l9yPycPOJlkd2P88cG+D/A6vHYwvvJpeP1uSMqDu1aC2UZ2bHUhFK1n/Dk/43PuMBcPu7jl7dyJMPFqWPUfuOIv7QvYD5WcB+kj7cD61G92fP9+Tmnd8VbKYzqgUkOBN+pbrJVSpwI/11pfGH9/L4DW+tCguqWy3tRaX9rKutuB2wEGZgyf/sz//u/o6xwI4Nq4Cfe6tbjXb8CoqUEbBpGRIwmdMInQpEnE4r+0ojltaWJhiIYgFoZY/XMYYiHd8D56yDrdejzewHCA4bQ/iwyn/d50HbpcNaxv2O6QfXp6q3lNTQ1+fwfvOArRg8g1LHo7uYZFb9bZ1280qAlWQLgWYkGIhjTRYHywYDeYbnB4FIYJNUWa2kJ7neGApEGQNkrhTeuC715ak/Loo7g2bqL62msInH12m/2EjbIyEv/3Ep5Vq9CGwcHf/w6d0HaL9ZKaJfyn9D98NfOrTPRNbHGb/HA+fyj4A9MTpnOq/1TKo+WUx8r5oOoDhrmH8ZtaP0P3vECtbzAJdXvZPOZOCnPOa/WY2YULGLf5YZZPf4iaxOFt1s+M1pJYvYOK1BPa3K4to7b+neyiD/jk9GfRRs8Yu6knfQbPmjVrhdb68Lsq9IzA+lrgIq31bfH3nwdmaK3vaGX/mcBnADewVmv9yJGOOWLwGL1j75ZOqb+OxQisWUvNggXULFxIaNs2AFxDhpBwxhkknHYqvhkzMHvIf35vFQnHCNZE7NbwYIxwfYt4oL7F/JD39a+btJy31Vpez+6D3tgS7j7k2eU1cXudOD3N+6C39DCdRpcE6QsXLmTmzJmdXq7oG+ozTeof0XCMSDBGJBwjGrawLAvdkIFiX/OmQ2GYBqZD4fTEx1/wOnAnOHG5zU6fhaC7r2Ft6Yafh2GqJg+jxcwXbdndY8LBphk8VkMmj2kamA4D06kwHWb82V5mmKrH36wTHdfd17AQx6I9168Vs+zPLmU3OGhLU10epLIoQEVxHRXFdZQdqKV0fw2B6kizfV1eB16//V0pWBOhrjqMFbXji4RkF8MmZzJscgZ5o1MxnV03Nk/pU09R/OBvyf7xj0n7/M3t3q928WJiVVUkXdD2wGWWtrjqtatwGk5euvylNj/rH1rxEE+uf7LZsnRPOr80czhr/Vsw5Sa7//P/nQ/BSrhjOZitZKPO/grsmA/f3XZ8BhTbOhfW/Q8u/m3j1F3drCd9BiulWg2se8LgZS1dla1G+1rrhcDCjhzA0YkDfCvTxDdtKr5pU8n6zrcJ79tHzcIPqPngAypefpnyZ58F08R7wgl4p0zBM348ngkTcA0d0qnTefV1TpeJM+3Y7pLVfzkOxYPvSDD+Ov5oeF0XJVSf3h6w+6GXxvcJBaJtXI3NKQWOIwTfTrcj/mzgcJk4nAam08Thsr+UO1wGjvr3TgOH0yAS0ARrI/Yy05Cp13oRrRu7U0QjFrGIRTRiB3iRUIxQXfNrsen7SDBq7xO194tFNbGovX8squ2yQjGsNgYzPBpK0WSwQ3ssBG016RoSP5+my5xuB95EJ16/E0+iC7fX0XAtm06D8p2a9cZ+rJh9HlYsfk4xjRVt/hyLWFgxq8UxH1q8DxxfqIFYpLE7S8PNhmCMaMRq44RpCLJNUxGLaaKhdqTMtFFefZBtOhSm02h476h/7TTszwGPictdPyBk/PMhPjikva5x3AqHy4yXpeRzQAjRYZFQjPLCWsoO1FJWUEtVSZC6qhB1lWHqqsJEmnzu1ceLTT9zHS6DtJwEhk7KID3PT3peAslZPnyJrsOC5frxgEKB6HGbMjawbj3Ff/wT/vPOJfXmmzq0b8Ipp7Rru/l757Orche/P+v3R7yBeseUOxiXNo4kdxK5CbkM8GXj+d8XYdNbcPYPYOa99g/6rO/Bf2+C9bNh8vWHF2RZsHMBjDjn+I3SPfoC+yE6rCcE1vsgPtGzbSBwoDMKVkpdDlyem5vbGcW1yDVwIGk330TazTdhhcMEVq2m9tNF1H26mPJnn0WHwwAYPh+uoUNxZGfjyMrCkZWJIzMTMykZMzkJMzkZMyUFR1bWcRkgrT9QxrH3R68Pzo/8iNrBUtB+HQlbDcuDNRGqy0L28vj29Xdy22vrax81Oy/DVJj1LW6O+vd2a5nhMBrXmY2tkw3BQ3x7w2FgGgpVPwK8sp+VQeOI8Kql9wojvkw13QYa/horhX3Xu/6+Wf1T0/U02aZhPQ0vFHaw1DAKfnywvfpB9w5dBvHlmmbb1O+vtf2PZemG4M6K6fijPuCLv441WR89fFnr+8fXN9m2vTdmID7ugM/REFjZN14MnG7nYYGZfSOm+Y0bh9tovHnjsm/Q1LfO1v8f2vW3Gp7DwfrBDSMNwX2oLkooYA+QGAnG7Js8TWYJaHg2FUpBOBgjWBOmeE+QQI1dzqEOLD08a8gwFIZDxWcziF+3DdevanLhNO7T0neZ+uvKdNgZKAnJ7vjP45Cfj9NouDFw2P9f/LVhqsMC2qYt3ErR8LNrdtOj/iZIs+X1j+bro2GLQHWESMjOsIkEY8SibQT/LV0rhsJw2j+r+tkgGgN6ozErodk28cC84XXj9WHWXyP1nxtm08+NQ183f3/YjYOGa1TJzBFCdKFoJBYPkMPxv8t2Fo7Wmooiu4W5rLCWAzstNrzwQcN+hkORlO7Fl+Qic0giCUlu3An2d6X6G6YAiWkeUrJ8pGT78CW72p2N05XjAbUkVl3N/m9/G0dmBrm//nWXZA1prXl83eMMThx82KBkLXGaTi4adlHjgsJ1sPVtmPUTOPt7jcvHXAJZE+DD38Oka+HQ1OuidVB70A6sRY/XEyK4ZcAopdQwYD9wA/C5zihYa/068PqYMWO+0hnlHYnhcpEw42QSZpwMd4OORAjt3Elww0aCGzYQ3pdPpKCAwJo1xMrKWi7E4cCZl4tr0GBcgwfhbHgehGvQoC6ZX1u0rjOC85bEYvaX62g4Fm/FjLdmhu3WtaatmxvXb2bEsJENLZVWzIoHe5pYQ/DXeuAXCcWIRaPNA4j6wCoWTxPWdgDa8Di+PUS6V7zF8vAbE4cHD/WvnfXBVrPApPHmheE4PDCpb72tz05o1vXAZz87uqg7wfGmtW4IIGMRi08+XsTpZ5wW/7kYDc/S6tooFrNvzNVn19ip6NHGZSErfgOnMXvBOux1vNW/ybpwINqwT9NtrHjwX5/e3lWUorHVvkngrVT85pyyN1Lx9NOmy5umpSqDhht79q9I/a03+6nhDJrcaKu/CWSYjTeDGm7O1X/OaR2/gWe/bvgMqP8ccNqZQoUFFp9W7GjMRGhyY8KMb9P8BkfTcuxuA4ZpNNvfcLTcFUGIltRWhijYXknB9gpKD9RSebCOmvJQmzdvDYciNduHNx2mnjOMtNwE0nISSM709pmbXlprCu+7j8iBAwx55hnMlJQuOc6nBz5lY+lGfnHaLzCPpt/xtnn287TPN19uGHag/b8vwMZX7ZG9m9ox334eMavjxxTH3fGebut5YCaQoZTaB9yntf4/pdQdwLvYI4E/qbXe0EnH6/IW6zaP73TiGTMGz5gx8Jmrm63T4TDRsjJilVXEKiuwqqqIlpYR2bePcH4+kfx8KteuxaqqarafmZmBKzcPZ179I7fxdW4uhsdzPE9RHCXTNDC9Bu52BOyFwS1MnjnoiNt1pmZfPutTfg99bzWmOje0GjdtOW4oi/gX3+att/Ymzfdruq/WNH65BpQBoJq1hqv494LGL+CHbKMav4TXb2s2bXmTL7ZdQin7RoLDaX/5cPkVCSnubq5Vz2aaBmaCgSehjZFhu0jTLgv1j9ghLfrWIeubtvgf2kpf34XBanjdpMU+Ytk39OKBbH12ScNzw/Lmy+q7HzR+1tRHz4dkwdD4OVA/nWTT7gtNg/amnx/1Ab62dLPMAyt+4yIShvJtezu/64Vh34QznY1ZG4dmF9Rnp7i9Ji6fE7fXzqhwOJt2KWp83fhc36XIzl5xuGQ2jd5Ca015YR0F2yso2GEH01UlQQAcToP0gX7yRqWSnOUlOdOLL9ndkJFV340mOdPbEEAvXLiQk2YO685T6hJWbS0l//gnVW+9TeY99+CbNrXLjvX4usfJ9mVz+fDLj66A7e/b01cltjD/9LgrIWMMfPgHGH9185TvHfMhe2LL+4ke57gG1lrrG1tZ/hbwVhcc77i2WHeEcrlwDhiAc0DbvyixigrC+fmE9+4lkp9PZP9+Ivv3E9iwnqp58yDSfAAJMyPDbvGOB9rOvDzM1DSMRD9mYiKGPxEjIQHD40Z5PChX+1N7RP/R8EVTvoQJ0ecpZXcJ6SGDv/ZI9QPnaMu+6dAsA6A+ayBmEYvUr28MyhsyCBrGEGgevB+aTVA/zkDT5cGaMJUHG8diaGkMgvZwuO3+/C5PfNrKJtk4zZ4dLWTxNHtu0tXo0OWH7ttksETDtLsMOD12d5X+krUSi1pUlwapLg1SVRqgqsR+ri4NEqyNNOuyAlC8u5pgrf39zpvoJGdECpNmDiRnRAoZg/2YfaS1+VBaayJ79hDYsIHgxo0EN24kvHMXnokTSbroQvyzZmH6/ViBAOXPv0DpE08QKysj6dJLSf/KbV1Wr02lm1hetJzvnfg9nG1Ni9WaYBXkL4bT7mx5vWHAWd+Fl78CW96EcZfb0+VU7IW9i2HGV4/tBI5gxZ5yqoIRZo3J6tLj9Ac9IRW8y3R3i3VnMFNS8Kak4J10+CTt2rKIHjzYEGxH9h9oeB3csJHqee+hDwm8D6MUyu3GcMcDbY8bw+1BeTwNywyPG+VyN1/ncaPcjc/K48bweOyyPJ7GdU3KaVgmfciFEEL0QspQOAwTx/FPLGhwaFeL+gER7S5Eja/rl9vdjCwi4RiRYH2/fnvMj/puAdGwFe820LzL0KHPRxvQt6Z+LATzsC43zfv3Nx0rpL6Fv2GQv/hNgqZjdHD4y4bMpnqmac+K4PI2jqdgD4AYjc8IYDUbG6V+fBQ72cp+Nk2FO8GJJ/5wuk1qykN20NwkeK6paJ6ybRgKf7qHpPijflyWYG0UK2YxdHIGOSOSyR2ZQnKWt883gGitqVuyhIN/+SuBlSsBO+vTPWYMvhNPpG75cmrefx/ldOI79RSCGzcRKykh4bTTyLjzDnxTu66lGmD2ttm4TTdXjrzy6ArY9YE939jINvpmT/gMLHwA5twJb30fqgtouGhGde1AYr9/dzNLdpXx4Gcmcf1Jg7v0WH1dn45wenKLdWdQhoEzO9ue+H7atMPW24F3CbGKCqyaamLV1VjVNVh1dehQECsYQgeDWKEgOhhqeG66LlZZSbSocRt7e/v5qDkcjUF704De48XwJ2D6EzESEzET/Rh+P4Y//jox0W51T0rCjD+Uz9fn/+AI0dV0OExo125C27YRyd9LpKiIaGERkeIiYmXl6HAYHYnYj1gMw+ezfwfjv4+uQQNxjxmLZ8xo3KNHYyYnd/cpdZi2LGKVlVi1dfHzDaPDEYhF6/sk2A/DwPD67MyfhAQMn1dmfBDH1aFdLY6n+vT6+gEQG183GfE/engwHouPDVI/vkgkGCMcahxP4LDxQazGfa2oRSTY2B2hvktB/Q2C4zUmiFJgOAwauvgr1frNBgX+FDdJGV7yxqTaAXSGl6QMD4npXhJS3JKWH1e7dCklf/0bdcuW4cjOJvveH+KbMQP3iBEop30HS1sWgdVrqH73HarnL8A9aiSZDz+E78QWZzzqVHWROt7Y+QYXDr2QZPdR/m3bNg/cSTDo5Na3MR1w8e/g079BYi6kDILkQZA+Ega3b9Tyo3WgIogCfjB7HTELPjdDguuj1acD6/7ODryzcGZ3fmqH1tr+8hmMB+GhIFYwiI4H3VbTAL1+XZPg3QoGDgvirWCQWGkZ4T17sGpqsaqrG0ZVb5XD0fgFPzm5IeA2khIbRly3A/FkzKR4UB7fzvD75Qux6HesUMhOsVu7lsDadYS2biG0azdEG0fyNlNT7RkMsrPwjBmLcrvsbiNOJ8owserqiFVXYVVWEauspHree1T876WG/Z2DB5Mw42R8M06xB3M8BjoaJbB6NcGtW3GPHIln/ARMf8JRl2cFAgTWriOwcgWBNWuJFBURKykhWl7e7GfQbkphpqfbXXtyBuAYkIOZ6G+6QbNtATCUndnj9dpBus9nzwqRkY4jPR0jOVluGIoeSSnV0Pe7J9BaN0xfqA+NsHXT6aIOH5Szfnq+cHx6zWjYsvui16dl18+6EE9bN1sYXFJre4DQYE2EYG2ESChGQoqbxDRPj/kZHQ+x6mpqP1lEcNMme3oosDMiHQ78s2bimTjxsJ9d3YoVHPzr36hbvBhHZibZP/4xKZ+9DsN9+HgcyjAaprrNvvfeY65vZaiSNQfXsLtyN7ur7EemN5MHznwAQzX/f3t397vURmq5ZtQ1rZR2BFrb/auHnw1HSiMfdb79OI4sS1NQGeDW04ayu6SWH72yjpjWfP6UIce1Hn1Fnw6s+0IqeE+l4inkuN2YXdg4ZYXDWNXVWDU1xKprsKqr7AHfqiqxqqsbX1dVEauqJlZVRSQ/n1hVFbGqKoi1MR+tUnYruN/fLA3e8HrsvuhJiZiJSfH+6Ul2YF7fat6k9dxISJAAXRw3VjhMrLzCzkSpq0WHQliBADoUAstqDICdTnQ0SuRAYxeR8O49BLdtaxibwTFgAJ5x4/Cfcy7uUaNwjxqFa+iQFr/YtEVrTbT4IKGtWwhu3kxg9Rqq3nm3IdhOHzCAgjPfxztlKt6pU3ENG9pq4Kgti8i+fdStWEnNhx9Q+8mi5oM4KoVr2DA8EybgGjQQR5Z9A8CZnY3yeEFb6FgMLAuruppw/j4i+/YR2b+P0M5d9he/eADtGjkC18BBeCaMx5GegSM9DcOfaP/8XC6Uy4kyzYZ6obVdbl0dVm0tVm0dVm0NkeJiogWFhHbtonbRp1h1dfU/mA79HBs4nTgzM3Hk5uDMycWZm4uZmoIOhe2bkoFgw81JKxhEBwJY8f9/e86d+Ge0x9swlWPDc0rjeyMx0R44s6ycWFkpsfJyYjXxrKZAwG69j0bBNFCGaT+7XE3KSjmkbPu1fB6K40Up1axvcncc3+Wxp0hMyuhfs7aE8/Opeuttaj76kMCq1fb3LdNEGUZj1ns0Ssmjj+IeP47U628g+bJLCW7dSslf/0btokWYGRlk3/tDUq6//rgNvru/Zj83vXkTpcFSAJJcSWQnZLOscBmn5JzC1aOaDzb80raXGJ48nKlZh6Sbb3kb3Ikw9Iy2D3hwM1Ttaz7FVg9SUhsiEtMMTU/ghxeP5ZvPruSnr67HsjS3nja0u6vX6/TpwPpoUsEjsQhby7eS588jxZPSdZUT7WK4XBjp6ZCe3uF9tdbourqGINuKPzcG43YgblVXN6S3W6EgVm0dkaJiO3CvrkYHAm0fSCk7Zb0+AI8H3srjxnC5UW53vB+7y+6r7naj3C47Db7pe48H5YpvF99HudwYlZXEqqrs906nfGnto3Q4TKT4INHiIqKFhUSKiu3n4iKiRcVEi4qIlZc3Bm0doJxOHLk5uPIGkv6FW/GccALeEyZ3WjaLUqohO8Z/5pn2+cRiBDduom7pEvLffoequfMaAm0zORlHbi6OtDTM9DQcqalEy8sJbd9OeOeuhq4mZmYGieefh/+ss/FOnGBPX7h+PYH1G6hbvpyqN99sbB1pu4I4cgbgGjSY9C99Ce+0qfimTOmyaVmORMdiWIEgOlCHFQjYGQDl5URLSomWlhArLbXT8Q8UEFi5kqq3325sTVfKbulu2oXGY499gaHsL7eWhbYsrLJyghs3EqusPPLnWBPK7cbwejF8PnA6IGahrZj9HA63fdMyftNVmSY4HCjTtMfVcJgoM/7e6cTw+TAS6lPq/XZwnpoaf6TEB9lsPl6HcrkazlU5ndKqL0Q3CO/dS8nfH6NyzhyIxXCPH0f6bbfhP+tMvJMnNxtHJ1ZTQ9Xrr1P+wn8pvO8+iu6/Hx0KYaalkfX975N64w3HdRrZqnAV33zvm4StMP847x+MSx9HqicVrTW3vnMrD698mHMGn9OQ8r2tfBtrD67leyd+r/nnzcbX4MVb7elKPvNPe/7p1mx/z34eeV4XnlnrCioDfOfFNfzxs5PJST78Z11QYf+9zU3x4naYPHrTdO54biW/fnMj54zNYlCa73hXuVfr04F1e20v386nBZ/y6YFPWV60nEA0gEIxNm0sp+aeyik5pzA9ezou09XdVRUdoJRCxftBOnNyjrocHYnYrThVVY2t5tXVduBdVd0QgDd9jhQVokNhOzU+FMIKhxvS5DsqE9jadIHD0axVUrmcTV43LjdcLmjyWjmd9nvTgTINMB12kG6a9nsj/mya9pdio+nyeGuVaYJh2GU4TLsMh9mwj71dvPz4lDkNk8Tac+fEl9VPvaUblgOHHDP+7Di0LkbjXXGtIRZDR2PoaKTxdSza/HU02vBaNfSXNcBQ9nvDsN8rO+XMnupCNYyK3th9IWgHRMGA/Ryy3ze2IsZbDyNh7MnBGx9N/49wOtCBYPPrprLysP975fXizMrCMWAA3mnT7EA0NQUzJRUzJaX5CP9ut/0zqe8LHYmAYeDMzcORmXHcb8go08Q7aSLeSRNZN2IEk886i/CuXQRWrSKwdh3R4mKi5XbXj2hZGWZSEu6RI0k46WTco0biGT8e99ixzertzMtrCNzBThOPlpQQLSoiUlRkt9objdepkZCAa+BAnDk59s+9h1CmaaeztzOlXcdiWDU1xzSTgxUKEauoJFZRQawynvFQU4uZlIiZlman/6em2jcFzbZb/7Rl2VlEFRUtPqxQCKIxdKz+989+TSz+exgO263+NTVEDx4kVlNrB/8duWmklP1Z2Cx4j7+PL8PpiH9WxQN7h7Nx2ybrlKP+JsAh2zZZl5CfT8nmLY3bOpwoR7yslspxxsuKf1Y1/wHqQ94ensLc1vYtbnRYGYfvc9hxLN3s80JHIvZnoGmCsueZVx4Phi+hcUwBt6v5mANaN34mBoNYgYB9YycWsz8DrZj9uefxYnjtmyJmUhKOjAwZyLSHsAIBYmVlaK1x5uW1+vkS2rWL0sefoPK111AOB2k330zaF7/Q5uw2pt9P6o03knLDDQTXrKFyzhyceXmk3nijfePuOIpYEb6z8DvsqdrDP87/ByfnNHZTUkrxoxk/4vo3rufR1Y9y7ww73Xz2ttk4DSdXjLiisaC9S2D2V2DgSXZq9+zbIBI4fH7qetvmQeY4SB7YlafXqueX5rNoRylLdpZx1dS8w9YXVNo3XXOS7YwBl8PgkZumsXZfpQTVR6Fff6pVhir5zeLf8PbutwEYmjSUK0ZcwbSsaeyt3svigsU8vfFpnlz/JGmeNG4adxPXj7n+6AcvEL2ScjpxpKZCauoxl6V1/ItMPODWoRBWKIwO178O2QF5uHHdlnXrGDVkcHy7JoNI1b9uZZkVCKKrqptvFw7bKa2x+i+6scb38WfRTqaJ4fWivJ5mrYaGx4PpT2ySkmt/qdbRaENAoSMRlNeDc8AAjFEj7UyH1FScA7JxZA9oSG02kpL6TKucMgzcI0bgHjGClGvbuLvfkTIdjoZpC/tyEqYyzWMeEM5wuzE6acwNZRgN41kwuPMGubGCQTs4LyuzA+9gyP4sPGzcjvjySNT+vWp68ywatQP4SNQO7KNR+6ZbfJ2ORdG1oYZ1DdtG67dvum0M4gP2+S2Lg512pgLDwJGejmPAABzp6fbNDCN+4zZ+c1OZ8RueZv0y074ZapgotxszNQVHfZZDWhquoUPtv9WiVdGSEqoXLKDm/fmEtm0jWlbWLJvFkZ1Nwikz8J1yKt4TJhHcvJm6xYupXbyESH4+yu0m7eabSPvyl3Fmtf+zRCmFd8oUvFOmdMFZHZnWmt8s/g2LCxbzq9N/1Syorjc2bSzXjb6OF7a8wGdGfYYhSUOYs2MO5w05rzGDtWQ7PH+DHSTf+AI4vfDfm2HOHRCpO3xarFAN7P20y6fLao1laV5euQ+A/LKWb1weaNJiXc9pGkwfIr9LR6NPB9Zt9bH+eP/H/OyTn1EeLOfrk7/O1SOvJsffvFXza5O/Rl2kjqWFS3lhywv8ddVfeWLdE1wz6hpuGX/LYdsLcSRKKbvlzOWCxMR27RNITSFt5syurVicjvchbSng1vXBeNP30XgrVP1rq3EZTVuGFU1aiuMP6l/TEDzqmGWXcehzfdmHLEcZjS3mjiYtRPUtVvEW9aZpqYDdolLfmhzvO6st3dCybvenpeG98njs1NgmwXP9aKVCiM5heDwY8RslPc3C+fM564wz4gF8/DMvUp8lYy+jYXm0SQZNtOUW58NumKm217dwf+2wm25Hen/YMtU8+8npaPhM1PHWZisYwqqpwaqrxaqttQcUbZp5pJR9Y9HrsVul66fUjAfCylDoaLRZpk+sooJocVGz2QeIxuLjI1gNXRns53jLdyzWkKGEZdnjSrQwuKmZnIxr6FBcQ4fYs4bEux80BO71XRIcJsrpis88koDpt2cecWRl4cjM7PA4Ez1ZrLoa3/vvs/ufjxNYtQriLdPeadNwpKdjpqXhSE9DRyLULV1KzYcfUfnanIb9jcREfCefTNrnP0/iRRd2KKDuKf614V/M3jabr0z6CleNvKrV7e6ceifv7n6X+5fcz7Wjr6U6XM11o6+zV9YchGevsb/T3PwSJMS7KN74PLz0JXj7+/Z81Wd+J571Buz+GGLhbksDX7q7jH3l9o2Tva0E1gWVAdwOg1SffKfpDH06sG6pj3VdpI4/Lv8jL259kZEpI3nk3EcYlz6u1TJ8Th8zB81k5qCZbCnbwlMbnuL5zc/z/ObnOWfwOdw07iamZU3rM61Kon9TSoEZD1S7uzJCCNFTGIbdvaYHdSnoz7TW6EDAHpugvILowWLCe/YQ3rWb8O7d1C5dhg4GGzOz6m8Mt3aj4xBmSgqO7GycgwbiGjQY15DBuAYPxkg6JHPk0LKUwvB5m0zH5zvmbjg6ErFv0DQ9TLzrT1siBw5Q9vQzVPzvfyTW1mKNG0fGN79J4nnn4h4zpsXvrak33IC2LELbthFcvx736NF4xo3r1Wn728q38fCKh7lo6EXcMfWONrdNdifzrWnf4hef/oIdlTsYkjSEE7NPtG/kP38DVBfBF96EtOGNOznccN1T8Oo3YMGv7Tmrr/grpA2D7fPAmQCDT+3ak2zF7BX78LsdDE7zkV/eeot1bkrfnyv9eOm9vylHIWbF+NaCb7GkYAlfnPBFvjn1m7jN9t+VHJM2hgfOfIC7pt7F85ufZ/a22czbM48xqWO4ceyNzBo8izRPWheegRBCCCFE/6aUQvnsqeqceXnAhHbvW5+FZYVC9uj+NTX2mAFVVUSLi+2W9PjgkeHdu6n98KMjT/3ZBkdmJs6BA+OPPJw5OTgyMxtax5XTSSQ/n/CevYT37iGyN5/owWKiBw8SLT5IrKXxN3w+3CNH2uNRjB6NIycHq7omPkBrBeGdu6h+/30Aki6+mF0nTOKMW25pV32VYeAZMwbPmDFHfc49yVMbnsLj+H/2zjK6jWtrw8+ILMskM0PiOOgwM7VJ2qZNU+amzAy3dKHcW/ja3jIzcxtsw8xMhjhmZsu2eL4fx5JJtmUIVs9aWrLHQ5KlmbPPfve7tTwx7olWrbRcMb/PfH5M/ZEDZQe4IfkGEXBmbYa87SJgjhnZeiOlWpiY9ZoMSx+DdybCmU+K+upeU0TwfZypM1tZvK+Ac4ZEYrba2ZZZ4XK9/Kp6Z321h+7ztwqs3937LpsLNvOf8f/hwr5d7EcHRPpGcv+o+7lt2G0syljE14e/5j+b/sOTm55kUPAgJsVMYmLURAYED+hU4O7BgwcPpxsWu4VMUyZ/Zf1FcV0xxXXFVJoq6RvYlzERY+ij7+PWTLnVbkUpKT2z6h48eOgWjhpupVqN0tcXwsPbXV+227EWFWHOynbdlaHpJUmWRRs+R0s+Qw2WwiIsubnU79jhVicDVXg4qohw1PHxeI8ahSokpJk0XZZlrCUlmFJSMaxcRdVPPzffgVKJMiiQoGuuIejqq1BHRZG2enUH78qpQ7mxHAmJQG3HNcCFtYUszljMZf0vc9sfSalQ8u/x/+aVHa80ysZTFoNSA4Pmt72hJMGIa6D3dPj9Llj8oFg+8W63jtvTLDtQSK3ZxgUjYtiQXsrve/Kx2Oyolc0nFwoqjUxKCjkh53g6cloH1k1rrDfmbeS9Pe9xXuJ5XJB0QY/s31vlzUV9L+LCpAs5UHaAdXnr2JC3gff3vs+7e95FISmI9o2md0Bvegf0pldAL3rrxc9+Gvfqaz148ODhVEOWZfaW7mXhkYUszVxKpakSCsXfVAoV/hp/fk4Tg8EgbRBjI8YS4xeDl9ILjVKDRqmh3lpPVnUW2dXZZFVnOXuOqhVqsY5Cg16rJ1gbTIh3CMHewWgUGsx2MxabBbPdTJ2ljnJjOeXGciqMFSgVSl6a8hKjIkadoHfGgwcPpxqSQoE6MrJb3UUcyBYL1rIy0RWhWGSl7UYTmrhYNHFxqGNjO9XPWZZlbKWlWEtKUPgHoNQHoPDxOS0nIEvrS3l/7/v8kPoDVruVXgG9GBE2ghHhI5gQNYEQ79bB4ZcHv0RG5uqBbTh2t8GA4AF8OOvDxgUpSyBhsuhb3RH6WLj6F9j5Gez5Fvqf26lj9xQ/78wjJtCbMQlBZJfXYZchv7Ke+ODGbhRWm53iGiNRnox1j3FaB9aOGus+ffvc9Mi6R0jUJ/LEuCd6/IIjSRLJIckkhyRz29DbqDJVsaVgC6kVqWRUZXC06igb8zdisVuc24R6hxLrF4u/xh8/jR++Gl981b6olWpUkgqVQoVSUuKn8SPAKwC9lx69lx4ftY9z8Oml9EKpaL8tigcPHjwcL0w2E98e/pbvUr4jpyYHL6UX02OnE2WI4qzxZxHqHUqgNhCFpCDfkM+Wgi1sKdzCtoJtLMtahl1unskJ8Q4hzi+OqbFTidBFYMfuDJrNNjMVxgpK60s5VH6I0vpSbHYbaqXaGXx7q7wJ0gaRqE8kSBvEloIt3LHiDt478z2GhQ07MW+SBw8e/rZIarWzk0GP7E+ShKw8NLRH9ncyUmOu4bMDn/H5wc8x28zMT5pPjG8MO4t38mfWn/yU9hN6Lz3fnPMNMX6NLa2qzdX8kPoDsxNmE+Xb2sTYbUrToPwIjLvN/W0kCUYuEI8TQEFVPevTS7lrRhIKhURsoGiblVPePLAuqjFhlyFSfzr31Ti+nNaBtYNSaynBtmBemfYK3tUFUJIK/eYcs+MFeAUwK2EWsxJmOZdZ7VbyDHlkVGaQUSUe+YZ8CusKSatMo8ZcQ62lFpvcuXZHWqWWYO9gwnRhhHiHtHoO9Q7FT+OHWqHGS+mFl9ILlUJ1Ws5mevDg4cRgs9tYmLGQN3e/SWFtIaMjRnPLkFuYGTcTX40vq1evpn9Q/2bbRPlGMT9pPvOThLROlmWsshWLzYLJZkKj1OCjdq/Ps7uU1JVw3bLruG35bXww6wOSQ5K7vC9Zlll8dDFv7HqDCJ8I5vaey5nxZ3raMXrw4MGDC2RZpsxYRoAmALXSPQfqtIo0bvzzRsqN5U7zsXj/eABu4Abssp19pfu4ffnt3L3qbr4860t0ahFE/pDyA3XWOq5Lvq57J56yWDz3PXZxQ0/zy648ZBkuHCH6VscGicC5pTN4fmXzHtYeus/fIrA2ySb+M+E/9NZFwruToCwdZj0DE+46buegUqiI948n3j+e6Uxvcz27bMdmt4kBpt2CwWyg0lRJpamSKlMVtZZaTDYTZpsZo81IrbmWkvoSSutLSatIY1P+JgwWQ7vnIiE55ZaOYLtp4K1WqtEoNM51mkovHX9ztY5zvfbWdfyu1KBVavFWeZwIPXg4lVmft55Xtr9CemU6g4IH8ezEZ132CO0ISZJQS+I64hgY9TShulA+nPUhC5Yu4Oa/bubj2R+3CvjdoaSuhKc3P82qnFUMCBpAWX0ZT256kue2PMeUmClMiZlC38C+JOoT8Va5zgRY7VZyanLIqMzgaPVRKowVGCwGasw1GMyGZgonSZLwUno57yHx/vH08u9FhE+E5/rpwYOHkxKb3cbKnJXsK9nHofJDpJSnUGGqINo3mvtG3ses+FntXr+Kaou4bfltqCQV3879lkHBrQ3qFJKCoaFDeWnqS9y2/Dae2PAEL099GavdypeHvmR85PjW13i7DVY9JwzHxt4C3h3UaqcsgYjBQuJ9grHbZc56fR16nZpbpvZmWt8wFIrm76Esy/y0I5fRCYHO7HRkgDcqhdTKGdwRWEd5MtY9xt8isPZT+HFWr7Pgr3+JoDpuPPz5hOhFN/6OE316zVBIChRKBWrUeOONv8a/0xKWOksdJfUllNSVUFJfQp2lzimddATljp9NNhMWu8X5s2N5raWWSlOlWLdhW4vd0uxZpuOWFe68Xh+1D75qX3QqnTNIVylUqBVq7Nix2q3Y7DYsdgs22eaceLDaRfsJpaQU0nmFEo1Cg6/G1ymx99f4E6YLI9InUjx8I9GpdNhlOzKyU3qqUgj5vUryZPM9eHCHcmM5L2x9gSVHlxDrF8tLU19idvzsk/77E+ETwUezP2LB0gXc9OdNfDDrA7eDa1mWWZixkBe2voDJZuKBkQ9w9cCrUUgKDpYfdNaUr8gWbrwSEvH+8UT5RmGz25z137XWWnJqcpzXMBCeHX7qhrIgjS8ahWjrJCN6BpfWl7KzaCd11saBkd5Lz6CQQQwKFg9ZlimqK3KaxNVaarEjerbbZTsapYY4/zh6+feiV0AvEvwT0Gv1PffmevDgwQMiKH5s/WNsLdyKWqEmKTCJ6XHT6eXfiz8y/uDBNQ8yImwED49+mEEhrQNmg9nAHSvuwGAx8Nmcz+gX1L5D+YSoCTww8gFe2v4S7+19j3BdOKX1pTw36bnmK1pN8PNNcPA38fumt4TEe9xtrgPs2lLI2QJTHurqW9GjlBhMpBTVoFZKXP/pdpLCfLl5Sm8mJYVQXW+lss5MWrGBIyW13DS5sSWYUiERHehNTouMdUGVEfBkrHuSv0VgrVfpIXcHbHwDRlwL5/wf/HQDLHtMBNedqZs4BdCpdcSr451ymWNBU9lme8G3c7nNIpY1/O7MuFtqqbXUYjAbqLPWOddzrKuQFGgUGlQqETirpMZnlUJ8fK2yCLytditmuxmD2UBGXQY15hqqzFWYbKZOvTa1Qo2P2scZ8PuofQj2DiZYG0yoLpQQ7xAifCKI948nQhfhqXP3cMpitVspN5Y7J+GK64ox2UxO9YqXygt/tT+9Ahqzo7Iss+ToEl7Y+gI1lhpuH3o7Nw6+0W1p38lAtG80H836iOuXXc+1S67lpakvMSVmSrvbWO1Wnt/yPN+nfs+w0GE8NfEpegX0cv7dEdw+NPohcmtySatII7UildSKVIrqipyKHh+1DxHKCKbHTidRn0hiQCK9Anq5laWXZZmS+hKyqrM4UnmEg2UH2V+2n035m5rVp6skFaG6UHw1vsJJHQmFpKDeWs/a3LXNsuF6L70zyI73j0elUIlrssVAraUWi82CUqF0TmB6Kb2ck5RRPlFE+Ubhr/E/6SdUPHjwcHxYmb2Sf238F2abmScnPMm5ieeiVjTeH64eeDW/pP/CG7ve4LJFlzE7YTaX9L2EURGjUEgKLHYLD6x5gPTKdN6e+XaHQXXT/aZUpPD27rcJ0gbRP6g/4yLHNa5groXvroIjK2H2c6IN1pr/isfmd2HqwzChRZ/rtD9BtkO/s3rirek2jkD4jcuHU2e28f7aDB76cW+r9fy8VJw9pLnZXmygrnVgXVmPn1aFn/bUuX+f7JzWgbXDFTw6Kgp+uwN8I2DW06BUwYUfii/L0kcACcbdeqJP95TieMg2ewJZlqk2V5NvyKegtoCC2gKMVqNQBkgKJCRkZKx2kQG3ylbMNnNjwG8xYDAbOFJ5hC31W6g2Vzfbv0qhIsY3hli/WCJ8IpyPcF2403BOr9V72q55OOHUWeo4UHaAlPIUUipSSClPIb0yvVmQ1R46lY5EfSJqhZqdxTsZHDKYJyc8SVJg0jE+82NDnH8cX5/zNXeuuJO7Vt7Fw6Mf5soBV7pct95az8NrH2Z1zmquT76eu4ff3eaEmkJSEOcfR5x/HDPjZ/boOUuSRJgujDBdGKMjRjc7v9SKVNQKNWG6MIK0QW32a7XZbeQb8jlafZSjVUfJrM4ksyqTdXnr+CX9F+d6jslFtULtVArZZBt1ljqMNmOzfSolJf4af/y9/AnQBKBUKJ3bOAJ+p6mcQoOXygu9l55Ar0D0WvHsMO5sGsS3/N2xD+ckhcoHH41Ps0F7YIaN+AAAoQZJREFUR8iy3Eqt1BKr3UpRXRH5hnzyDHnkG/LZUbqDz5Z+RpmxDKPVKB42IxabBT+NH3qt3nnNj/SJJNYvlhg/cW/QqrTOe0qtpRaTtWGyVxKqBqWkdL53/l7+BHgFdOo1efBwMmC0Gnl5+8t8l/IdA4IG8OKUF0kISGi1nlKh5KK+FzEnYQ4f7f+I71K+Y1nmMmL9Yrkg6QKn4e9TE55iQvQEt48vSRL/Gv8vMioz2F+2n3+M/kfjhF99JXx9CeRug/PehBENLuGXfgmF+2D5k/Dn4xAQA4POb9xpymLwi4TIYV19W3qUggbpdmyQjkFRAcwfHs369FKyy+vQe2sI8Faj16mJ1nvj3yJYjg3SsexAYbNl+VVGogI8MvCe5LQOrB2u4EMSQm+i5BBc8QNoG4xllGq46GP4YQEs/YeYwTrzSQgbcCJP2UMPI0kSAV4BBHgFMCC4+/9bk81EaX0p+YZ8squzya7JJrs6mzxDHvtL91NhqnC5nVapbebu7u/l7/zZcX4tf/fX+Lsc9Hk4/bHarVSZqkS9bUPdbZ2lDqtsdcp67djRqXTNPjNKSekcvNdZ6yisLWRPyR52Fe8ipTzFaY4YpA2iX2A/rhxwJbF+sU7Dw1DvULQqrVNRYraZqTRVcqTyiPNRWFfIg6Me5KoBV53yao0wXRifzvmUR9Y9wgtbXyCrOouHRz/c7HtXYazgzpV3sq9kH4+NfYzL+19+As/YNd4qb4aGDnVrXaVCSax/LLH+sa2y9Aaz8OfQqXVtBuayLFNpqiS/Np8Cg5isdHiAVJuqqTJXYbPbUCqUKCQFSkmJjOxUI9VaaykzlnGw7CAVxgq3J3baw0vphU6lQ5Ik4VMi2xq/J00f2Fs5z2uVWnw1vvhp/NCpdJQbyymqK2q2noREgDKA3j69SdIn4a3yRqsSHiEqhYpqU7XTCyWnJoctBVuaSfa7Qph3GHH+cc6a+jj/OBL8E5xt6Tx46ElkWSanJoecmhxya3LJqcmh1FjKqPBRnBF3RoclIza7jYfWPsTqnNVcN+g67hp+V4cqJl+NL/eMuIdbhtzC8uzl/Jz2M6/vfB2AW4fe6jS27AxeSi/emPkGa3LWMDthtlhoMcJn50LxIbj4Uxg4r/lGEYPh8m/g49nwx90QPQL0cWK79JUw9FLh8n0cMFltlNeaiWwj2M1vyFg7gmFJkpic5J4jfGyQN+W1ZgwmK75e4h5XUFVPpN4jA+9J/hajdo25AobeCH1nNf+DUi2+ZJvegnX/B+9MgOFXwbTHwL/7/Qo9nH54Kb2I9o0m2je6WcbIgdFqdNY4VhgrqDRVUm2uptLYaEBXaaokvTKdKlMVVaaqdp3gdSodallN0K9BTlm681njKwZ4Si1alRatUouXyqvxZ6X42dm+ramUvqGdm+O5qbxeKSmRJAkJ6bjJO2VZxibbGpUDDeoBhaRAgQJJElJWh9Fey/OSZaE6cHgFNPUMcASIjmUtrQEc74cjE6ZWqJ3ZM7VSjQIFddY6pzTWYDY0/tzwbLQasdgtWO3CdFCWZWfdviO75q/xJ0gbhF6rJ0ATIAKM+jJK6oT5YNNHubG8RzwMQARdg0MGc33y9QwLG8bA4IEu+322x8jwkT1yLicjOrWOV6e9yqs7XuWzg5+xLHMZ8f7xzozjooxFFNYW8uq0V3s8A32y4avx7XAdSZII1AYSqA10aSbUGWRZpt5aT6WpUnhotPDScFwTbLKt2ffL4RxfZ63DYDZQa62l1lwL4FQjOR6O61nL5QoUyMjUWmqpMdeIzhzWWnoH9CbKN4po32gifSOJ9okmwieCDes2MG3aNLdfV4WpwhmoWGyWRi8RtQ6tSutcT0bGZrc5S5eqTFVUmCrIq8kjqzqLVTmrKDeWN77/SET6RBLlG4WvRtwLHJl7H5WPU2nQ1kOn1nmy4ac4NruNClMF5cZyKowVVBgrsMpWkvRJ9A7o3amynHprPQszFvL1oa9Jr0x3LtcoNPh7+bMoYxHPbn6WCdETmJMwhzPiz3BpyPjS9pdYnbOaR8c8yhUDrujU69GqtMztPZe5veeSVZ1FWkUaM+PaudaWpoGxCsKTQd06KAzxDuHCvhc2LtjzDRTuhUu+gIHnud6nUg0XfgTvToafboIFiyBzHVhqod/ZnXo93eH//kzlm63Z7PrXLJSK1uOvgsp6vFQK9LrOf4cbW27VMSDSH4D8SiODo/XdOmcPzekwsJYkKc7NfVXKslzd8WrHH1lSinoKVyjVMOleGHENrH0Ztr4Pe38QdRYT7gat/3E9Vw+nNlqV1plhcAe7bMdgMVBlFAF3lbnKGYBXmaowWAykZ6fjp/dzZiJL60udAV69tR6rbO34QF3EUZvpCLSbSuglSWoW9DqXNQxaHRJOR+bKUQfvCJqbDpSbmji5c05alZg4kJGdQXPLTNTxQCEp8FH5iAmMhiBapVChkBSNQUCD30C1udrlOaokFcHewYR4hxDpE0lySDKhulACvQLx0/g5Hz5qH1SSqtn/o9Za6/ysVJoqscv2xkG0yocg7yCnfNtD2ygVSh4c/SCDQwezMX8j2dXZbCnYwu9HfkfvpeeDWR8wPGz4iT7N0w5JktCpdSd1OVFXkCSJIG0QQdogt5UE7VFtria7OpvM6kznc2FtIfmGfKFOsYiJP3ez/15Kr+bBtkongnSVCLybTgK0/Nlb5d1sArLlhKRaoW5T7XA8kWW5UxPD9dZ6yo3lzkmWpi1QHfc2CQk/jZ8o+dJFEOAV4PIYlcZKjlQJhU9GVQbFdcXOILjcWI5dtuOn8cNXLYwKI3wimBg1kYnREwnSBrXan9Vu5XD5YbYXbmd70XZ2Fu2kxlLj8nWoFCr66PswMHggCwYtaOYD0ZTiumK+PvQ1P6b9SJWpigFBA3hi7BP0CexDjG8MobpQJCQOlR9i6dGlLMlcwtrctbyz5x2envh0s8nWLw9+yVeHvuLqgVd3OqhuSYfjp20fwuKHQbaBQiVUplHDYeD50MdFMG63CX+lqOEw4Nz2Dx7UC+a+Cj/fCGtfhNoSUPtAwuRuvSZ3sdllftmVR7XRSlG10aVTd0GVWN6VpEdcUPPA2mgR2fFoT8a6R3EnY/0ZIsfT3n9RBj4FPu+Bc+pxjNpQ0LW+WDVDFwRznoMxN8HKZ2DtS7D9E5j2iGjwfgoZ83g4dVBIClGbqPEnFtetHFbXrm43U+LI1NZb6zHZTM7aP5NV/Ow0d2v53JAJcgS7NtnmzAwh08xN2FGT6HAodkgrAefPzr81yC0dGSfHs1KhdAaejuy48/cmD8cyh4TULtudGW1HBtpkNWG0GZ1BdtPWcY6Ho6Wb828qLzQKTbNBn4zYr8VmaRYINw36bXZbczM7jQ9+aj/nINPdG5xdtlNtqqbCVEGVqQqdWkeodygBXgEnxUD0lKW2DA7+Cgd+EQ6uGh2odaDxAX28kPFFjXBLyjc7YXajfBChQHG0uvLg4UThr/EnOSS5w77rFptFTMBaGw1Bm9Z2O8tELI0KnDpLHbXWWkrqSsiyZjnXqbfWd/l8lZKyWbDdTDVAc+WAY4JWoWj8myRJzWrpHXX+TjWS1dRKnWSymZrdrwCn2Z6X0qtR0dWg5vJSemGTbU6VUEdtSl2hVWrRa/VOrxYAk9XUrCRMp9IR4RNBoDaQRH0io7WjUUgKDGZR4lNjqWFz/mYWZSxCQiI5JJlR4aOoNldTUFtAviGffEM+ZrsZgAT/BGb3mk3fwL7OyZtAL+FmnVqR6vTPWJa5jIVHFnLL0Fu4blBjH+daSy0f7fuILw5+gdluZmbcTK4ccCUjwka4vJcNDB7IwOCB3DvyXjblb+KZzc9w3dLruHLAldw94m425W/ixW0vMjNuJg+MfKDT76Hb2KzCE2nbB5A0S6hLC/ZA/i44+Dvs/hpu3QBhLTo8pCyG8iNCnerOvXrIxaI0dO1LoPGDPjNcZsWPBdsyyymuEf4LOeV1LgPr/Kr6Ljt4xzYE1o5e1o2O4J4a656kw8BaluW2my6fIlhVPu6vHNQLLvoIxt8Of/4LFj8Im9+Bmf+EAfNA4RkAezi5cASkPupOfM49HHcUkkIYHHnaG3UfWYYDP8Oeb8UgyG6FkH4QkgSWOjDXQXUeZKyGre9B2EAxEBtyKfi4L4N3SHY9eDgVUCvV6JV69Oi7vS+b3eYMzJsG4o6yl2YPW+vfHROTZptZ1LzTOCHrmChtOhHb1DvCLtud+zRYDMKZXlKiUWrwVfsSpA1yTpo6AmbHpGlTBZVDzeSYjHUE4I7fFZKCvoF9mRA1gVBdKMHaYPw1/s6ae1+1LwpJlAw4JpurTFUU1hZSVFdEYW0hlaZKpIa8kyRJqBQqEvwTnI7/7vSat8t2DpUfYl3uOtblreOzg5+h99IT5RNF38C+TIudxqDgQYwMH0moru162j6BfTgbIVsurS/l+S3P88auN1iauZS5mrkUpxTz1u63KDeWc1avs7hr+F3E+rnXm1khKZgYPZGfzvuJV3e8ypeHvmRN7hpK6kpIDknm+cnPHzvPjfoK+OE6yFgF4++EM58ChbKxVtpQAm+OFOP1a/9oDKBlGTa8DoEJMKANCbgrzn5RtNgqP3JcZeB/7MlHksRp51TUM9bFOgWVRib26Vwpl4NAnRpfLxW5FfUN+xLPnhrrnqXTNdaSJH0CGICdwDbggCzLPVMMeDIRPRIWLBRW+3/9S5icRQyBGf+EpDOPm5GBhzaQZTFwVqjBL/xEn40HDx56ClkWbVGUGlBpWv/dWAW/3g6HF0JALIy/AwZfLOrtWl6XjVWw/yfY9aVor7j8SdGPdOI9rvftwYMHQJRHOMpQPDRnSOiQHt2fQlI42/XdOvRW7LK92yqmEO8QXpn2CqtzVvPM5md4teJVKIIRYSN4c8abDA4d3KX96tQ6Hh/3OGfGn8m/Nv6LEO8Q/jfjfy7rrtvFagZDEdQUQmA8+Ia5Xq+uHD6aBRWZzd28m+IbCjP/DYvuh30/iqwzQPZm4QJ+9ssiEHcXLz+R4V79/HELrK02O0v2FzJrYDh/Hixq1RbLsU5xjZGoLgbCkiQR06SXdUsjNA89Q6cDa1mWr5MkyRsYAZwB3A3c3NMn1hM42m1FRUV1dQfQdzb0OQP2/SC+ZF9fDLHjYNJ9EDcOvPU9ecoe2mPfj5C+HEpShHmFuQYkJQy+SPw/PI7uHjycepQdEUFv0QEwVYOpRrRC1OphzM0w9lbwCRbrFu6H76+GiiyY9SyMu719FZE2AEZdLx7Fh2D1C7DqGSEbn/eGmEDtDIX7YNPbooNEWwNBDx48eOgGPVkaNC12GqPCR/HCkheYPmw6M+Jm9Igp6ZjIMfwx/w9sdpv7yh5TDfxyqwh460obl2v1cNsG0eqqJUsfgYqjcPUvou90W4xcALu+EC2z+s4S1/4Nr4MuGIa5bqPYLpFDhFP4cWLjkTLKa81cMCKGvblV5FS0DqyLa0zY5e5Jt2ODdGSWCqNHR8Y6oovScg+u6ZIruCzL9cCGhsdJi6PdVr9+/W7q1o4UShh6GSRfKL64a16Eby4VfwvqLUwRIodCSF8I7iPq+jzZkJ7DbhcXy81vi17kYf1h2BUQ2hfKj4pa+L3fiZnFyQ9CjPuDZbPVTqnBRIS/FoULB0YPHjwcI+w28Z1e+azwsOh3thgMefkJ08icrcJAZtObMOJaCE6EP/8p1lmwCOLHd+54YQPgks/g8CJY9AB8eAaMvQ1mPC7qsTuicD98dh7Ul4tB4RXfe5RLHjx4OOnx1fhyRsAZTIuf1qP7ddTBu4WpBr68EHK3w7DLISBOqA01vvD73fDzLXDt780zy4cXi7Hd1H+0H1SD2O6c/4MPZsCq58RkauoSmPao8N04yfljTz5+Xiqm9g0lNlBHbnlrj4OCqu5Lt+OCdKxPK0WWZfKr6gnx1aBVn9ptM082uhRYS5L0NNAfqAWel2U5pUfP6mRFqRZf1qFXQNYGKNgtjBNytgm5oQNJIXrgBfeBoEQxIAxOBL8oMWh0PE7xHrDdYV9uFcsOFFJeZ6ai1kx5rRm1UsE/5vRncExA44qWevj5Zjj0uxgEz3629fs2+QHY8h5seRdSZsKVPwi5fjvIsszyQ8U8tfAAOeX16DRK+oT5khTmx5CYAK4YG4da6amn9+DhmFB8CH67A/J2QN+zYO7/gb8LZVFJCqx/TRjW2K3CnfWijzFpg3lvRRpnDAhnYFQnOzf0PwcSJsHy/8Dmt4Sk/NzXIHFG++f7+Xmg0sLEe2HDa8KddkwX52xNBvDquLWVBw8ePJzyNA2qL/6kdR9pmxl+vU20vZ36kFhWVw4L74XwwSJh4g7RI8QYfev7Ql2k8obR3curHQ9MVhtLDxRy5qBwtGolMUHebDpS1mq9/EqH2VjXA+vYQG/qLTZKDWbyK40e47JjQFf7WAfKsnyxJEka4FXgjh48p5MftVbY+je19q8rh/IMKEsX0saydGF8kL1FSJZdofFtHmh7+YGXf8Oj4XdtgJCbawOEXMZb3/is8T0lMyZL9xdy97e7sNllAnVqAnUaAnUaUotqmP/2Bu47sy+3Tk1EWV8O314uMleznxO1lK7QBcH0R8XfPzkLfrkFbl3veqAOZJQYePKPg6xJLSEpzJd/zR1ITkUdaUUG1qWV8NPOXLYcLeN/lw1H5QmuPXjoWTJWw1cXi+vbhR8JJVBb17HQfjD/HfH9ztkqWqooVTz3234+25TFmyvTeezs/lw7IaFz8kZtgGirknwR/HE3fDFfTJjOfrZ1B4mSFPjsXOHnsGChUCkVH4Q/nxCBfksX2o7Y9yP8fBPM/JcoYTkZsNRD+grhoFuZLWrTHQ+/CGH8NvSKRkm+Bw8ePLiDsRq+ukhMoroKqgGGXi6uP6ufh95TIXaMkIDXlcGVP3ZOATrzn3DwN5H8Gn3jKXHNWpdaSo3RyrlDxZg1NlDHL9V5mKw2vFSNiSRnxrqbUnAQzuAFVfUkBHtMb3uargbWJkmSRgD7AM9/BcRgTBcEMaOaL5dlMBSLINtQJGbumj2qxYXH8XtNUeNyUw3Qji+cpGwSeOsbgu8AUHmJ7LpCLQyANLomQbufkD2qtE0eXqD2Fs8qx7NW7KOHA/cvNmfx79/2MyRGz8cLRhPk03jBrKqz8Niv+3hpWQpbDmXxkfkh1DW5wkRi0Pkd71zrDxd9Au9PhZ9uai0rAt5fe4SXlqWgVSn559yBXDM+vlVm+sN1GTyz6BBKxR5evWSoJ7j24KGnKNgL314l1DzX/C5MZ9xBHycewKK9BXy2KYsrxsZRVGXkP38cZF1aKS9eNIRg3062xUqYKFq0rH1R1OOl/yWM0JpeIzf+D5CE22xwothu3lvw9nj46Ua4aYW4ZrqDoVg416q8RcbcWC0C7M5eZzNWw6rnwW5pvGarvYVaqilqnZBb+kaIZ+9AUb9ut4s+sPWVkLoU0v4CS624j4QNEJOSYQPEPaNwr5hEWP6k6AM79HKISAa/yMbzttvFekdWwJFVYr/Q2KRTHw+jb4De00/JyWAPHjx0gaZB9UUfuw6qQVwT5v4f5G6Fn26A6Y83SsAjO2kU5x0IZ/0XFt4nHMRPAf7Ym49ep2ZSg9t3bJAOWRYZ6l4hjSFWfqURH40Sf21XQ7fGXta5FXUUVBqZkNg1h3EPbdPV/84qYCbwPPBmz53OaYgkiQFNV5yr7XaR7a6vBGNl47Oxqu1lVblCVmO3gs0ifjbXigFYp89d0Rh4q7QNLr1e4rnpzyovEcTbG45ns4igfPbzED4QENLr//srlTdWpjOzfxhvXDEcnab5xy9Ap+bNy4czs38Y6b/9F7V0hCOzvyBxUCfaJIT2hXNeEbKiNS+KTFcD+/OqeH7JYWb2D+f5CwYT6ud6MHzj5N5Y7TIvLDmMWiHx0sVDUR6j+usao4Vd2ZXsyKrAbLNz0+TezSYbPHg4bajIEoMsrb/IQrgbVDfhaGkt//hpL8Pj9Dx53iBUConPNmby3OLDnPX6Ot6/ZhTDYvWd26laK4LbQfNh0YOw4zPRsssxqekbLibpQvs2buMbJoLrby6FFU+JTLc7LHpAtAK7Za0oXVn/f+LaffbL7rVytFlFVmfdK6KFTFBvsBrFPaCmUATNTTEbxISuzdz2Pn3CRK/vAecJibzSRc1k8SHxvuz5RrQ5A6GYcpQ45W2H2hKxPGJwwyRIw/sny8Ks6PBC0RJt7C3Cs8RVXbvdDoZCof6yWcQ6ap2YHPYNd68W3oMHD8cGmwVKU4XRZNF+8ayPg1nPtP5uGquF/Dt/p0h4DOxgHKcNgAs/ho9nC9VhZyTgLRl8UftKqONEvdnGZ5syqa63YLbaMdvsWO0yExKDmT0oArVSQb3ZxvKDRZw3LMqZ5HEEvznldc0C64KqeiL13t0yn4sJFPs+WFBNjcnaLVm5B9d0NbCeAvwPmAScCfzRY2fkoRGFojELTXz39mUxgqmG2poK1h/IZN3hXNLzy9Bixl9lA6uJGD+JSQm+DI/yxluyiAGb1Si2tZlEe4Rmz6aGQV2VCOSVDRlyhRryd4va6JtXgVLNf34/wGebsrh0VCzPzk9uMwssSRIXDA3HunI5OwwDeXlfGN900qOIYVfA0bWw5r8iI9VrCrIs8/TCgwTqNLxyyVACvNsw3JBlqMzi1qmJWG12Xv4zFaVC4r8XDulRc7MvNmfx9ZZsUgqrscugkMRr/2ZrNo+dNYCLRsZ4zNQ8nDaoLA2DLKuR6isW8vLqCobFypw9ONJt4xSjxcYdX+1EpZR484oRzkHIgom9GNMrmGs/2cqrf6Xy2fVjunaSEYPhhmXiZ1kWwailTgR2rjLS/ebAqBuEuVrvaR36OnDgV+EVMfPfQj4+91UxybDhdaFOOv9t10Gtg6o8kc3J3iSk2We96F6gKcuiD2xNoXhWKIXaSaEUE6ah/Tr2+wgbAGe9AGf8B3I2i64MZeniuTxDvP7EmaJO3dUkssUonNi3vCNa4ix9BLyDGtVWGh+oKRBmlNbWpj2AuK/0nipq5PudLSTqbWG3iww8kvj/uTNp4cGDh7Y5ulYoAQ2F4nelRhj2HlkpynQu+1q0zYLOB9UOYkfDGf+G1f+F89/qngnwSaCM+fNgIS8sOYxKIaFRKdCoFNjtMl9vySbc34srxsQT6KOm1mzj3CGNpYuxQULq3dIZvLDK2O1A2FujJMTXiy0Z5QBE6T011j1NVwNrPfAP4GHghh47Gw/HDrUWI2ou/ugwBwss9A7pzfkzJzNvWBQRAVoW7yvgi01ZvL2nEt0hJR8vGM243t2oTTm0EL67Eta/Ruag2/lsUxZXjYvj6XnJHc+2HfgVlSGfsiEPs2lrGVsyyhjb2XM5+2VhlPHTTXDbBpYdtbDlaDlPn5/cdlANom/515fANb9z54ypmG0y/1uRxpCYAK4en9C5c2iDxfsK+Oev+xkaq+fumUmMjA9kWKyegiojj/+yj4d/2suPO3J5Zn4yfcOPXQ9RWZZZlVJMcbWJqf1CPSYWHo4N9ZUM3vcs1GZRd+mPXP1HDXtyKvl8UxZP/nGQC0fEcMXYOPqEtW/m9dTCgxwsqObjBaOIbjEYGBjlz4x+YSw7WIgsyy6vMXVmKz/vzEOjUhDgrSbAW02Qj4akMN/W60tSg1KnA4n3rGfEoPKHBaL+Omq46/Vqy4QEPHIYTLi78RhnPiUCyxVPikHo5AeFFF3Z5NZcWwp7vxdydZsFLvgAhlzS/nm1fC2OUqXuotaKILr3tM5vN+xykanO2Qopi4QviUN1VV8uMvCJM0QWPqiXCPrNdSJANtdB8QFxX1l4n3iEDRSDe7tNTOzaLUKdZTKITH3TMiqVVkjldSFiUiN0gJgscEj7bU3UVjZLc/UVgFJDcOlhSLOKz4SXL2j8Gp59hLpLUgBSw4C+4bnpsp4a6MuyUCY0fdht4nwrjjZ4vBxpKD8rFu9zfbl4liShtvANF8+6YFB6NU6KSwqoLYbqAjHRUZ0v3ke1j3j/1N6iJVL8BIifCBFDmn9WPZx+2G1CIbP6eVHCM+tpMQkZ3Ed8btKXww/XwwfT4ZLPxWfCEVRf/KkoH+kME++BMbeIa8YpTkphDSqFxMGn5qBRick9u11mdWoxn23M4tXlqQCE+Ho1G+OG+2nRKBVkt+hlnV9lpH9EJ806XRAX5M3e3CqALvfE9tA2Xb0iPgX0l2U5RZIke4drezgpePKPAxwsqOatK0Zw9uCIZoPJ+cNjmD88hv15Vdz59U4e/GEPy+6dgo9XFz8iA+bCoAtgzX9ZVjIAlULB3TOSOg6qZVnUNIb0ZfI5VxFycA2vr0jj684G1l6+wijj3clYt37Ec9vG0Dfcl8tHx7a/Xd5O8bzqOeg1hfvOSGLFoSJ+2JHbI4F1SmEND/6whxFxer65eVwzYwo/rZrvbh7PjztyeW7JIc753zp+uHVCt4/piq1Hy3lhySF2Zlc6lw2K8mdm/zDOHhLZIxdvD39j7DbIWAW7v4HDC/G3mjDN/5gFKzXsz6vgvatH4uel4qut2XyxOZOPNxzl8bMHcNOU3i53tzqlmK+3ZHPL1N7M6O+6rGZYnJ7vtueQVVZHQkjrTO7PO/N44tf9rZa/eNEQLhnVwXWhLTQ6uOpH+PBMYch2w58iMGzJ0kdEtvjqX1sHIpPvF0Heymfh11uF0mbKgyLo2fUlpC4TgV7sOCE/D+nTtXM9GZAkiBsrHl3hzKeh5LCQledsBSRQqETGXaFq8BPxbzAGbZioMdcJ5YGlTmTtiw+JlmstZfMdMBig9cenk7QIvGkIvl0F48iNQXPTILo935Wmx9HHijr4gBhRp+odKO6vtcWiPKA0Deq2NJlQaCgh8wkF/0gh8Y0dI9QNlvrGCY6SFGFyB2JyIWaU+PyG9BXqh+Ak8dn1qAROfQwlwmgxYxUMvkSobFp2M+hzBty0UhjNfj5PXP/KM7oWVDs4DYJqgNQiA71CfJxBNYBCITGjfzgz+odztLSWb7dmMzDKv1m5oUIhER3o3azllqM1bHdabTmIDdI5x36ehErP09XA2h9QS5IUI8vyIz15Qh6ODb/uyuObrTncNi2Rc4ZEtrlecnQAL188lIvf28TzSw7xzPmDu37Qs19CzljNhP3/Zs7Adwnzd+OCcHStMME59394e6m5dWpvnll0iG2Z5YxO6GTGJWIwRA2jZPdissuT+eKGMR0bkRUfFM85myFjFVLiDOYPj+aZRYdILzZ0mFVziSzD5repiZnOzd8W4eOl4p2rRjYLqh0oFBKXjI5l5oAwZr+2lheXHubmpM4fsi3Simp4YclhVhwuJtzfixcuGMzwuEBWHi5m5eEi3lyVzlurj/DVjWO7p1jw8Pcgbyfs/EwELA5kWXyHawpENnb4VWyxDuCt7dFsyyrl9cuGM3uQkPFO6BNCqcHE7V/t5OMNR7lhUi+XJRDfb88hxFfDg7P6tXkqjtrq3TmVLgPrrUfLCff34sdbJ1BVb6Gq3sLd3+xic0ZZ1wNrEJLkq3+Gj2bBFxfADX811o/XlsH2j2Hf9zD1EWH65Yp+Z0HfOSJgWfNf0YoMRIZ17C2ivCV8UNfP8XRBkkQQFzage/ux1IvAsiJTBOVKjQjMlZqG7K3D/LNB3WSzsH3bZkYNGyqk6o6suKlGZMkdAa9sF59/ZBH/OpfLjc8dLmvYzhFwS8rGjLikaJDyu/ibUi2C4aBEkf3vSnAiy+5l1qsLhOty1gahDNv+SXMJv6QUwbUuGHxCRICvjxXnFxArFAn6BE/wfbywWQgp2Qyrt4jPvOPhEwwjr4MhlzYPmKvzYffXom1VfSWc+zqMuLbtz0ZIH7hxuSj/S1/RvaD6NCK1qKZ5+9gW9Arx4dGzXV/LYgK9m0nBi6qNyHL3Wm05iG2os1ZIENaG15CHrtPVwPpJ4AfgZkmS4mVZvrYHz6lDJEnyAdYC/5ZleeHxPPapSHqxgcd+2ceYhCAeOLNvh+uPSgjihom9+HD9Uc5KjmRiny66BvqEsHXAI4zd+TAPBqwARne8zcY3xIz5kEsBuHJsPO+uOcLry9P48sbOZzlqY6cRuvl15ibpmJzkhllS8SFImgVFB2H1C9B7OucNi+K5xYf4dVceD85ue2DfJgd/g2WPUaOKpbz+aT69eRrhHUwyBPt6cdu0Pjy98CCTgrRM6/xRW1FcbeT8tzagUEj8Y05/FkxIwFsjgvt+EX7cNi2RUoOJS97dxF3f7GLx3ZPbNHjz8DfGahKf6S3vCdMqtU/rLGr0SCFX7jsHi6Tmv6//ya5i4dx93tDmbfBCfL24cmwc93y7m22Z5a3KPgwmKysOFXPp6Nh2e8snhfnirVayO6eS84dHN/ubLMvOybnYIB2OMHp4nJ7dOZVdfSeavIgkuOJ70Zbr64uFq+3ur0Vm1WYWEufJD7S/D0lqrB/OWCW8LPrMbL/u2kPXUHuLLG4nHIcNfqWiBvR0xl25un+kMIgafJH43W6HqhxhbFWW3iBBLxOP2lJhXrf/J+FE70CtE1nusAEi062Pb3T/9wk9KWpkT1pMBjER1NHkiaEYdnwK2z8muaZALPOLEhMvvacKA7JF98Nf/xalGjGjRTvA9L/E5E78JOGtEOFGgkUbAJd/K8o7vAO7+QJPDb7akkWwj4Y5ya2TVXVmK9nldVw0MqZL+44N0rF/X4Hz9/zK7rfacuAwRwv313q63hwDuhpY/yXL8vfA953ZSJKkj4G5QLEsy8lNls8BXgeUwIeyLL/Qwa7+0dlj/12pN9u4/asdeKuV/O9y9/syPzi7HysPF/Pwj3tZdt8UfLsoCX8+exAPK0czfs+rMOHixpo2VxQdFBf06U84bxjeGiW3TEnk2cWH2J5ZzqhOZq2/KO3DrZKdJwYVd7yyxSjq0gbNF9mjRffDkZWE9ZnJpKRQft2dx/1n9u2cqZjNAiueokYdQpQlhx+T/qJf/Hy3Nr1ybBwfrM3g5zQzt7VRN9oZXl2eitlm56+7p7rM6IEIct6+agTnv7WBe77dxRc3jD1mjugeTkEOLxL1rYYiUWN31ouiblbb9qz8t5uz2FVs46l5g9rMDJ85MBxvtZLf9+S3Cqz/OliIyWpvFZC3RKVUMDgmwGWgnFtRT0GVkTG9ml8/hsXqWX6omKp6S/veC+4QO1pkar69QrifewcKc7MRV3cu2yxJIhD34OFUQaEQxlWB8W2b+NmsUJMPlTniPlt8SDyOrBJu801RaUVw3TTrrQsRGVZdsPjZO7Chxt23Ufqv1p28AbksC5WDsVooDLwD2w+M7TahoMveDDlbxPtmKBLBsqVWqAJCkiA8WShhAmKFesLRf748o9nE3r74Gxg8767mx5RlyN0G2z4UAfjW94W6YNJ9MOzK9sdrrpCkv01QXW+28fTCgySF+bkMrNOLDQD0De+CyhGRVa6os2AwWfH1UlFQZQR6piY6psEczeMIfmzoamA9oSEYLgMOybL8f25u9ymiPdfnjgWSJCmBtxDu4rnANkmSfkcE2c+32P56YAhwEPB8Itzg37/vJ63YwOfXjyGiE18irVrJSxcP4aJ3N/Hc4kM8N7/zkvD9eVXszq0i+4xnmLBlPmx+W7TCaotNb4kb4+jmfnhXjosTWesVaXxxg/tZ6zKDiVcO+rNA50tE8Xrg0vY3KE0Vs7RhA6D/XFj3f8KwI3EG84dHcd93e9ieVdFqcN4uOz+H8iPcZ3mABRGZTMr8CjIuccv8R6tWctfMPjz+y35WpRS3WVvqDimFNXy3LYfrJvZqM6h20D/Cn6fnJfPQj3t5fXkq97cjv/XwN8FcB38+LmTNEUPg/HdET2I3pJxrUooJ00lc045HgU6jYuaAMJbsL+Q/5w1qlpn+fXc+0XpvRsR1PGAbFqvn0w2ZmK32ZnVt2zKFA+qo+JaBtdjn3txKl4qWfblVrEkt5oqx8e61wes3B678Xgxs+51z2tQKevDQbZSqxox0wsTmfzNWi4x3ZbYIIKuyRaa7tlRkvcvSRFmFpbaDg0gNgbaPCLQdPd5VWvFdbNo+1PncZLlSLQJRq1l0PLGZG7uf2BqWSYrmveMdxngqL7FckkRpTFUuVOeJ5/pyUTbQsq5fpRXlMlr/BnM4nXi220RnFZMwmMIvUkxkRo8UpSc+oSJIL9wvgu79P7Z4GxTCdX/kAhhzM4QkUbZ6devrkSSJOvrYMTD7OaE2iB7lMaRzg7VpJRgtdg4VVGO02Fp1t0gprAHosgGt0xm8vI4Bkf7kV/VcxtohBfc4gh8buvrt2S/L8suSJKkAt6fiZVleK0lSQovFY4B0WZYzACRJ+haYJ8vy84jsdjMkSZoO+AADgXpJkhbLciddSP4mlBlMfL89l+sn9nJPBt2CkfFB3DipFx+sO8o5gzsvCf9qSxZatYKzJo6E1F4NDqNtUF0Ae7+DUde1cq/VaVTcMrU3zy0+zI6sckbGuxfYphTVYJGVGKImok1f0XH9WPEh8Rw2ULR5mPKAyM6lr2D2oGnoNPv5ZVee+4G1yQCrX6AseATL80Zw99ybYOFe+PV2uG2jaDXTAZeMiuW1pQd45c9UpvUN63ILrueXHMLXS8VdM9wzPrp4VCxbj5bzxqp0RiYEMbVv5z8/7VFVZ0FSgL/WI3M96SnYCz/dCKUpwtF6xj/dboNisdnZnFHO6LCOW2qdNzSKhXsL2JBeyrR+YQBU1JpZl1bKDZNd1163ZFisHrNNDHaGNulnvS2zHD+tin4RzQc5Q2JFpn13tuvA+rXlqaw4XMx7azK4eUpvbpjcC52mg9tmnzM6PE8PHjw0QesP2kEdKzss9Y3ycmNlQ617LZhrmjjCN/xuMjQGxVaTqBV2tBBtutxSL8wBW6JQCcd0VZOH0ksEx01bkVrrhelbUyQl+EcJ47joESLL7uUvXqeXv9iHwxHfWCkmFiz1DfX7NWJ/yfMhbgLEjROTEe2NXeorxBjKsX+Nb+fr131CxMODWyw7IHxFrHaZgwXVrSZ+U4tq0KgUxAe70RLRBY7g1xFYF1YZ8dequm4o3ITIAC06jZKELp6bh/bp6n9oriRJJmCZLMt7unkO0UBOk99zgTbTkrIsPw4gSdICoLStoFqSpJuBmwFCQ0NZvXp1N0/z1GNLgbjYR9sKWL3aDSm0C0ZrZb7TSLyxaDuWoe5nX+osMj/tqGNcpIpdWzYwxKJClZ/Ozjb+D5H5y+hnt7BVHkKdi3XirTI+anj1923cONi9ut8V2eJmmaPqTUj1MrYu/oI6n7g21+99ZCkxkop1+3ORFYVI9ljGeoVh/v0Rdo54iaEh8NvObGboS1G7MciPz/yeXrXFvKW6C51KojTzMDvib2bEzn9Q9OkCDg+4163XcVasnc9Tq3nl+xWMjuj8V3Z/qY3VKUYu7adh99aNbm93RpDMJh+JO7/YytOTvNF7db8WR5ZlVmRb+S7FjF2GAcFKRoYpGR6u7JH9e+g5JLuF2JxfSMj8Dovaj8NDnqRCMwzWu/8ZSquwYTBZ6e0jd3gNluwyOhV8sGwXFIjv+OocC1a7TJQln9Wrizo8Xn29uB38sHIbFfGNkzarD9TRy0/BurVrWm0T6SOxfPcRBivzmi232GXWpdUxPEyJhMwrf6XywZo05vdRMy1W1e3SjONNVrWN5VlWzu+jJtjb813rLAaD4W85jji58W14NKi5FAgtY2eFIrINhd2Kwm7BrlBjV6hEcOwmkt2Gwm5GYTcjyTYs6gBkV73hLQ0PB5qGR1tNOCoQLdQ46uaZtD3O83x+ew6rXWbp3joGBSs4UGbnp5XbqU5oniTYfMhIhDcu7znuUGMWRoartu1DU3KYfUeM+KvsPfY/fGy0hiBFPqtXF3S88knCqfIZ7mpgfSkwHJgvSVIfWZZv6sY5uBqddNhPQpblTzv4+/vA+wD9+vWTp02b1pVzO6VZ8uNe/LQFLDhvRrfqZMfnbye1yEBn3sNPNxzFbDvIQ+ePE66IZf0gZ0vb+1i9GVJhzJzL2jTrGZi+EbMkMW3aeLfOYdVv+/H1ymPYvNvhtXcYE1gNE9p5DXlvQ2g/ps5oknEKeBztH/cwLcqIInoU13y8FVtYf850UVPTjNpS2HgV9J/Ln1nJTOrrz4zpo4Dp4FtCxNoXiZh2g1vOmXZ5FRsrFSzLh/svmdKp/6XNLvPC/9YREyjx1NVTXTqRt0fCoBpmv7aWCt9enD+xV6e2bUlRtZGHftzL2tQSpvYNpV+EH8sOFPLZwTo+PwTzhkbx6qXDTrmA5bQkYzUsekRIAweej9c5/8dQn867xO/6KxVJSmNEtI9b14+55XtYvK+QcRMno1Ureff9TfQONXHNuVPd+lzIsswLO1dQpw1h2rRhgFDuFCxdztWT+zBtWmvFxoTiPaxOKWbq1ObH2Jheitm2hdvnDOfMgeHsyKrgv0sO89nBcmaOG8aUHlZxHGueX3yIdXkZ7KuQePmioZwxsOulJX9HVq9e3al7oAcPJxOez2/PsT6tlDrrFu4+ezj//u0ABm0Q06YNb7bOo5tWMK5PsPM+1FlkWeaR9cvwCopi2rRBvLR3HUnRXkybNqYHXsGpyanyGe7qtPUdwA0IOfbL3TyHXKCpo00M0I5m2H0kSTpXkqT3DQZDT+zulEKWZdanlzIhMbjb5lNDYvQcLa2lqt6FXKqNY3+5JZuhMQGNrQZ8QqG2pO2NDEWiJqgdB9zIAG8KGwwc3CGtoT2WpI+D0P6Qvrz9DYoPtW7jMuxK4Vy6+GEmxGgI9fPil115rrdvytqXwVJL/siHyK2oby6jn/owhA+GZY8JQ5cOUEgS95/Zl/RiAwv3du6r8fPOXA4X1vCPOf07HVSDcAuPC9Kx6UhZp7dtytL9Bcx+bS1bj5bx9LxBfHrdaB47ewCrH5zG0nsnc/W4eH7dnc+PO3K7dRwPncRqhpoiYXRTuF8Y5fx4g+hHarfBlT/BJZ8J06AusCG9lCHRAfio3bsGnTc0GoPJyqrDxRRWGdlytJzzhka5PdkiSRLDYps7fW/PqgBgTBvGh8Pi9JTVmsmtqG+2fE1aCSqFxPhE8dpHxgfyxY1j0OvU/HAKfk5zKuoI9/ciWu/NjZ9v56k/DmK2eqqoPHjw4KEzLDtQiFatYEpSKENjA9jTwjCzqt5CQZWxy/XVIO5lsUE6chtabhVUGYn01ESfEnQ1sA6UZfli4Cbg7m6ewzYgSZKkXpIkaYDLgN+7uU8AZFn+Q5blm319u+bKdyqTWVZHXmU9k7pQW92SIQ3B8b7cKrfWzyitJb3YwMVNHYB9Q8FSJ+qfXGEoBt/2MyiRei2FVUbs9g4FDQDN+04nzhQ9N9s6vrFaGKa0DKyVajjvTajKQbXqaeYNjWLV4RIq68xtH7g0XbhsDr+aNRViMD+xT5PARKmGaf8QRi2HfnPrtcwZFIGfVsWOhiDBHerNNl7+M4VhsXrmttO7vCPG9w5my9Fyt9/3luzLreLWL3cSG6hj0d2TuXp8gjNQkiSJ/hH+/OfcQYxOCOTZxYcoM5i6fK4e3MBmFZNMP90E/42HV/rC/4bDuxPh49lw6HfRc/n2zZDU9XrhGqOFXTmVTEpyv25vfGIwIb5e/L4nn4V785FlOnQDb8mwWD0ZpbVU1YmJwG1Hy9GoFG32Ex3eUIu9q8XgaG1qKSPjA5t1RPBSKZk3NIplBwqd+z9VyCmvp1+EPz/fPoEFExL4eMNRLnp3o9sTph48ePDwd8dul1l2oJBpfcPw1igZGqsns6yu2ZgwrchhXNa92CMmUEdOeT1Gi43yWjORHbRp9XBy0NXA2ixJ0giEZNvt6ndJkr4BNgH9JEnKlSTpBlmWrcCdwDLgEPC9LMsHunheLY/3t81Yr08T2eHJXe1B3YQh0XoA9uRWurV+aY0IjJoZI/g0BPiGNmqADMUi+G6HqABvzDY7ZbXtBLUNVNVbKK4xNQbWfWYKV8/MDa43KEkRz2EDW/8tbiyMvRW2fcAVEbmYbXYW7WujLsVUA99dJRxJpz3KhvRSwvy8SAxtcYHtdzYEJcKG/wlTtQ5QKCSi9d7ktciqtceOrAqKqk3cNaNPt+TV4xODqaq3cLCgukvbf7E5E2+1kq9uGtv6fWhAoZB4/oLB1JqsPLPoUJfP1UM71JbCssfh1YHw5YWQtkz0mj77ZeHyffFnIkN99y6Y/mi3Ha23ZJRjs8udMj1UKiTmDolkxeFiftieS3K0P73b+My0xbCGQNlxvdqWWc6wWH2bio1+EX54qRTNsg7FNUYOFVS7lHtfNDIWs9XOH51Uj5xocivqiA30xkul5D/nDeL1y4axN7eKvw52XLvuwYMHDx5gd24lxTUmZieLRNCwGD0Ae5oknlKLHK22up6xBuEMnlNR52y15clYnxp0NbB+HJiJqGH+zt2NZFm+XJblSFmW1bIsx8iy/FHD8sWyLPeVZTlRluVnu3hOro73t81Yr08vJVrvTXywrtv7CtCpSQjWuZ2xrmjI5Oh1TWTdPsLll9pS1xvVFjeu0waOnnsFVR0Hl44egkmOwDp+omiFcWSF6w2KD4rnlhlrBzP/Cfp4em18hP4hKpa7GozKsnD8Lk2Biz7B7hvBpiNlTOwT0jqwVShhwp1QsBsy13X4ekDMXuZVNnntu7+Gv/4tMt8uyCwT2fmBUW05o7iHQwq7OaPzcvCqegu/78nn/OFRHTqA9wnz47apifyyK491ae2UDXjoHHY7bP8E3hgJW96FmNFwyRfwYBqc+zqMuQmGXQGDzhcZ6oCYHjns+vRStGoFI+M719f03KFRmK12UopqOp2tBhgcE4Akwe6cSmpNVvbnV7cpAwdQKxUMjm7e/3pdqrhOuXLDT472p3+E3ylVtmAwWamosxAb1Hg/mDskCp1Gyf48967rHjx48PB3Z9mBQlQKydn+NLnhftN0Yja1qAYfjZLobgbCsYE66sw2DuSLa3SUp+/0KUFXA+sbZVl+SZbl6xAZaA8nEVabnY1Hypic5CKg6yJDYvTsdTNjXVUvMsrNA+uGrFVtexnr9qXgjp57+ZUd11kfaQisnRlrtRYSJrVdZ118SPSQ1Me7/rvGB877H1L5ER7Q/MKREheS8nWvCBntGU9C4nRSimooqzU7A9NWDL1cZPI3/K/D1wMQEygy1rIsi7rYhffDhtfg9WHww3WQu6PZ+tnldWhUCsL9uncxDvfX0jvEh41dqLP+ZWcuRoudK8e28b624Pbpfegd4sPjv+yn3mzr9PFaYuuifP20oXCfkHcvvBfCk0Wbt8u+goHnifYxx5D16aWM6RXc6dr+EXF654Bk7pDOB9b+WjWJob7syalkV3YlNrvM6A5a5A2N1bM/rwqLTdQcr00rIdhHw8DI1pNSkiRx0cgYdudUkl5c0+rvH6zN4Ostrie7eoqCqnouf39z84m2dsgpF3V6MYGNAz2lQmJgpL8nsPbgwYOHJhgtNn7bnccLSw5TVN043pRlmWX7CxmfGEyAtxjfNr3fOEgprKFPuF+X26M6cEyEbj1aDngy1qcKXQ2sm46SH+2JEzkW/F2l4PvyqqgxWjvdd7o9hsQEkF9lpKSm4/pXR8Y6UNek161vQzbalRTcZBD11x1IwSM6k7EuMaBRKYgJbJKx7zNTuByXu2hdUXxQGJy11/ux9zQYcQ0zy78jrnIrJkuT2sS0v2DlM5B8EUy4C8AZiLb5f1B7w5hbIP0vKDrY4WuK1ntTY7JSXW8VAbXNDNf+AePvgPQV8OEM+OoSkaEEsspqiQvSdfviDjAuMZitR8ux2tw3O3Ka2MXqSY52Xd/aEq1aybPzB5NdXsf/VqZ19XQBeH/tEfr/cwkzX1nNoz/v5acduc4A47RHlsVEz3tThTHZ+e/CgoUQ2u+4HL6gqp70YkOXSlEkSeKeM5K4YVIv52RaZ3EYmG3NLEchiWC9o/VNVjuHC2qw22XWpZUypW9om9+decOiUSqkViZmf+zJ59nFh3jsl32dNhrsDH/syWdTRhm/73bvGA5jttjA5gqm5OgADuRXeyagPHjw8LdGlmX25lbyxK/7GPPscu75djfvrjnC3DfWsy1TBLapRQYyy+qYPSii2bbDYvXsya0USQ8grbiGft2srwYhBYcmgbUnY31K0NXAWiFJ0mRJkhRA1+xijwN/Vyn4+jQhY+zZwFoP4FbWuqLOjEapQKdpkqly1Fi7koIbGmTVHWSsg300aFQKZ71Je6QV1dA7xKe5I3qfBiMmV3Lw4kOu66tbMusZTNpQvtQ8h/rFePj4LFjyCPx0g8gInvcGNKgENqaXkhCsa18ONPoGkSnf+EaHh45uyDYV5h+F7R+LjHevKTDrabj/gAjo05ZB/k4AssrqiA/qfikACAMzQ4Os1l22Hi0nvdjAlWPb7h3u8liJwVw8Mob312ZQ2kUjs2+2ZvPc4sOM7RVMfLAPC/cW8MAPe5j84iq+23Zss4knHIsRfr4ZVjwFA+fBndtg2OXOz+XxYEN6B5NKHXDJqFj+OdeN72MbDI0VTt+/7c5jQKQ/fh2UITjqsnfnVHAgv5ryWjNT+rZ97qF+XkzvF8YvO/Ock02ZpbU8+vM+RsTpGRkfyIM/7HG7fKazrDgkJihXHW67b21THBNKsS2uB4OjA6i32Dha+veafPbgwYOHpry/NoPz3tzAD9tzmd4/jK9uHMuSeybj66Xi8vc388mGoyzdX4gkwawWrQqHxuopNZjJq6yn1GCi1GDudn01NE6EHi6sIchHg1bd+c4uHo4/HQbWkiT1d7H4YWAo8AHgnq3xCeDvmrFel17KoCh/gnw0Ha/sJsnR/iik5gYNbVFVZyFAp24uQ1d5gVeAaym4ow1XBzXWkiQRGaAl3w35Y3qJgaSWF7bgPkLqvf+XFscvFefVVn11U7QBZMxfyEOWm8mNOx/sFtjxKSjUcNmXoBEXQqvNzpaj5UzoKLDQBcHwq2HfD1DdfvbJEaBrN/8P7FaY8mDjH738YPIDICkhZQmyLJNdXkd8sNvegu0yrreYP+tM262vtmTjr1VxbhfkvBeMiMFmlznYiUDeweJ9BTz+yz6m9g3l4wWj+XjBaPb8axZL7pnMqPhAXlhy+PR1Qq4pgk/PgX3fw4x/wkUfi8/YcWZ9Wgkhvhr6R3R/cNEVHE7fWWV1jG6nvtpBTKA3Ib4aduVUstZh/NhBR4WLRsZQXGNiXXopRouNO77eiVIh8cYVI3jv6pEE+3hx4+fbmkkJe4KqOgvbsyrw81KxI7vCLXfynIo6dBolgbrmEwwOJck+jxzcgwcPf2N+253P0Fg9Wx8/g9cvG87EPiEMiPTntzsnMq1fGE/+cZC3VqUzIi6QsBbu3E4Ds5wqUp2O4N2/9/l4qZzjeE+2+tTBnYz1YkmSPpYkyZl2kmXZJsvym7Is3yDL8h/H8Py6xd8xY11rsrIru6JTLW7cQadRkRTmxz43M9YtB3CAkHq76mXtkIf7th9Yg7i4dJSxrjfbyK2op09LN2FJgrG3QNZ60a/XQXGDC7U7gTUQE9eLH2zTWBz3ANy4HB7NhXv3QWCCc509uVUYTFYmJrrxfxh/O8g22PxO+8cN9CaccqIzvhPZ6qBezVfwDoS48ZC6lBKDiTqzrUfM60Bk6PqG+7LJTQOzUoOJJfsLuHBkDN6azs+yOtpUOG5S7rIurYR7vt3F8LhA3r1qJBqVuMQpFBIDIv35z3mDqKy38Naq9E6fU1tYbHanBOyEYbPAkVXwwQxR1nDJF2Li5ThmqR3Issz6dGHa1xNlCF3B4fQNMKaD+mpo3v96TWoJg6L8CfFtvwZ9Rv8wAnVqftyey7OLDnEgv5pXLh5KtN6bEF8vPrx2FDVGKzd/vh2jpft+AQ7WpJVgs8vcc0YSNrvMGjeM/nIr6okN1LXy3EgM9UGrVrAvt/0JLFmW2ZNTyfNLDvHgD3s6VRLiwYMHDycak7Xta3BFrZmDBdWcOSDMWTvtwF+r5v2rR/LgrL5Y7HbmDWudKOgX4YdGpWBPbiVpDY7g/XpoUjm2QanoCaxPHdwJrPsDu4A1kiS9JklS9xsjezhmbD1ajsUmM7lPz/+bBscEsDe3qsMgoqLOgl7nIlvuEwoGV4G1QwrecWAdFeBNQQcZ6yMlBmS5iXFZU0YuAF0wrH25cZkzsHZPehrgrSbEV8NRh4GZUuXMVDvYmC4k720alzUlMAEGzRfy7vKMNlcL8tFwl+YPJNkGUx5yvVK/OVC0n8KsVADieiiwBiEH355Z7jR4ao8ftudiscmdloE7CPb1IsTXi5RC9wPrPTmV3Pz5DhJDffn42tEuA/rk6AAuGhHDpxsyySpro6d5O8iyzBebMrn3211c9M5Gxj23gr5PLOG6T7e59b70KBWZsOV9+OZy+G8v+OJ8QIbrlwpzshNESlENpQZTj5aidBa1UuHMxrqTsYaG/tcltezMqnDZZqslGpWCecOiWbK/gC82Z3HjpF6c0UQiOCDSn9cuHcbevCoe/Xlf116IC1YeKiLIR8O1ExII8tGw8lDH7bJyyuuc9XpNUSkVDIj0Z3++64x1XmU9zy46yKT/rmLeWxt4b00GP+7IdbaT8eDBg4fOYLPLx30iOq+ynhFP/cUfe1yrAh0dT8a3kQhRKCTunJHE1sfO4OpxrY1YNSoFg6L82Z1TSUpRDQHeasL8esYcNKahfCcywGNcdqrQYWAty7JZluU3gAFALrBFkqSnJEk6MRq/LlBl+vsYs6xLK0WjUjAqoXMtbtxhaEwAZbXmDp1oK9vKWPu0kbGuLQEk0HU8EI/UaymqMbVrtnOkpKHVlivzCI1Pg9nXX5C/SywrPghaPfhFtF6/DXqH+HK0tO3AbMORUgZGdkKOP/PfoFDB99eAxfX7K1Xnc4liBRt950BgGy7bfc8CwHZ4KUCP1ViDmCSoM9s6rLO322W+3prFuN5B9Anr+mWiX4QvqcXuD+Dzf3qEpcr7+Dn+ZwJyVoDZ9f/nwdn9UCok/rv0cKfP6fc9+fzztwNsPVqOSikxKSmEK8bEsTqlhGcWdmxA1yPUlcPih+B/w2HJQ+LzO+RiuPRLuGMLRA49PufRBg6Ph0knMLAGmDskkjMGhBHq5gBnWKy4ZlrtMlM6kIE7uHhUDHZZBOUPz2ldNTVrUISzhVxmO9cLd7Ha7KxOLWFav1DUSgXT+oayJrWk3euhLMvkVtQ3N3JswuDoAA7mV2N3sY97v93Fpxsz6Rfhx0sXDeGX2ycAsC+vstuvxYMHD6c/sixzuLCaD9ZmcPVHWxj4r6U8+MPeNoPrgqp6vtiU2aOGil9tzqLWbOPXXXku/77xSBk+GiVDYto3WQ3182qz087QGD37cqs4VFBN33DfHuvI46izjtR7MtanCm6bl8mybJRl+WVgMGAEdkqS9GAHm51QHDXWNaaek+Gd7GxIL2VMQtAxMTloNDBrvx6vss6C3ruNjLWrGmtDkcgiK1UdnkNkgDc2u0xxTdty8PRiA0qFREJb9cWjbwJtQGPW2mFc1okLYa8QHzLaGCjXm23szKpkYp9O+PoFxsP890R7pCX/cL3O+v9DAXyivKjt/YT0gaBEAnNXoJBoczDdFcb2CkaSOq6zXp9eSk55vdstttoiKcyPtKIalwP+lsi7vuSsym9Qe3mjO/gdfHOpyOJ+e6VwnW9CuL+WW6cmsnhfodPt0x1qTVaeW3yI5Gh/1v1jBt/ePJ6XLx7Ks/MHc9PkXny2KYvvt+V0+nW6jd0mVA1vjIRtH8Ko6+GunXDPHpj7Kgw4V9Tan0AMJitfbcmmb7hvlx29e4rrJvbiw2tHu73+4IZBlY9G6Xbv7UFRAXy8YBQfXTvKWXbQkqvHxyNJ8Otu14O6zrArp5LKOgszG3qoTu8fRkWdhd05FW1uU1VvwWCyNmu11ZTk6AAMJquz772D4moj2zIruHtGEh8vGM3Fo2IZGqPHz0vV4T3AgwcPHkpqTMx4ZQ1zXlvHs4sPUVBlZHxiMD/tzOWzjZmt1q+qs3D1R1v5528H+HJzVo+cg9Fi49ttOUiS8B+qNVlbrbPxSCljegWhVnbVz1lMrtZbbOzOqeyR+moHDqVRlCdjfcrg9qdIkqQESZLmADcCcUAN8NyxOrGewFFjbUNx/GWaJ4DiaiMpRTXHTILZP9IPtVJqd1Aly7IIrH1c1ViHQX2FqAdtiqGkQ0dwB1ENs3bt9bJOKzIQH6Rrc6CL1h/G3gqHF0LRgYbA2r36age9Qn0oNZioNrY2DtqZXYHZZmeCO/XVTek3BybdDzs/g93fOBcrrbXwx72w7UO2B81ld00HF+1+ZxFTtYPEANp+D7pAoI+G/hH+HdZZO/o5njHAvf9pW/SL8KPObOu4V2/eDuSF97PBNog1036Ef2TC1b8K2f/hhcJcrgU3TelFhL+WZxYedCtwB3hzVTpF1SaePC+5uds88I85/ZmcFMITv+5nZ3bbQU6XKc+A96fBwvvEZ/WWtXDOKxCc2PPH6iKyLPP4L/vIKqvlqXnJJ/p0Ok2At5rkaH+m9Qvr1PdmRv9wgtupx44M8GZ872B+3ZXXbQnkikPFqBQSkxscy6f0DUWpkFjZjjt4TnlDq6021CvJUa4NzJYdFBLzOcmNSh6FQiI5OuC06X1dUmOisMpIcbWRUoPp9DU19ODhBPDdtmyOltbyzPnJbHp0Bsvvn8rH147mjAFhPLPoULOJbbPVzq1f7iCrrJYBkf68tCylR4wfF+8roLzWzJ3T+2C22lmb2lw1WVRt5EhJbefHay0Y2mCYKcs9V18N0D/CH2ijtNHDSYk7ruB7JUkqB34FFgB6YCVwLXBK/Kdl6FSt5qnKpxszkSQ4c2D3Apq28FIp6R/h364UuM5sw2yzN+9h7cCn4cLVsuWWoajDHtYOHHUm7fWyTi8xdHwRGnsraHyFpNZU1fnAOkRkw13JO3dkVSBJMLIrcvzpj0PCZBFAFR2Ag78zZusdItgefyd7Bj5Iea2ZOnPrWVcnfeegki2c7XOo88ff+z281AeMrgfOos66ol0jkNyKekL9vLpkWtYUx6xvu99dQzF8exX1mmDutNzFyN6hwoE+cTqc/aJ4Lze9BVZzs810GhUPze7Hntwqfm+j7qopR0tr+XBdBheMiHaZzVQpFbxx+XAiArTc+sWOnnWCLjoAH8+Bqhzh8r1gEUQM7rn9d/Z0qo0uA8Qftufy2+587j2jr9NF/lTjyxvG8uJFQ3p8v+cPjyazrI7dDZNOXWXl4SLG9ArCv6F9WIC3mpHxgc72W67IqRCtttrKWCeF+6JRKVoFy8v2F9I71KfVtXRITACHCmowW0/dyeq0ohqu/Xgro59dzrjnVzDmuRWMemY5Q5/8k0d+2ntKvzYPHk4G7HaZ77bnMCExmKvGxTvHbgqFxCuXDCMm0Jvbv9pJccP95JGf97Ipo4wXLxrCu1eNwGKz89QfrcurLDY7zy0+xCXvbeLcN9Yz85XVTHh+Bbd8sd1lAu2zTVkkhvpw98wk9Do1fx5s7knhUOC55YfTDgnBOvy1QnWZ1I0SuJaMjA9k3cPTnZ4hHk5+3JmWnw8Ey7I8TJbly2RZflKW5e9lWd4ny7K5w61PEva44WZ9KlNqMPHJhkzmDok6pjNbQ2IC2Jdb1WaWr6JOfCRc11g3mJO1rLOuLXY/Y+0IrNvIWFtsdjJLazt+D3RBMPpGyNogfnfTuMxB74bAOqOkdWC9M7uCPqG+zsFvp1Cq4MKPRFb9o1nw/dWYNXq4cQXMfpaIEGHE1G7LsbhxVOPDZPuOzh9/73fi/5O6zOWfxycGY7La2ZVd2eYu8irr2+/d7SZOZ/DiNgJrq1nUpNdX8GH0M9i0Qa2d4CfeCzX5op1ZC+YPjyY+WNemoUlTnvrjAF4qJY+c5ar7oECv0/DBNaMwmKzc+fXODvfpQJZl3lyZxgPf7+HXXXmU1DTp3Z2zDT45GyQFXLcUki88IU7fDr7eks3Y51Zw2fubSW/yf0ktquFfv+9nQmIwd0zvc8LOr7vodRp8vDouSeksc5Ij0KgUbdb4uUNOeR2pRQZm9G9u8jizfxiHC2vavCbkVrjuYe1ArVQwIMKP/XmNzuCVdWY2ZZQxe1BEq1rBwTEBmG32Tjv2nwyUGUz889f9zHl9HTuzK7jvjL48f8Fgnp2fzNPzBnHN+Hi+3ZbDVR9tobz2lBneePBw0rEpo4yc8nouHR3b6m8B3mrevXokBqOVO77eyf/9lcrPO/O474y+zB8eQ3ywD3fN6MOifQWsSmmcNDRabNz25U7eX5uB3S43tHT0Z3hcIMsOFPHqX6nNjrMnp5I9OZVcMz4BtVLBzP7hrDhU1CwA33iklABvNQMj/bv1eiVJcmat+7ry9+kGbV27PZycuGNedkQ+4b1kuoajxlpCdspTT1feXX0Ek9XGvWckHdPjDI3RU2OycrQNR+XKhp6qAa5qrB2u303rrGVZZB193MtY+3ur0GmU5LeRsc4qq8Vql92bXBh/J6gaAsBOZqzjgnUoJFrVWcuyzK7sSkbEdcM8zi8cLvpE1J2f8SQ7R7wM0SOAxl7WORVtB9bVFlhlG8ogwyZRl+su5lo4uk78fNB1e/oxvYJQSI0umq7IrahrMzvWGfy0aqICtKS2lbFe/m/I3gTz3uSP4hBGxge2bu/UZyaEJ8OG18HefDZboZDoE+rbYfu2FYeKWJVSwj0zkwjza99ApF+EH3fNSGJbZgXFbmat3159hJf/TGXxvgLu/W43o59dzpzX1vLHL18jfz5PtFG7fimEtR3UHw+W7i/giV/3MSxWz+HCGs56fR0vLj1Mea2ZO77aia+XitcuHdZKJu9BtGw5c0A4C/cWdLksySH3ntmixMIRaDcdgDYlp7yeAG91uxN9ydEB7M9v7Piw/FAxNrvMnEGtDR2HROuBjr02TjZ+253HtJdX8/XWbK4aG8eah6ZzzxlJXD4mjivHxnP1+ASempfM65cNY3dOJee/tYG0U3DywIOH48XG9FKW7Ctw+bdvtmYT4K1mtotrCAiJ8wsXDmZbZgVvrEznwhEx3D2zcVL2pim9SQz14Z+/7qfebKPWZOWGz7ax/FART88bxI+3TeCT68bw1pUjeOvKEVw2OpZ31hxh45FGReTnm7Lw0Si5YEQ0ALMHhVNttLL1aKMEfeORMsb3Du6R1pDnDoliclJIu6VBHk5/eq4A8yTEUWOtVSnYk3NqDQI6Q1G1kS82ZzF/eAyJLTN2PcyQ2IZ6vDYGVY7Auk1XcGguBTfVgNXoVqstELOCkQHaNjPW6Q0u0m4F1r6hMOFO4aKsc68ljwMvlZKYQF0rZ/CjpbVU1VsYHqfv1P5akTAR7t0Lk+5FVjRm0KIbAta8dgLr7LI6VthG4G2pgLxOZK2PrgWbCcIGQfryVqZfIGaa44N9nL0aW2K3y+RXGp3n2V36RviR4upYsgy7voTBF1PR+zzSiw2MctVWSZJg4j1QmgJprbPw4QHadmXbRouNpxYeJDHUh2snJLh1zmN6iUkVd2S/323L5qVlKZw/LIp9/5nFH3dO4uE5/ZjIbmbtvguDLkYE1U16pJ8INh4p5e5vdjM0Vs83N41jxQNTOW9oNG+vPsL451eQXmLg1UuHEebvcS5ti/OHR1NWa3a6pneWlYeL6R3i4yxDcdAnzJeYQG9WtVFnnePGRNfg6ABqjFayy0V2e+n+QiIDtC5dcmODvAnwVp9SzuC/78nnvu920z/Cj2X3TubJecltdmyYNyya724eR53ZxgVvb2w2UPfgwYNgX24V1326jTu/2dWqjKS81syfB4qYPzy6XSPdecOieeDMvswbFsXzFwxupo7xUil5dv5gcivqeWHJIa75eCubjpTxysVDuXp8Qqt9/evcgfQK9uH+7/ZQWWemvNbMH3vzuWBEDH4Nk4qTk0LRqhX8eaAQECqg3Ip6JnTGaLYdLhkdyxc3jO2RfXk4del0YC1J0rnH4kSOJV5KISc1uHADPB14a1U6NrvMPTOPbbYaoE+oL1q1ok1pvVMK7mrQ4gisDU0GgI6f3ZSCA0TpvSloIxhyBNZuTzBMfxxuXuP2sZvSK8SHo6XNg76dDRLpEW66CneWMD8tKoXUrqFXVlkdq+1DkCUlpCxxf+epy0Td+aynxWRH+l8uV4sP1pFV7lqxUGIwYbbZe8yNvF+4H0dKDFhbZvmq88FUDbFj2ZElzMJGtfWeD7oAAuJg/Wut/hTpr6Ws1ozR4jqzvzqlhKyyOh47e4DbhlaDogJQKaQOA+s/DxTy6M/7mNI3lBcvGopKqWBwTAC3D/fmCdP/kauM4Urrv7Do3Jt0Olbsz6vi5s93EBesc/YHD/H14pVLhvLdzePoH+nPQ7P7MdnNFlV/V6b2DUWvU/NLF+TgtSYrm46UtZKBg5hsnNE/jA3pZS4/x7kV9c6WLW3hqN/bl1dFrcnKurQSlzJwx/GGxAScMhnrpfsLue+73YxOCOLz68e61QJweFwgv905kTB/Lx78fk+b14e2qDZa2Jtbye978nljRRpfbcmi1GDqeEMP3UKWZbZklHHXN7sY9K+lPPrz3k7/7zx0TJnBxK1f7iDYR0OQj4aHf9zbTInzy648zDY7l41pLQNvyV0zk3j9suEu76/jegdz0cgYPtuUxd7cSt66YgQXjoxxuR+dRsXrlw2nrNbEIz/t49tt2Zitdq4e39idxFujZEpSKH8eLEKWZeek2YRu1ld78NCUrmSsn+3xszjGeClFgut0cTJtSm5FHd9szebiUbHEBR/7OgyVUkFyVEA7GWsRWOtdZay9/EDp1VwK7vjZTSk40JCxdh1YphUbiNZ7u18nKUldrlntFeLD0ZLaZkZOu7Ir8PNSta717SGUCokovXe7GevMslqq8cUWO77NWulWyDKk/Qm9p4mHLgQO/u5y1YRgH7JK61waWOV2YJTUWfqG+2G22slqyKQ5KWkwZgsbyPasCtTKxvqmVihVQpmQsxmyNzf7U0SAyLAWV7se9OY0HHdUvPuKBq1aSf9Iv3Z9HbYeLeeub3YxOEbPO1eOaBxU2G3w881IVjMlc95nb5nEF5t6pu1IV8gpr2PBJ9vw06r4/PoxrSbMxvYO5rc7JnL7tFO3rvp4oVEpmDskkj8PFnZ6kndtaglmm50ZA1xPskzvH0a9xdbKsV/0sO44Y903XHR82JdXxZrUEkxWezM38JYMjg4gpbDmpA9aVh0u5q5vdjI0JoCPFozulKFitN6bp+Ylk19l5Ost2R2ub7fL/LA9h8kvrmTIf/7kvDc3cPc3u3jlr1Qe/2U/Y55dzhUfbObLzVmUeYLsHsVstfPZxkxmvbqWS9/fzJqUYsYnhvDN1hzOf2sDR0pcK6w8dB6rzc4dX++k1GDivatH8fS8ZA4WVPP+2gxAXHO+3ZrNsFi909G6Ozx29gBmDQznw2tHc9bgyHbXHRwTwIOz+rH0QCGvL09jfO/gVq2vZg2KoKDKyL68KjYeKSPUz+uYKz09/L3oSmB9yhXQaZTilNtzsz5VeXNlOhISd804fgPb3qE+TslgSxxScJd9rCVJSL6bSsENDQ6NnchYRwZ4i8yoC+fW9GIDicepLUHvUB9qzbZmZlM7sysZFqfvkXqdtojWe7ebsc4uqyPEV4Oq/xwoPgAVbgRmRQegOg/6zgaFEgbMFYG2pfVx4oJ01JisLs19chsC/pjOmpcZq6Eqt9Vix02xVZ11sSOwHsCOrHIGRQW037t9+FXgHdQqa92Ry3xeZT2+Xir8vTtnaDUsVs/eHNcmf0aLjZu/2E50oDefLBjdfBJo7cuQtR7OeZmxo8cwOSmE15anUnGCjJS+2JxFVb2ZL24Yc8L7Up8OzB8ejdFiZ9n+Qre3WZ9WysM/7SUyQMtoV+UOCLd+b7WS5S0cb0sMJowWe4fmNxqVgn4RfhzIq2bp/kKCfTRtHguEiaXVLnP4JO62sSG9lFu+3EG/CD8+uW4Mvl0wpZvYJ4QJicG8vTodk7Vtq5mN6aXMfWM9D/24lyCdhkfO6s+7V41k6b2TOfTUHJbcM5nbp/WhsMrIE7/uZ9rLq09735fjhd0uc//3u/n37wfQaZS8eNEQtjx2Bh9eO4pPrhtNUbWRc99Yz2890EfeAzy3+DCbM8p5/oLBDI4JYE5yBGcPjuD1FWmkFxvYmV1JWrGBy1yYlnWFIB8N718ziql93Uu+3DS5NxP7CJPVa5pkqx3M7B+GQoJlBwqd9dWulDkePHSVrgTWp5yRmVISdWHu1FnXGC28vjyNd1YfYVVKcbPWMkaLjYwSA2tTS06Km2JmaS0/7MjlirFxx3XQG+6vpdRgai3PBSrqLPholG3LZn1CWkjBGxzC3ayxBtHLWpZpVRtrt8scKTGQdJwCa0eto8PArNZkJaWwmuFtZU57iOhAb2dm2BVZ5bXEB/tAv7PFgkN/dLxTR/1x0izxPOA8MBvgyMpWqyaE6BqO0/ocHIF1p2qsbRb4bC68PR4qMpv9qU+YL5IEKS1NhIoPg08YJk0Ae3Kr2paBO9D4wJibIXUJ5O92LnZkrAvbKC3Ir6wnSq/t9I3XYfLnKlOy5Wg5lXUW/jl3YPM6z6yNsOYFGHwJDL0cSZL459yBGExWXlue2mo/x4P1aaWMjA90Sz7roWNGxAUSG+TNr24O8r/eks21n2wlKsCb728Zj1rp+rqqVSuZ0T+MZQeKsDWZzHF8H2ODOv4+Do4OYG9uJSsPF3PmwPB2Teic0vGTdLJalmUe/GEP8UE6vrh+LAHeXejQ0MCDs/tRajDzV1brHtclNSZu/GwbV3y4hap6C69fNoxfbp/IrVMTmZMcQf8If7w1SgZE+vPg7H6seGAqC++aRIC3mqs/2nJaquiON//3VyoL9xbwjzn9+e3OSVwyKtapTJjeL4zF90xmUJQ/93y7m3fXHDnBZ3tq88uuXD7ecJQFExK4YESjJPvJ85LxVit55Ke9fLM1G51GydyhUSfkHBUKiTcuH8GLFw1hlgvjtEAfDWN6BfHVlmxKakweGbiHHue0Ni9zuIIbDAaGxug7rHncm1vJ3DfW89qKVP679DDXfbKNsc+tYMTTfzHqmeX0/+dSZryyhms+3spF7250ykRPFL/tzscuy9w+LfG4HjfcX4tdhlJD6yxaZZ0Zvase1g58wpq326otFq2EdO5f3BqzjM2DobzKeowW+zFtN9aUXi1abu3NrcIui/q8Y0m03pviGtcZexA11vFBOghOFMZs+3/qeKepf4p1/RpuRL2mgFbvUg4eH+zTcJzWdda5FfUE+WjQaTqRHdrwOhTsAasJfr4FbI0yWW+NkvggXWuztJJDEDaA/XnVmK12RrnTM3zMzaLk4NO5cOBXoDGwbssZPL+qvkuTVg7zOlfXnDUpJXipFIxv2uu5rhx+ugn08TD3/5zlCX3D/bhybDxfbslu1t7qeFBqMHGwoJpJfUKO63FPZyRJ4vxh0WxIL23XNd5ml3lm4UEe+2Ufk/qE8ONt4zvMOp81OIJSg4ntmY2Ot457lDueB8nRAVQbrRhMVma3IwMHcQ0K8tGw7yQNDNOKDRRUGblxci/Xfh+dYERcIDP7h7H4qIWq+sbgurjGyOUfbGZ9eikPzxFB87xh0e2qlSRJIjk6gG9uGoevl4qrP9rC4cLqNtf30D7fb8/hzVXpXD4mllun9na5TmSAN9/cNI5p/UJ5f20GJuvJXb5wslJqMPH4L/sZ2yuIx89p3kUl1M+Lf80VZVk/7sjl3CFRXVKI9BRBPhouGRXb5uTg7EERTnXlhETP/c1Dz3JaB9YOV3BfX1+GxerJq6xv3iO2Abtd5sN1GVz4zkYsVjs/3DKePf+exXc3j+PJ8wYxJzmCGf1Duf/MvvzfJUP5ZMFoFJLUqmfe8Sa/sp5gH6/j7sQb4d92lq+izkygTzvZAd/Q5oG1oUjU8yrcr32LdAZDzeW7aQ2Bx/EKrKMCvPFSKZwGZjuzhYnWsGOcsY4J9EaWXcuXjRYbhdXGxnr7QRdA/k4oP9r2DuvKIXcrJM1uXKZUi4x3yhLRL7rF8SUJMktbTyzlVdZ3rr66+DCs+S8MPB/mvSnqoNe90myVvuF+zTPWdrvYLmyAM4gY6U4NtE8w3LxatK364VpY+ii+Sjt+XioK2wis8yq6Flj3DvHFz0vlOrBOLWZs7+BG6bosw+93ie/CRR8LL4Im3HdmX3QaJc8sOtTp8+gOG9JFycYkjylZjzJvWDR2WThVt8U/f9vPh+uPcu34eD66dpTT1bY9pvcLw0ulYEkTmbmzNMON72RylMhC+3mpOsziSJLUkOE+OQPrtaniHtNTn90HZvWjzgofNNSRFlUbuez9zeRX1vPZdWO4fVqf9ktRWhAbpOObm8ehUSm48oMtnrZeXWBjeimP/byPyUkhPDUvuV1VkUqp4PqJvSivNbP8oGv3fA/t887qIxgtNp6/YLBL5cwFI6KZ0iDXvtQN07ITyZkDRelhtN7bLTWPBw+doSuBdVHHq5x8DInRA63rrGuMFm74bBvPLDrEjP5CNjQqIYgAbzVjewdz7YQEnr9gCC9eNJS7ZyZxwYgYpvcPY8HEBH7ZnUdKF2vMvt+ew7lvrHdZg+kuhdVGIgKOf788p3zWRTBSWW9xXV/twKchsHYYXxlKOlVfDRDZEOjkt2i5tTa1FI1KwcDI7htmuINCITU4g4vM7a7sSnqH+HQ7Q9IR7bXcyq2oQ5aFczcAg+aL5wO/tL3D9BUg20V9dVMGngemKtGGqwleKiVRAd4u6+w71cPaboPf7hBO5Ge/DEMuETLoNf+FnK3O1fqG+3G0tLYx01CVA5ZaCO3P9qwKEoJ1hPq5+T0IiIEFi2HsbbD5bfj0HAb71bj8LNeZrVTUWZy9wzuDQiExJDagVWCdU17HkZJapiQ1mSXf/DYcXghnPunsV96UIB8N98xMYnVKCSsPH7/L7/q0UgK81QyObt1yyUPX6RPmy5CYgDbl4KUGE99vy+GKsXE8OS8ZVRvy75b4eKmY2jeUJfsLnPeV3Arht+COgqRfhB8apYLp/cPwUnUcJA6JCSCt2EC9+eTLAK5PL6V3qE+XvruuGBjlz5gIJR9vOMr+vCoue38zRVVGPrt+DGN7d01KGh/sw9c3jUOhkLjiwy38tjuvmYzfQ9ukFxu49csd9Arx4a0rR7RZItGUSX1CiNZ78+22jo3oPDSnsEq0dL1wRAy92zD6kiSJVy8ZyuuXDTvm5XDdJSZQx4z+YZw/PMpTX+2hx+l0YC3L8pnH4kSONcnR/igkWtVGP7/kMGtSS3h63iDevWpk+zLmJtw2NRFfLxUvLUvp0vn8sSeffXlVzvrcrlBUbXRmj48nYf4iiCmucRFY11lcO4I78AkDuxXqRXYXQ5HIYncCXy8VflpVs4ytLMssO1DIlKRQ9x3Be4BeIT5klApn8F3ZFcdcBg4QoxdBc64LA7OsMhHsOuTaBMZDzGg48HPbO0xbJlQDUS2Cut7TQeMHB39ttUl8sI7MFlJwWZbJq6h3fzC7+R3I2w5nv9T4GTjnZQiIhp9uFIZmiF7WNrvslNxTclgcL2wAO7Mq3MtWN0WlgbNegIs/heJDvFd3L7Elq1qt5pi46ergfFisnsMtnJPXpolM2rR+Da83Zyv89S/oPxfG3d7mvq4Zn0BiqA9P/nHwuDgxy7LMhvRSJiQGt1tr66FrnD8smv151S4zlb/szMNql7nOzb7pTTl7cCRF1SZ25Yjra055PdFutr7TqpV8et1oHjt7QMcrI2qybXaZgwXNpcyuugUcT0xWG5szypjcwyUMFyRpMFntnP/WBkpqTHx+w5h2Dd7cITHUl69vHEugTs093+7mjP9bww/bc5yti4wWG3tzK/l+Ww6vLU/lP78f4N5vd3Htx1u55L1NXPPxVm75Yjv3fLuLR3/ex1ur0vljTz57ciqdHTpON+x2mQe+341aqeDjBaPxd0PNAWKy85JRsaxPLz3hZXynGm+uSkOWZe7uoKVrsK8X84ZFnxLB6scLRvPQ7P4n+jQ8nIac1lLwpug0KvqG+7G7iXRtd04l32zNZsGEXlw9PqFTFwO9TsOtUxNZfqjI2UfXXcxWO9szxTbdcSovqjYSfgIC6xAfL1QKyWWWr6LOTGC7NdYNAYXDGby28xlrEDLsphnrPblVFFQZOauD2sCepleID9lldRwtraWs1uysrT2WRARokaRGmWdTMh2BddN6zEEXQOE+KE1rvTO7DdKXQ9KZoGhxOVBrRRb78KJmdc8gAndHEO+g1GDGZHWzh3XZEVj5tJCbJ1/YuFwbABd8KLLSix8ERC9rgFRHEFJ8EIAsRSxltWb36qtdMWg+3LKGKk0Uj1c/DYsebOaCnt8wcdFVY8BhsYHY7HIzg6K1qSVE671Fe4/aMvhhAfhHw7y32m37plEpeGpeMllldc62JseSjNJa8quMTEry1J8dC84dGoVSIbXKWsuyzHfbcxgepycpvPOGcTMGhKFRKliyT8jBcyrqiO1EacaEPiFORVJHOFRgTQ3MsspqmfLSKi57fxPpxSemxdGOrAqMFnuP91WP8FFw+RhhjPX5DWM6P6HXBknhfiy9ZwrvXjUCnUbJQz/uZdpLq5n5ymoG/msp5725gYd/2stry9P4aWcuO7MrqWgImqvqLWSV1bE7p5I/DxTy0rIU7vpmF/Pe2sCwp/5i/PMruPWLHbyz+ggbj5RS28k2bycjP+/KY09uFU/MHdCh70BLLh4lDLd+2J5zLE7tlMfiwpA2p7yO77blcOno2E6/3x48/B3pMLUnSVJ/WZYPH4+TOdYMi9Wz9EAhsixjl+GJX/cR6uvFfWe2PwvXFtdNTOCTDZn8d+lhvrt5nNuB+d7cSuobsk57ciqbuSu6i9Fio6LOckICa4VCIszPq1WNtd0uU1VvIbC9jLUjM1lbDCFJImPdiR7WDiL12mYZ6yX7C1ApJM4Y0PkgvTv0CvHBaped9ZIjjkPGWqNSEO6ndSkFzy6rxddL1dxtetD5sOwx2P8zTPtH8w1ytwn1gMMNvCUDz4P9P0LOFkiY6FycEKyjvNZMtdHizBg4nMrdyvAuekD0ND/n/1oHlHFjYfIDsPYlmHQfvUL6oVJITQLrw+AXxdZCMQjo0BG8PYIT+XH4J/iue4Ybt30gnLkv+hjC+jtbmnXK4bwJQ2OFhHp3TiWjEoKw2OxsSC/j3KFRSLIMv9wiJpZu+BO89R3ub2KfEM4ZHMlbq9KZPzy62SDHarPzwpLDFFYbuXJsPON6B3Ura7A+raG+2mNcdkwI9fNiUp8Qft2VzwNn9nMaXu3MriS92MALFwzu0n79tWomJ4WwZH8hj549gPzKes7uoPdrVwn39yLUz4u9DRNHWWW1XP7+ZuosNg7mV3P26+u4dVoit09L7FT9cXdZl1aKSiEx7hi4/T51XjKPnT2gc+aMbqBQSMxJjmT2oAhWp5TwycZMvFQKzhkSxYAIP/pH+hMb6N1hWUCd2Up2eR1ZZXVkltZyIL+aPbmVLD0gJlqUCokhMQGM6x3M+N7BjEoI7PHXciypNVl5celhhsbqmTc0utPbR+m9mdo3lO+353LPGX09apwm/N9fqXy4LoN/nzuQS0bFOu8f/1uRhiRJ3Dm9a+NkDx7+brhzRV0sSdJq4D+yLJ/SxSlDY/V8uy2H7PI61qaWsD+vmv9dPtwtYxhX6DQq7p7Zh3/9doA1qSVM6+dey6jNGWWAyMTt7qL5S3G1MGE7EVJwgPAAbat2V9VGC7IMAW5lrEvAWAU2c5cy1pEB3k7jHFmWWba/kPGJwQS0F9QfA3qHCsn1zzvz0GmU9A0/PsZpMYHe5FW2lrNlldcRF6RrHlT5R0H8BOEOPvXh5oFs6lKQlJA4w/WBwpPFc1XzGX5HDXd2WZ2z9Y4jEI3pyAzEboPM9TD2FvBvY9A/8joRWKf9iWbiAHqF+JBS2JABa3AE35FZgV6nFtnfbhAe6Mej1quYf+GVBP91D3w0C25eRX6lFYUE4e7Wb7cgzE9LtN7bWWe9M6sCg8kq+nFueBXS/4JzXoGo4W7v84m5A1iVUsxTCw/ywTWjAKg327jrm50sP1SMr5eKhXsL6BfuxzUT4jl/WHSXSiPWpZUSG+TdWFLgoceZPzyae7/bzY7sCqek+PttOd1uVTMnOYIVh4v562AhFpvcOTPBTiBJEkOiA9iXW9UsqP76xnGE+nnx7KKD/G9FGn/syefxswcwrV+o2/Xi3WFdWgkj4gKPiSuxQiEd00BUkiSm9w9jen/32082RadR0T/Cn/4RzX1GKmrN7MmtZFtmOZszyvlgbQbvrD6CWikxNEYvAu3EYEbGB7o1CVJvtrE+vZQ/DxRyuLCGyAAtcUE64oJ1JAT7MD4x2K26587y9up0imtMvHv1yHbd19vjstGx3PrlTtamlnT5fT7dWJtawv9WpBHiq+EfP+1jXVopz84fTJnBxE87c7luYi+3lSwePPzdcecO0R+4BVgjSdJvwLOyLJd0sM1JydAG6dryQ8W8tjyViX2COXdI92bzLxsdxwfrMnhpWQpTkkLduthvziinf4QfU/uG8smGTMxWe9t9n9vAkS0OP0EXu3A/rdOF20FFQ/uCdjPWPg03MkNJYz/rTvSwdhAVoKW81ozRYuNoaS2ZZXXcPOX4th0D4f4MkF1ex/jewcdl4Agii+pwIW9Kdlkd/SNdSEgHzRfS6uKDED5ILEv7Cza9JWTgbWVMvRuywfXNj+UIuDLLap2BtbOHdUcZ6+p8sFsguE/b6wREQ9ggcY4T76FvhB/7cqtEUF6SQk7iSJYdLGRUfGCXB1gOHJNTmUETCb5pBbw/Hb69gpLgV4nw13brfzostrHN35rUElQKiUmB5fDTs0KiP+qGTu0vMsCbu2Yk8d+lh1l1uJihsXpu+Gwbu3Mqefr8ZC4eGcPvu/P5dGMmj/+yn/+tSGPhXZPdN3dDyAE3Z4jMuodjx6xB4eg0Sn7ZlcfohCBqTVYW7s3nnMGR3QoKzxwYjkoh8V5DyUCsmzXWXWFwTAArU4q57P3N1DcE1QOjRFD32mXDuXBkDE/8up8bP99OkI+GswdHcN7Q6B753rqizGDiQH4195/Rt8f3fSoT6KNhWr8w5+R/rcnK9qwKNh0pY1NGGe+sOcKbq9JRKyXignT0CvGhV4gPCSE+aJQKjBYb9RYb9WY7+/OrWJdWgtFix0+rYkhMAEdLa1mTWoKpoQVkQrCO+2f1Y+7gyB77P+eU1/HBuqOcPyyqW8qwGf3DCfHV8O227GaBtd0uU1Zr7tS18nSguNrI/d/vpm+4L7/cPpHPNmXyyp+p7MquJDbIGy+VktuOc0tXDx5OZTq8e8uybAbekCTpA+BOYIskSV8CL8myfFL3iJAk6Vzg3KgoMUDsG+6LVq3gv0sOIyN32KLBHTQqBffO7MsDP+xhc0YZEzqQTpqtdrZnlXPZ6DiGxOgx2+wcLqx21qu5iyOwPlEZ64gArbMdjwNH3Ve7Nda6ING3urZYPKCLUvDGXtZL9xciSY0tFI4ngT4a9Do1lXWW41Jf7SBa782ivQXY7LJTzmazy+RU1DFrkIs684Hnw5KHhRw8fBAcWQXfXgmh/WH+u20fSNvgCN0isI5rkCE3rbPOragjwFvdsQKkoqH1V2BC++slnQmb3gRjNf3C/Vi8r4Cy3FSCrUb+t19FWIgXj5zVffMRx0x8UbUR4hOEFPzLCzi/5lmO6B/r1r6HxgawaF8BpQYTa1IbMmnrnwe1N5z1Yrt11W1xw6Re/LAjh3//fgCVQiK3sp53rhzJnAZ/gUtGx3LxqBg2Hinjuk+28dTCg7xxuftZ8b25lRhMViZ76quPKTqNilkDw1m0t4B/nzuQRXsLqDXbuHR091rV6HUaJvQJcbacOpZ1kUNiApBlqLfY+OrGsc6g2sHkpFD+vG8Kq1NK+H1PPj/uyOXLzdn0CvHh+1vG93gQs+FIGbKMxxugAxwO8lMb2iPVGC1sz6xgW2Y5GSW1ZJbVsi6t1BkoNyVa782lo2I5c2AEY3oFOZMCsixTUmNiZ3YFry1P4+5vdvHemiM8PKc/U5JCuj3Wen7JIZSSxD+6ec3XqBRcOCKGj9YfpbjGSKivF6tSinlpWSqHCqo5Y0AYj549oNtKqFMBm13m3u92YzBZ+fqmcfh4qbh9Wh/G9Q7mnm93sTmjnNunJRLi+/eabPDgoTu4PS0uy7IReFmSpHeAe4CdkiS9J8vyy8fs7LqJLMt/AH/069fvJhC9DJOjAtieVcGd0/v02IVzTnIEj/68jxWHizsMrPfmVmK02BmfGMyghkHInpzKTgfWxSc4sA7311JjslJrsjqlplUNGet2XcEVStAFCym4oaF1UJfMyxp6WVfWs3R/IaMTgk7YTHOvEB92ZVcel/pqB9GB3ljtMkXVRqe5Vn5lPRab3Nhqqym+odBrinAHT5wO31wuMsZX/9qYlXaFQimC6/rKZot9vFSE+nmR1cQZPK/CzR7WFZniOahX++slnQkbXoOja+gbPgpZhmc++ZlXgUHDxvL0+ZN6pHazsS96Q2lD4nQ44z+M++tfXO33KzCxzW07YliseG9XHCriQH41L423wK7fYdqjnXbDd6BRKXjyvEFc/dFW/LUqvrpxbCt3YkmSmNgnhDum9+HV5anMHx7FjP7ufc/WpZUiSTC+i22EPLjP+cOj+XV3PqtTSvh+ew69Q30Y2R3PgAbOTo5gbWoJkgRR+mN3jxjfO4Rrxsdz2ei4VkG1Ay+VktmDIpg9KIJak5VlBwp55Kd9/OePA7x1Rev2ct1hfVoJ/lpVp++nf3f8tOpWEnS7Xaaw2ojNLuOtUeKtVqJVK9usS5YkiTB/LXOSIzlzYAS/78njlT9TufbjrYyI03PL1ETOHBDepQz25owyFu8r5L4z+hIZ0P3ShktGx/Le2gxeWHKYrLI6dmRVEBek44ZJvfhuWw6zX13LVePiuWdm0jFvn3kieXtVOhuPlPHfCwfTt4lZ4oi4QBbdPZk/9uQzf3jna9k9ePg747bGUZKkBEmS5gA3AnFADfDcsTqxY8XMAeH0DffljuntyFA7iY+XinGJwaw6XNzhupuOlCFJMLZXENF6b0J8NezO6XyddWGVEa1agb/3iTEecfTPbmpg5shYd9iyzCesQQreUFHQBSm4I2O94UgpKUU1x90NvCm9QoQsethxzlhDY10z4OwrHd9WhmrQBVCeAV9cAPpYuOY38HEjeNLqW2WsQcj9MptlrN1stVV+FBQq8O/AtC92LHj5Q9qfDIwMQJJgoEq4KC84b06PGSIFeKvRqhUUNjHDs427i0X2ccwt+VD0+e4ig6MDUCok3l59BJA5q/A90dps/B3dOufJSaG8feUIfrtzUrstf26blkjfcF+e+GU/BjcdgdenlTI4OuC0HlCeLEzqE0KIr4Y3VqaxPauCS5uYBnWHWYMiUCokwv20bvWk7ireGiVPzUtuM6huiY+XigtGxHDXjD4s2lvAXwd7ri+7LMusSytlUlKIx5SqB1AoJKL03sQG6Qjx9cLHS+X2+6pUSMwfHsPKB6bx1LxBFNeYuOWLHZzx6hq+2ZrtdsvAWpOVLzZlcv93u4kK0HLzlN7deUlOEkN9GZMQxM8788itqOPZ+cmseGAq/5w7kNUPTePS0bF8vimTKS+tYuvR8h455snGhvRSXl2eynlDo7hkVGuVjL9WzZVj408pczsPHk4GOgysJUnaK0lSOfArsADQAyuBa4FTTitz27RElt07BW9Nzw42ZvQLJaO0lswO+lJvPlpG/wh/9DoNkiSMQ7rScquwoYf1ieoXGO7XIJ+tahpYu1FjDeAT0pixlpTg3fm2JY4s49dbhJ/ebFfy5+PExSNjuXXq8ZVLOVpaNXUG39fgzhsf0obh1IBzQakR9cvX/O5+xtQ70GVgHRckWo1BQw/rynr3Wm1VZEJALCg7uGEr1dB7GqQtJy7Imz/unMR1SUYIiAOvnrv0SJJEZIB3Y8YaKK0186D5Zqp8E+HH66GmawGAt0ZJv3A/ssrqmKs7hG/BRmEg59X5VkotOXtwpHNSpy00KgXPXzCEgmojLy9L6XCfNUYLu3IqPW7gxwmVUsG5Q6PYn1eNSiF1qUOEK4J8NEzvF0ZytHsB7/HmlqmJ9I/w44lf91FttPTIPo+UGCioMjKpT8+22fLQdTQqBdeMT2D1g9N44/Lh6DRKHv15HyOf/otrP97Ku2uOsDunEqvNjtVmx2CyUmowcaigmv/8foBxz63gn78dIMTPizeuGN6j47Zn5ifzwgWDWfPQdK4cG+80Wwvx9eLZ+YNZeu8UArzV/Pv3A9jtJ7Y3e09ht8usSinm6o+2cOWHW4gP9uHZ+d0vifTgwUMj7kxFzQcyZFk+Pa4scEwuIjP6h/OfPw6y8nAx109yLXE1WW3syKrg8jFxzmVDYvSsTCmmxmjplDt5UbWRsBMkA4dG07SimsZgpLLOjELC2X6pTXzDRJun2mJRX92yf7IbaNVKgnw0lNeaGRqr73Kv4Z5gfKJwVD2eNM1YV9VZeH7JIb7dlsOASP+2ywN0QXDTStE3WdeJyQzvQDBWtlqcEKzjp51G6s3C2KbObHNfCt5RfbWDpDPh0O9QfJDk6EFQlgJh3a+rbkmEv7ZZX/bcinrq0ZI65Q3GLjkbNr8NZz7ZpX0PjdVzqKCSR9Tfgne8cDw/joyMD+SacfF8timT8zow/tmcUY7NLntqVI8j84dH88mGTGb0D+vRcpa3rhyOxMk5YNaoFPz3wiHMf3sDzy8+zPNdbC/WlHUNLeI83gAnH44JpLlDItl0pIwl+wvZlFHGC0tEJ1dJgpYjTLVS4pzBkVw7IYHhx6DMqm+4XzP5s6u/PzS7H/d8u5vf9+Rz/ikkid6cUcbjv+xDo1ISGaAlIkBLTYmZZ3auJb3YQJifFw/N7seVY+O63BXHgwcPrnEnsLYAsW4Eo5WyLFd3/5ROTeKCdSSG+rAqpe3Aem9uFUaLnXFNaheHxgrzl315VUxIdH9AUFhtZHjs8avpbYkjeCusMjmXVdZZCPBWd1xD5RMKtaVCCt4FGbiDyAZn8DknMFt9ovDWKAn20fDngUI+3ZhJea2ZW6b25r6OenNGdGEA6x3Yqt0WNGbGs8vrMFmFtM+tns8VR4VLuTv0OUM8p/0JIf2gNBX6zHRv204QEaBtJvnLb5DY6+OSxblu+wgm3edWv+mWDI/VU7t9MzGmdDjnA1Adf4n1Q3P68+fBIh75aS8L75rcZheCDemlaNWKHqnz9eAeg6MDeGh2vx43XzyWEvCeYGisnhsm9eKDdUeZNyyq2X2xK6xLKyUhWHdMzdo8dA9JkpjQJ8TpRVNSY2JzRhkphTWolQq0agVatRKdRsnUfqGE+Z3YFk/nDoni/bUZvPxnCmcNjjjpv1MAO7LKuf7TbYT6edFLr6WgysienErKai0kR3vz6qVDOWdwVKc70Xjw4ME93AmsP3NjHRn4FPi8W2dzijOjfxifbcxqZujVlKb11Q4cLcD25LgfWMuyTFG16YT2FfTxUuHnpWrWy7qiztxxfTWIwNpsEJlLfdcdcCMDvDmQX31C66tPJNGB3uzJrWJgpD+fLBjtbHvV43jrXUrB453O4LXYGqRyHWas6yvFvtzNWPtHQfhgSFsO/c4Rfc9DB7h/7m4S0dCX3W6XUSgkZ2AdpdfCxHtFD/BtH8KUBzu97zkDg5i1/BfsAckoki/q4TN3D18vFU+eN4ibv9jBkv0FzBvWOvsiy0ImOK538CkxgDxdkCSpRz0/TiXuP7Mfyw6ICZ+l907psm+C2SpaxF3YQ1J6D8eHUD8vzh0axblDT/SZuEahkPjHnP5c8/FWvt6SzXUTOzDcPMHsza1kwcfbCPPz4vtbxjdTNS5fuYozZkw+gWfnwcPfgw6nrGRZnu7GY4Ysy3/roBpgev8wzDY761u0oXKwOaOMAQ311Q4CfTTEB+s6VWddWWfBbLUTfgKl4ABh/l7N5LOVdZb2HcEdONprlaV3yRHcwRkDwpg3LIqEDupMT1fuO6MvT80bxG93Tjx2QTU01FhXttLqJTT0ss4qq3P2sO6wxtrhCB7YiQFK0hmQvQlytojfj4EUPDJAi7WhjymIjLW/ViVkcpFDoM+ZsPkdMNd1sKfW+GevRG/KQzHziS6VPfQUMweI/q3LD7k2WcworSWrrI6Z/buuIvHgoTN4a5Q8OW8QmWV13TIyyyqrpc5sY1SCR2nhoWeZnBTChMRg3lyZ7rYB5LHEYrNzqKCa/XlVzUzgDuZXc/VHWwnQqfn6pnGtSgVVHkM/Dx6OCx67vx5kdEIQfl4qVh0ubmWm5aivvnJsfKvthsbo2Z7pvvPkie5h7SAiQNusxrqizuxesO+Qf8u2LvWwdnDZmDgua1Kv/ndj+vEKgLwDxf/KVAPaRjOkAJ2aAG81WeW1qBQK/LxUBHh31MM6Uzy7m7EGEdSufxW2vAdIQhLewzSWNhgJ9fMir7K+ed3+5Pvhk7Ng91cw5qbO7TxzPai8IbHnJeydQamQmN4vjKUHCrHY7E6zHgcrGwLu4/a58uABIYUHKG+Y1OoKuZWOib0T57Xh4fREkkTWet5bG/hgbQb3ndn3uB5flmUW7Stg05Ey9udVcaiwBnNDf3GlQiIhWEf/SH82HylDp1HyzU3jTqjnjAcPf3dOuSILSZKmSZK0TpKkdyVJmnaiz6cpaqWCyX1DWJVSTEuvtz05VZis/9/evUfHWd93Hn9/Z3SZkaWRZFvy/YYxMjIEAgQSzEUJkJKWFNIm25BuL0kK2aZpluZk08vZdnOSzYb27OaeXkhLaLYhWZrQNBBSEsAOxuFqAjG+gI2vkm0JbEkjoRldf/vH84w8kmZ0HXmeZ/x5ncMZzTMzz/zG+jGa73y/v+9vhLeeM7Fp1JtW1nKsO01HVpA6mdHAurY4+zZnLEnExnQFn37GOqvkfQ4ZazlDMvtc59lyy8tY901/fTXMLLBedTlU1kL7Tu9xFYVfQ5nZG/W4v+VWW1d67NZhq9/mbf+1/SswPMMuxoe2e6+hCGurx7u+eQk96SGezbGFzGN7O9i4tGZ6nd1FCqQm5n2/n0zl///q61v288FvPpP39szuCCvqNHel8C5aVcevXriUb2w7wGs9/VM/oEB60oP80b3P87F7f8EPXzxGVUUZv3/lWr78/ov52gfezEdb1nNOQzU7W7upX1DBvbe9VT0GRIrsjGaszexu4Cagwzl3QdbxG4EvA1HgH51zd05yGgf0AjGgdR6HOytvb2rkoZ0n2HUsOaY896kDmfXVExu0XLyqDoBfHu3m+uapM76ZYLbYpeBLEjE6evpH16V29Q1QF5/OGuusjNgcmpfJGRKr8y5TnVA/tuJizaIF/OJoJwsqyqbfEbxq0ZjM95Si5bC+BXb/OzQWfn01MNqvIPOl1bGuFG/JLis1g6s+Ad/5LW+99UXvn96JU53Q/hK8/S8KPeRZuXrDYirKIjyyp2O0gRBAd2qQZw+d4rYC7RMrMl2VZVFi5ZFJt936ZWsX2/efHP1bM15bV4ryqNFYwK7qItk++U6vH8An7nuBz91yIasXzW8Au/dEko/+y/McPtXHn79rI7ddfc6EuX/Tm+Z1CCIyC2c6Y30PcGP2ATOLAl8H3gU0A7eaWbOZXWhmD477rxHY5px7F/CnwOz2v5lHLU2NmHnZn4wDr/XyvR2tnL80QW2OjO6m5bVEI8aL01xnnfnwX+yOmUsT3rrU19/oZ2BohDcGhqfewxrGln8rsA6+TMY6x5ZbaxZV0daZ4sipvullOk8dnNn66oxzb/Au5ymwXrSggvKocbw7TW//EN2pwYnldOf9CjRu8srSR0amd+LDTwIO1mwu+Jhno6qijM3rF/HInvYxVTXb9r3G0IjT+mopikSsnGQq//rV7tQgA8MjdOTJFrZ1plhWG596RwqRWTqnoZq/uqmZZw+d4rovbOUzD+ymc5bLFwaGRtjZ2s29Tx/hz+/fye3feo7PPLCbe7YfZMveDr7zzBFu+fp2evqHuPcPruAj167X3BYJiTOasXbOPW5ma8cdvhzY75w7AGBm3wVuds59Hi+7nU8nELivpxtqKr29qfd28PHrNvDgL4/xZ9/fSVnU+OvfzP31YrwiStOSGl442jWt52hPplm0oKLo2yVkMuYdydMfduoWTCNjXR6DygT0J8dmryWYJikFX7NoASOOme1hvfItMx/Deb/izZV118z8sdMQiRiNNd5e1qc7go97PWbellv3/4G3/VfTjTnONM7h7RCthBWXzsOoZ+e685ew5eWX2N/RywZ/H9fH9nRQV1U+L/vFikwlES+fNGOdCbqPnOrLuRtGW1dq7NINkXnwe1eu5cYLlvLFn77CPT8/yL/uOMqHNq+jpamBC1bUTuhbAV5/nZdP9LCzrZuX2rrZ2dbNyyd6GBz2vthMxMpYkoixbd/rpLKakV2xbiFf/cCbi55AEZGZCULzshVA9ia5rcAV+e5sZr8B/ApQB3xtkvvdDtwO0NDQwNatWwsw1Ok5p3KAH+wf5He++jDb2oY4ty7CH15USf/RnWyduB0wAA3Rfp47lGTLli1MtWf47oNpFkTcGX1NuRzr8v4I/HT7szTGvT8oxw7uY2v64JSPvTxSTRVJnnhxH0PlJ+Z1nGHX29tb1N91Rf9JrgRefvFpjr82NvA61Xn6g0Bn2wG2bj2S9zw2MsQ1XUc5XHsFh2bzet7yDTgCHJnFY6ehin72Hj7OfzzudfXvOLCHrZ2vjLmPjSzkqkgFx7bdy6vHp/7Ac+nOHzNcvYEXtj81L2Oejaq0l22/60dP8mvnVDDiHD95qY8LG6Jse/xn8/KcxZ7DEnADKQ4f78s7R9o7vW78P/35DvoOT6yKOnCij02Lo/M6xzSHJePGRXDBlXH+9ZUBvvzoPr786D5iUdhQH2VtIkJywNHRN8JrKcfJlCNTG1RVBmtrI9ywuoy1iQhrayM0xA0zh3OVJAfgtb4R+oYcmxal2b3jKXYXaMyavxJ2YZnDQQisc0WRLscx7wbn7gfun+qkzrm7gLsAmpqaXEtLy2zHN2OLzu3m3772BNvahrjt6nV86saNOb/JzHai6gg/u38nay+8nHVTbB/1Ny9u49wVMVpaZpH5K6Cm7hSfeeoxGlZv4NzGatj+FJsvu5irNkxjP+5XV0Pba1x1/U1eJlDy2rp1K2dy/k4wmIInoWlVA01Xjx1Hc0+a//X0owDceNVbuHDlJNt+nToAj4+w9uJrWfvmlvz3K5LvHXueXceSLFq9Dna8xE3v2Jx7r/h957OqsodVU/1O0t3ws4NwzX8r7u8vh7v3beNAf5SWlivZcbiT3od/zgeufRMtFy2fl+cr+hyWQLvn4DOcemOAlparct4+sPVhYIgFS9bQ0jK2K/PA0AhdD/+YSzaum3BbIWkOy3j/GXi9t5+nD5ziqQMneerASR440MuiBRWsXlTN5tVVrFlYRdPSBBeuqGXVwviUiZP5ovkrYReWORyEwLoVWJV1fSVwrBAnNrN3A+9evnx+Pizms2l5gj9sWc+lq+u5vnl6Xa8zAclLbd1TBtbtyTQX+Q3PiqmhupKIeeNZXO1V5U+rKzh4a6urGxVUh0F5HMpi3l7W4zRUV1JVEaVvYHjqruCnMh3BZ7HG+gxYVhvjkT3ttHWmKIsYDfkaITU2w6tbpj7hkafBjQRmfXW26zYu4SuP7eNkbz+P7W0nGjGuOW/2W9+JzEUiVs6h19/IedvwiKMnfboUfLwT3Wmcg5UqBZciWFxdya+9aRm/9qZlADm3MhSRs0cQ/u9/FthgZuvMrAJ4P/DDQpzYOfeAc+726urqQpxu2iIRb9/D6QbVABsaayiPGruPJye9X//QMCffGCj6HtYAZdEIi6sraU+m6U55TTzqp7PGGuCaT8JNX5q/wUlhxetzrrE2M1YvrKKqInq6cd3O78EXL5x4/9nsYX0GLa2Nkx4cYffxJEtrY0TzNYtpbIbeE9A3xd7zh7ZBpHx2a8rn2Q3NS3DOa7L46J4OLltTP/Ue5CLzJBEvI5nO3bysN+t466nUhNtbu7xge1rb/YnMMwXVIme3M/oOYGbfAZ4Emsys1cw+7JwbAj4GPAzsAe5zzu0q0PO928zu6u3tLcTp5lVFWYQNjTXsOjZ5YJ1pFFbsPawzltbGOJHsp7PPazxTN90P58sugvPeOY8jk4KK1eUMrMHrat+0tMYrcRt4A37y36H7COz90dg7dh70GnnVLJv/8c5C5suq5w93Tt4IaUmzd9kxxeq3w9u9pmXzsO/2XG1anmBpIsa/PH2EvSd6uO58NRGU4qmJlZNMDY7pVJ+RaWpWHjWOdk7MWB/r8nbJUPMyEREptjMaWDvnbnXOLXPOlTvnVjrn/sk//pBz7jzn3Hrn3OcK+HxFyVjP1qblCXZPEVi3Z7baCkDGGrwtv9q703T2DVARjVBVES32kGQ+xOu9NcM5fPaWTdzzwcu9K0/+LfQch8pa2PWDsXfsPOTtgx0J5jf6mfXUyfTQ5B/SG/3Aun2SwLq/B469AGuDVwYOXqXBdec38qK/E8E7Nk6/ukak0BKxcoZG3JiuyBndKS+wblpaw4lkmv6hsfdp6/Sy2MvqgvE3UUREzl7B/IR7lmpenuD13n46/OA5l/ZMxjoggfXS2kpOJNN0vTFIXVV50RpzyDzLUwoO3t7ItfFy6H0Ntn8JNt4El/4uHNgy9jGnDgV2fTV4a6wzJmy1la1mmZfBnyxjffRpcMOw5srCDbDArj/fC6bXLKpifcPkfR1E5lMi7rV7ybWXddIPrC9YXotzpwPpjLauPhprKqks05e6IiJSXCUdWIepFBy8klqAXZOssz7hB92BCawTMbpTg5xIpqmvmub6agmfSQLrUT+70+sgfv2nYdN7YGTodDm4c37Geu08D3T2Gmq8ZnwwxXpNMy9rPVlgfWg7WBRW5d05sOjetn4RdVXl3Lhpqb4Qk6JKxLwlRLn2ss5krDctTwATG5i1daW0vlpERAKhpAPrsJWCn7+sBmDScvD2ZJqKssj0u2/PsyV+gP9Kew+1ARmTzIN43eSB9ev74LlvwmUfhMUbYPklULf6dDl430kY6IGFwc1Yl0cjo53AJ81Yg7fOumOP94VBLoe3w/KLobKmsIMsoFh5lJ/8yTV84p3zt0WRyHQk/N4cmex0tkywvWmF98Xz0fEZ686U1leLiEgglHRgHTY1sXLWLKqaNLA+0Z1maSIWmAxTJrA+3p0+3RVaSk+8Dgb7YKg/9+2PfNrbluvaP/Wum0HzzXBgqxeQB7wjeMbSWu8D+oqp1ms2NkN/ErpbJ9420Adtzwdym63xGmtiKqGVokvEvFLwnhydwTMZ63Mbq6koi9CalbEeGXEc60orYy0iIoFQ0oF12ErBAZqXJdh1LHeTKPBKwYNSBg6nGz4BKgUvZfF67zLHXtYceQr2Pgib7/D2Js9ofg+MDMLeh7IC6+BmrAGWJqaZsc40MOvYM/G21me81732qgKPTqQ0jWasc5SCJ1NDRCNGTWUZK+vjY0rBX+/tZ2B4RBlrEREJhJIOrMNWCg5eYH3oZB+9/bn39GxPpllSG5zAeklWkF+nwLp0jQbWOcrBn/4HWNAAb/vo2OMrLoHa1bD7B3DqoHesbvW8DnOumpYmWLuoiqqKssnv2Hi+d9mRY2fAg9vAIrD6rYUfoEgJGl1jnaMUvDs1SCJWhpmxemHVmC23Wru8snAF1iIiEgQlHViH0aYVXoOWPTkamDnnaE+mR7NqQZCIlREv90pJg7LuW+ZBrM67zBVYn3oVll0MFeM6S5vBppvh1S1w/AWoXhrIPZ2z/fE7zuXBj1899R3jdZBYMTFj7RzseQBWXwmx2nkZo0ipqfFLwZM5SsGT6cHRjPaq+iqOnDwdWGc6hKsUXEREgqCkA+twloJ7H8ZzrbNOpoZID46MyRIXm5mxxA/0tca6hGUy1umuibd1HYW6VbkflykHf/mhQDcuyyiPRqiunCJbndHYPHEv647d8PrLsOmWgo9NpFTFyqNUlkXyZqxrM4H1wjjJ9NDouus2ZaxFRCRASjqwDmMp+JJEJYsWVORcZ53ZaitIgTWcHo9KwUtYvlLw/l5Incpf4p0pB3cjgW9cNmNLmr0gejgrGNj1b14Z+Pm/XrxxiYRQTaw8zxrrwdFS8dULvYqXo/4667bOFIlYGTUxfakrIiLFV9KBdRiZGc3LE+zOUQo+uod1gNZYw+nxqHlZCcsXWHcf9S5r82SszaDZDzID3rhsxhqbYXgATh3wrjvnBdZrNkPNkuKOTSRkEvEykqlcpeBDJOJeFcnK+rGB9bGuFCvqg728REREzh4KrAOoeXmCV070Mjg8MuZ4e7cfWAc2Y62sQcmqTAA2sSt4lx9YT9aU7ILf9C4bmuZjZMWT6Qze7jcwa38JTu6HC36jeGMSCalEnoz12FJwP7D2G5i1dWkPaxERCY6SDqzDuMYavM7gA8Mj7O8YO+5MxroxQM3LwCvPixgsrg7WuKSAIhGvYdf4jHXXYe9yssB6xSXwh0+WXnn04vPAoqcbmKkMXGTWEvHynGuss0vBa+Pl1MbLR7fcautMsVKNy0REJCBKOrAO4xprgE3LvQZmu8Y1MGtPplm4oILKsmgxhpXXey9dyf0f3czCBSoFL2nx+tyl4NEKWNCY+zEZS5q94LyUlMdg0XqvYVmmDHzdNbBgcbFHJhI6iVgZPeO6gqcHh+kfGhntCg5eA7Ojp1J0pwbp6R9SxlpERAKjxD7ploZ1ixcQL4+O6QzunOPg628ErnEZeB1dL15VV+xhyHyL1eXIWB+F2pWlFzRPV2OzF1if+KW31nrTe4o9IpFQSsQnloJnrmcH1pm9rDNbbS1XYC0iIgFxln4aDrZoxNi4rGZMZ/CvPrafn796khua1RRJiiReP3G7ra4jk5eBl7rGZjh1EH7xba8sfOO7iz0ikVBKxMpJpoZwzo0ey5SG12ZnrOuraD2VGl1nrT2sRUQkKBRYB1TzMq8zuHOOu584yBd++grvvXQld1y3odhDk7NVvlLwfB3BzwZLmgEHO+6Bc66FBYuKPSKRUErEyxgYHqF/6HTTzm6/S3gidnpv+ZULqxgYHuGFo12A9rAWEZHgUGAdUJuW19KTHuJLj+zjMw/u5sZNS7nzNy4kErFiD03OVuMD68E09LYrYw0w3K8ycJE5yDQoy25glvl5fCk4wJOvnqSyLMLiavX2EBGRYCjpwDqsXcHB23IL4MuP7uPqDYv58q0XUxYt6V+XBF28DtLdMOJnlLpbvcuzObCuXwtlcYiUwcabij0akdCq8bPS2eusMz+PLQX3MtQ727pZURfHTF82i4hIMJR0pBbWruAAG5fWUFkW4ZLVdfzD71wauE7gchaK14MbgX6/qV73Ee/ybC4Fj0Rh1VvgvBuhamGxRyMSWpmsdKb82/vZz1jHTgfWK+rjmMHwiNP6ahERCZSyqe8ixRArj/LgH1/Fyvoq4hUKqiUA4vXeZarTy153+YF13VkcWAN84D5AWTORuRgtBU/nKgU//VGlsizK0kSM491pra8WEZFAKemMddhtWFKjoFqCIzuwBm+rLYtCzfLijSkIyuPentYiMmu1fvCcvZd1Mj1ErDwyoWJrVb23zlqBtYiIBIkCaxGZnlidd5nZcqv7KCRWQFSFLyIyN7mal3X3DY5ZX52xym9gplJwEREJEgXWIjI9EzLWR1QGLiIFkVljPb55Wfb66oxVC72Aerky1iIiEiAKrEVkenKVgp/NHcFFpGAqyyJURCMkxzUvy5WxftPKWirLIqxvCF9jUhERKV2q4RSR6YnXeZepLhgehJ5jZ3dHcBEpGDMjES+bkLFurJnYv+DtTY3s+MsbqK7URxgREQmOks5Yh3kfa5HAKauE8iovY51s87beUim4iBRIIlY+do11apBEbGLwbGYKqkVEJHBKOrAO8z7WIoEUr/cy1l1HvesqBReRAqmJl5PM7gqeGspZCi4iIhJEJR1Yi0iBxeu9jHVmD2uVgotIgSRiZaMZ65ER5zUvU2AtIiIhocBaRKYvXu9tt9XtZ6xrVxZ1OCJSOhKx8tE11r0DQziHMtYiIhIaCqxFZPpitX7G+ijULPPWXYuIFEAiXkaPXwre3ecF2Lm22xIREQkiBdYiMn2jpeCHVQYuIgWV3bwsk7lWKbiIiISFAmsRmb5M87Luo+oILiIFlYiX0z80QnpwmO5UJrBW928REQkHBdYiMn3xehhKeaXg6gguIgWU2VqrJz1EMjXkH1PGWkREwkGBtYhMX7zOu3TDKgUXkYLKlH0n04OjpeBqXiYiImERuhorM4sAnwUSwHPOuX8u8pBEzh7x+tM/K2MtIgWUyU4nU4Oja621xlpERMLijGaszexuM+sws5fGHb/RzF42s/1m9mdTnOZmYAUwCLTO11hFJAcF1iIyTzLrqZPpIZKpQcygpjJ03/+LiMhZ6kz/xboH+BrwrcwBM4sCXwduwAuUnzWzHwJR4PPjHv8hoAl40jn3D2b2PeDRMzBuEQGI1Z3+WXtYi0gB1WRlrLtTg9RUlhGJWJFHJSIiMj1nNLB2zj1uZmvHHb4c2O+cOwBgZt8FbnbOfR64afw5zKwVGPCvDs/jcEVkvEzGumoRVCwo7lhEpKRkSsF70kMk00PUVqkMXEREwiMINVYrgKNZ11uBKya5//3AV83sauDxfHcys9uB2wEaGhrYunXr3EcqUgS9vb2Bmb/RoT6uBpLRep4PyJgk+II0hyW4+occAC/s2suBzhEiQy4w80ZzWMJM81fCLixzOAiBda46L5fvzs65PuDDU53UOXcXcBdAU1OTa2lpme34RIpq69atBGb+OgfboyRWNgdnTBJ4gZrDEljOOcoe+zGLl6/mQP8pltdEaGl5a7GHBWgOS7hp/krYhWUOB2G7rVYge9+elcCxQpzYzN5tZnf19vYW4nQiYgar3wprryr2SESkxJgZiXg5ybS3xlpbbYmISJgEIbB+FthgZuvMrAJ4P/DDQpzYOfeAc+726urqQpxORAA++BBc8ZFij0JESlAiVkYyNUQyPTjaJVxERCQMzvR2W98BngSazKzVzD7snBsCPgY8DOwB7nPO7SrQ8yljLSIiEhLKWIuISFid6a7gt+Y5/hDw0Dw83wPAA01NTbcV+twiIiJSWIlYOa/39pMeHBntEi4iIhIGQSgFFxERESERL6OtMwWg7bZERCRUSjqwVim4iIhIeCRi5XT2DY7+LCIiEhYlHVireZmIiEh41MROr1DTGmsREQmTkg6sRUREJDyys9TqCi4iImFS0oG1SsFFRETCI5GVpVYpuIiIhElJB9YqBRcREQmP7Cy1SsFFRCRMSjqwFhERkfAYWwquwFpERMKjpANrlYKLiIiERyaYriiLECuPFnk0IiIi01fSgbVKwUVERMIjk7HW+moREQmbkg6sRUREJDwya6xr1RFcRERCRoG1iIiIBMJoxlrrq0VEJGQUWIuIiEggVFVEiUZMpeAiIhI6JR1Yq3mZiIhIeJgZNbEybbUlIiKhU9KBtZqXiYiIhMuHNq/j1y9aXuxhiIiIzIi6g4iIiEhgfPy6DcUegoiIyIyVdMZaREREREREZL4psBYRERERERGZg5IOrNW8TEREREREROZbSQfWal4mIiIiIiIi862kA2sRERERERGR+abAWkRERERERGQOFFiLiIiIiIiIzIECaxEREREREZE5MOdcsccw78ysB3i52OMQmaXFwOvFHoTIHGgOS9hpDkuYaf5K2AVpDq9xzjXkuqHsTI+kSF52zl1W7EGIzIaZPaf5K2GmOSxhpzksYab5K2EXljmsUnARERERERGROVBgLSIiIiIiIjIHZ0tgfVexByAyB5q/EnaawxJ2msMSZpq/EnahmMNnRfMyERERERERkflytmSsRUREREREROZFSQfWZnajmb1sZvvN7M+KPR6RmTKzQ2a208xeMLPnij0ekamY2d1m1mFmL2UdW2hmPzWzff5lfTHHKJJPnvn7aTNr89+HXzCzXy3mGEXyMbNVZrbFzPaY2S4z+6/+cb0HSyhMModD8T5csqXgZhYFXgFuAFqBZ4FbnXO7izowkRkws0PAZc65oOzdJzIpM7sG6AW+5Zy7wD/2N8Ap59yd/pec9c65Py3mOEVyyTN/Pw30Ouf+dzHHJjIVM1sGLHPOPW9mNcAO4Bbg99F7sITAJHP4PxGC9+FSzlhfDux3zh1wzg0A3wVuLvKYRERKmnPuceDUuMM3A//s//zPeH8kRQInz/wVCQXn3HHn3PP+zz3AHmAFeg+WkJhkDodCKQfWK4CjWddbCdEvRsTngJ+Y2Q4zu73YgxGZpSXOuePg/dEEGos8HpGZ+piZ/dIvFVcZrQSema0F3gw8jd6DJYTGzWEIwftwKQfWluNYada9Synb7Jy7BHgX8Ed+maKIiJw5fwesBy4GjgP/p6ijEZmCmVUD3wfucM4liz0ekZnKMYdD8T5cyoF1K7Aq6/pK4FiRxiIyK865Y/5lB/BveEscRMKm3V83lVk/1VHk8YhMm3Ou3Tk37JwbAb6B3oclwMysHC8g+bZz7n7/sN6DJTRyzeGwvA+XcmD9LLDBzNaZWQXwfuCHRR6TyLSZ2QK/cQNmtgB4J/DS5I8SCaQfAr/n//x7wL8XcSwiM5IJSHzvQe/DElBmZsA/AXucc1/IuknvwRIK+eZwWN6HS7YrOIDfiv1LQBS42zn3ueKOSGT6zOwcvCw1QBlwr+awBJ2ZfQdoARYD7cD/AH4A3AesBo4A73POqUGUBE6e+duCV37ogEPARzLrVUWCxMyuArYBO4ER//Bf4K1R1XuwBN4kc/hWQvA+XNKBtYiIiIiIiMh8K+VScBEREREREZF5p8BaREREREREZA4UWIuIiIiIiIjMgQJrERERERERkTlQYC0iIiIiIiIyBwqsRUREcjCzYTN7wcx2mdmLZvYJM4v4t11mZl+ZxTm3mtllhR/tjMbwu2b2kv+6dpvZJ8/Q837GzK73f77DzKpm+Hgzs8fMLJF17D1m5sxsY9axFjN7MM85vmtmG2b7GkRERPJRYC0iIpJbyjl3sXNuE3AD8Kt4+xrjnHvOOffxMzkYM4sW4BzvAu4A3um/rkuA7rmedzqcc3/lnHvEv3oHMKPAGu/f/0XnXDLr2K3AE8D7p3mOvwM+NcPnFRERmZICaxERkSk45zqA24GP+ZnT0ayomV3rZ7ZfMLNfmFmNf/xTZrbTz3bfmXW695nZM2b2ipld7d93rZltM7Pn/f+u9I+3mNkWM7sX2GlmETP7Wz/b/KCZPWRm7/Xve6mZ/czMdpjZw2a2LMdL+XPgk865Y/7rSjvnvuE//jYze9Yf7/czGWUzu8fM/t4f3ytmdtNkY8732v3zvNfMPg4sB7b4r+3DZvbFrMfeZmZfyDH23wb+Pet+1cBm4MNMDKyrzex7ZrbXzL5tZuYf3wZcb2ZluX7PIiIis6U/LCIiItPgnDvgl4I3jrvpk8AfOee2+8Fe2s8M3wJc4ZzrM7OFWfcvc85dbmaZDPj1QAdwg3Mu7ZcqfwfIlIxfDlzgnDvoB9FrgQv9cewB7jazcuCrwM3OudfM7LeAzwEfGjfWC4AdeV7i/VlB9v/EC1i/6t+2FrgWWI8XEJ+bb8xTvHacc18xs08Ab3fOvW5mC4BfmtmnnHODwAeBj+QY3+Zxx28B/sM594qZnTKzS5xzz/u3vRnYBBwDtvuPfcI5N2Jm+4GLJvl3EBERmTEF1iIiItNnOY5tB75gZt/GC05b/bXE33TO9QE4505l3f9+/3IHXsAKUA58zcwuBoaB87Lu/4xz7qD/81XAvzrnRoATZrbFP96EFzT/1E/ORoHjM3xtF/gBdR1QDTycddt9/nPuM7MDwEbgYJ4xT/baJ3DOvWFmjwE3mdkeoNw5tzPHXRc653qyrt8KfMn/+bv+9Uxg/YxzrhXAzF7A+3d+wr+tAy9jrsBaREQKRoG1iIjINJjZOXgBZAdwfua4c+5OM/sR3hrgp/yg2gCX51T9/uUwp/8O/wnQjpdJjQDprPu/kT2MfMMDdjnn3jbFy9gFXAo8luO2e4BbnHMvmtnvAy1Zt41/LW6SMU/22vP5R+AvgL3AN/PcZ8jMIn7WeRHwDrwvAxzeFwnOzDLrp/uzHpf97wwQA1IzHJ+IiMiktMZaRERkCmbWAPw98DXnnBt323rn3E7n3F8Dz+Flc38CfChrnfLC8eccpxY47meFfwcvUMzlCeA3/bXWSzgd/L4MNJjZ2/znKzezTTke/3ngb8xsqX+/Sn/NM0ANcNwvK//tcY97n/+c64Fz/OfLN+bpvPYe//kAcM49DawCPoBXUp7Ly/5zA7wX+JZzbo1zbq1zbhVeBv2qPI/Ndh7eFwwiIiIFo4y1iIhIbnG/jLgcGAL+L5CrqdYdZvZ2vMzobuDHzrl+v0T6OTMbAB7Cy8jm87fA983sfcAWxmaps30fuA54CXgFeBrods4N+Ouvv2JmtXh/37/EuADSOfeQH5A/4jf0csDd/s1/6Z/vMLCTrMAXL6j9GbAE+C/+uuqcY3bO/cc0XvtdwI/N7Lhz7u3+sfuAi51znXle+4/wvkjYj1f2fee427+PF5j/vzyPx3/tKefcTMvkRUREJmXjvngXERGRADOzaudcr18O/Qyw2Tl3Yh6f7x7gQefc9+brOfzneRD4onPu0Ty3L8PLUt8wh+f4EyDpnPun2Z5DREQkF2WsRUREwuVBM6sDKoDPzmdQfSb4r+UZvD2qcwbVAM6542b2DTNLjNvLeia68CoPRERECkoZaxEREREREZE5UPMyERERERERkTlQYC0iIiIiIiIyBwqsRUREREREROZAgbWIiIiIiIjIHCiwFhEREREREZkDBdYiIiIiIiIic/D/AZzIX1hZBcCuAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABVEAAAL1CAYAAADOyqSlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXyU9bn//9fs+2RfSUgCIUCCrAIioiJStZVae2rb02rVKqen7el6To9Vz89ja0/r0lb7PVXUqlVbtR7XutTdQnFBAUFAZAmQfV8mmSSzz/374yKJyBaWEALX8/GYB5l77m0GyNzznutzfUyGYRgopZRSSimllFJKKaWU2ifzSJ+AUkoppZRSSimllFJKHc80RFVKKaWUUkoppZRSSqkD0BBVKaWUUkoppZRSSimlDkBDVKWUUkoppZRSSimllDoADVGVUkoppZRSSimllFLqADREVUoppZRSSimllFJKqQPQEFUppZRSSimllFJKKaUOQENUpZRSSimllFJKKaWUOgANUZVSSimllFJKKaWUUuoANERVSimllFJKKaWUUkqpA9AQVSmllFJKKaWUUkoppQ5AQ1SllFJKqRPAhg0buPLKKykpKcHpdOL1epk5cya33norHR0dI316h+3BBx/EZDJRVVU1osfvv1mtVgoKCrjyyiupr68/4v2ZTCaysrI4++yzeeGFF47KeS5fvnyvxw3DoLS0FJPJxNlnn33E2ymllFJKnWw0RFVKKaWUGuX+8Ic/MGvWLFavXs1PfvITXn75ZZ555hkuueQS7r77bq666qqRPsVR749//CPvvvsur732GkuXLuWxxx5jwYIF9Pb2HtH+3nnnHe69914sFgtLlizh+eefP6Lz9Pl83H///XstX7FiBTt27MDn8x3V7ZRSSimlThbWkT4BpZRSSil1+N59912+/e1vs3jxYp599lkcDsfAY4sXL+bf//3fefnll0fwDE8MU6ZM4dRTTwVg4cKFJBIJbrrpJp599lm+/vWvH9H+AM4//3zS0tJ47LHHWLJkyWGf51e+8hUeeeQR7rzzTvx+/8Dy+++/n3nz5tHd3X1Ut1NKKaWUOlloJapSSiml1Cj2y1/+EpPJxL333rtHgNrPbrfz+c9/fuD+W2+9xaJFi/D5fLjdbk4//XRefPHFPba58cYbMZlMbNiwgUsuuYSUlBTS09P58Y9/TDweZ+vWrZx//vn4fD6Ki4u59dZb9zpua2sr//Iv/0JhYSEOh4OsrCzmz5/P66+/fkjncrw67bTTAKiurmblypWYTCYee+yxvdZ7+OGHMZlMrF69+oD7czqd2O12bDbbHssrKyu58sormTBhAm63mzFjxrBkyRI2bty4z/388z//M8Ae59LV1cVTTz3FN7/5zf0e/3C3U0oppZQ6WWiIqpRSSik1SiUSCd58801mzZpFYWHhQddfsWIF55xzDl1dXdx///089thj+Hw+lixZwuOPP77X+l/+8peZNm0aTz31FEuXLuX222/nRz/6EV/4whf43Oc+xzPPPMM555zDNddcw9NPP73HtpdddhnPPvssN9xwA6+++ir33Xcf5557Lu3t7Yd1LsebyspKALKysliwYAEzZszgzjvv3Gu93//+98yePZvZs2fvsTyRSBCPx4nFYtTV1fHDH/6Q3t5evva1r+2xXkNDAxkZGdx88828/PLL3HnnnVitVubOncvWrVv3Op7f7+dLX/oSDzzwwMCyxx57DLPZzFe+8pX9Pp/D3U4ppZRS6mShw/mVUkoppUaptrY2+vr6KCkpGdL6P/3pT0lLS2P58uV4vV4ALrzwQqZPn85//Md/8OUvfxmTyTSw/r/8y7/w4x//GIBzzz2XV199ld///vc8/fTTXHzxxQADEyI98sgjfPGLXxzY9u233+bqq69m6dKlA8suuuiiwz6XgzEMg66uLux2O263e2B5OBwmHA7j8/mwWCwDy7u7uzGZTEPu9dkfeobDYVasWMEvfvELfD7fQJXv97//fa688krWr1/P9OnTAVi9ejWrV6/moYce2mt//ZWs/RwOB7///e8577zz9lh+5plncuaZZ+5xHp/73OeoqKjgnnvu4be//e1e+/7mN7/JwoUL+eijj6ioqOCBBx7gkksuOehzPdztlFJKKaVOBlqJqpRSSil1Eujt7eW9997jS1/60kBoCWCxWLjsssuoq6vbq7Lxwgsv3OP+5MmTMZlMXHDBBQPLrFYrpaWlVFdX77HunDlzePDBB/nFL37BqlWriMViR3QuB9Pc3ExaWhrf+c539lh+8803k5aWttdw+rKyMhYsWDDk/Z922mnYbDZ8Ph8XXnghubm5vPTSS+Tk5AAyHD47O3uPatT//d//JSsra5+VnA8//PBAyPrSSy9x+eWX893vfpff//73e6wXj8f55S9/SXl5OXa7HavVit1uZ/v27Xz88cf7PNezzjqL8ePH88ADD7Bx40ZWr149pCH5h7vdJy1fvhyTyTSk2/r16w9p30oppZRSI0krUZVSSimlRqnMzEzcbje7du066LqdnZ0YhkFeXt5ej+Xn5wMMDLXvl56evsf9/ipPp9O51/JPTzz0+OOP84tf/IL77ruP/+//+//wer1cfPHF3HrrrcTj8UM+l5H28MMPM3nyZKxWKzk5OXudu8Ph4Fvf+ha/+c1vuO2224jFYvzf//0fP/7xj/fZq3by5Ml7TSxVXV3Nf/7nf3LppZeSmpoKwI9//GPuvPNOrrnmGs466yzS0tIwm81cffXVhEKhfZ6ryWTiyiuv5P/9v/9HOBwecmB8uNt90sSJE/nDH/4wpHXHjh17SPtWSimllBpJGqIqpZRSSo1SFouFRYsW8dJLL1FXV0dBQcF+1+0P3xobG/d6rKGhAZBQ9mjJzMzkjjvu4I477qCmpobnnnuOn/70p7S0tPDUU08d9XPJzc3FMIy9lt94443ceOONey1vamo6pP1/OvTcl29/+9vcfPPNPPDAA4TDYeLxOP/6r/865GNMnTqVV155hW3btjFnzhwA/vznP/ONb3yDX/7yl3us29bWNhC07ssVV1zBDTfcwN13383//M//DPkcDne7fnl5eVx99dWHvJ1SSiml1PFOh/MrpZRSSo1i1157LYZhsHTpUqLR6F6Px2Ixnn/+eTweD3PnzuXpp5/eo4IxmUzy5z//mYKCAsrKyoblHMeOHcu//du/sXjxYj744IMRPZfhlJeXxyWXXMJdd93F3XffzZIlSw6p2rJ/eHtWVtbAMpPJtFcl64svvkh9ff0B9zVmzBh+8pOfsGTJEi6//PIhn8PhbqeUUkopdaLTSlSllFJKqVFs3rx5LFu2jO985zvMmjWLb3/721RUVBCLxVi3bh333nsvU6ZMYcmSJfzqV79i8eLFLFy4kP/4j//Abrdz1113sWnTJh577LFDmsjpQLq6uli4cCFf+9rXmDRpEj6fj9WrV/Pyyy8PTD51rM7lWPvBD37A3LlzAfjjH/+43/U2bdpEPB4HpHXB008/zWuvvcbFF1+8x0RhF154IQ8++CCTJk1i6tSprF27lttuu+2AVcf9br755sN6Doe7nVJKKaXUiUxDVKWUUkqpUW7p0qXMmTOH22+/nVtuuYWmpiZsNhtlZWV87Wtf49/+7d8AmTjozTff5L//+7+54oorSCaTTJs2jeeee26vSaSOhNPpZO7cufzpT3+iqqqKWCzG2LFjueaaa/jP//zPY3oux9qcOXMoLi7G5XKxaNGi/a535ZVXDvyckpJCSUkJv/3tb/eaGOt3v/sdNpuNX/3qV/T09DBz5kyefvpp/uu//mvYnoNSSimllNqbydhX8yillFJKKaXUIduwYQPTpk3jzjvv3CsQVUoppZRSo5eGqEoppZRSSh2hHTt2UF1dzXXXXUdNTQ2VlZW43e6RPi2llFJKKXWU6MRSSimllFJKHaGbbrqJxYsX09PTwxNPPKEBqlJKKaXUCUYrUZVSSimllFJKKaWUUuoARm0l6rJly5g6dSp+vx+/38+8efN46aWXDrjNnXfeyeTJk3G5XEycOJGHH374GJ2tUkoppZRSSimllFJqtLKO9AkcroKCAm6++WZKS0sBeOihh7joootYt24dFRUVe62/bNkyrr32Wv7whz8we/Zs3n//fZYuXUpaWhpLliw51qevlFJKKaWUUkoppZQaJU6o4fzp6encdtttXHXVVXs9dvrppzN//nxuu+22gWU//OEPWbNmDW+99daxPE2llFJKKaWUUkoppdQoMmorUT8pkUjwxBNP0Nvby7x58/a5TiQSwel07rHM5XLx/vvvE4vFsNls+90uEokM3E8mk3R0dJCRkYHJZDp6T0IppZRSSimllFJKKXVMGYZBMBgkPz8fs3n/nU9HdYi6ceNG5s2bRzgcxuv18swzz1BeXr7Pdc877zzuu+8+vvCFLzBz5kzWrl3LAw88QCwWo62tjby8vH1u96tf/Yqf/exnw/k0lFJKKaWUUkoppZRSI6i2tpaCgoL9Pj6qh/NHo1FqamoIBAI89dRT3HfffaxYsWKfQWooFOK73/0uf/rTnzAMg5ycHC699FJuvfVWmpubyc7O3ucxPl2J2tXVxdixY6mtrcXv9w/bc1NKKaWUUkoppZRSSg2v7u5uCgsLCQQCpKSk7He9UR2iftq5557L+PHjueeee/a7TiwWo7m5mby8PO69916uueYaAoHAAct1P6m7u5uUlBS6uro0RFVKKaWUUkoppZRSahQbatY3qofzf5phGHtUje6LzWYbKM39y1/+woUXXjjkAFUppZRSSimllFJKKXXyGbUh6nXXXccFF1xAYWEhwWCQv/zlLyxfvpyXX34ZgGuvvZb6+noefvhhALZt28b777/P3Llz6ezs5Le//S2bNm3ioYceGsmnoZRSSimllFJKKaWUOs6N2hC1ubmZyy67jMbGRlJSUpg6dSovv/wyixcvBqCxsZGampqB9ROJBL/5zW/YunUrNpuNhQsX8s4771BcXDxCz0AppZRSSimllFJKKTUanFA9UY8F7YmqlFJKKaWUUkoppYZTIpEgFouN9GmcECwWC1arFZPJtM/HT8qeqEoppZRSSimllFJKjWY9PT3U1dWhdY9Hj9vtJi8vD7vdftj70BBVKaWUUkoppZRSSqnjQCKRoK6uDrfbTVZW1n6rJ9XQGIZBNBqltbWVXbt2MWHChMOeYF5DVKWUUkoppZRSSimljgOxWAzDMMjKysLlco306ZwQXC4XNpuN6upqotEoTqfzsPZzeNGrUkoppZRSSimllFJqWGgF6tF1uNWne+zjKJyHUkoppZRSSimllFJKnbA0RFVKKaWUUkoppZRSSqkD0BBVKaWUUkoppZRSSimlDkBDVKWUUkoppZRSSiml1BG56667KCkpwel0MmvWLFauXHnA9RsbG/na177GxIkTMZvN/PCHPxzysZ566inOPvtsUlJS8Hq9TJ06lZ///Od0dHQc4bPYPw1RlVJKKaWUUkoppZRSh+3xxx/nhz/8Iddffz3r1q1jwYIFXHDBBdTU1Ox3m0gkQlZWFtdffz3Tpk0b8rGuv/56vvKVrzB79mxeeuklNm3axG9+8xs+/PBD/vSnPx2Np7NPJsMwjGHb+wmou7ublJQUurq68Pv9I306SimllFJKKaWUUuoEEQ6H2bVr10BFp2FAX9/InIvbDSbT0NadO3cuM2fOZNmyZQPLJk+ezBe+8AV+9atfHXT7s88+m+nTp3PHHXcccL3333+fuXPncscdd/CDH/xgr8cDgQCpqal7Lf/06/pJQ836rAd9FkoppZRSSimllFJKqWOurw+83pE5dk8PeDwHXy8ajbJ27Vp++tOf7rH8M5/5DO+8885RPadHHnkEr9fLd77znX0+vq8A9WjR4fxKKaWUUkoppZRSSqnD0tbWRiKRICcnZ4/lOTk5NDU1HdVjbd++nXHjxmGz2Y7qfodCK1GVUkoppZRSSimllDoOud1SETpSxz4Upk+N/TcMY69lR2o49jlUGqIqpZRSSimllFJKKXUcMpmGNqR+JGVmZmKxWPaqOm1padmrOvVIlZWV8dZbbxGLxY55NaoO51dKKaWUUkoppZRSSh0Wu93OrFmzeO211/ZY/tprr3H66acf1WN97Wtfo6enh7vuumufjwcCgaN6vE/SSlSllFJKKaWUUkoppdRh+/GPf8xll13Gqaeeyrx587j33nupqanhX//1XwfWufbaa6mvr+fhhx8eWLZ+/XoAenp6aG1tZf369djtdsrLy/d5nLlz5/Kf//mf/Pu//zv19fVcfPHF5OfnU1lZyd13380ZZ5zBD37wg2F5jhqiHqYtW2DOnJE+C6WUUkoppZRSSimlRtZXvvIV2tvb+fnPf05jYyNTpkzhb3/7G0VFRQPrNDY2UlNTs8d2M2bMGPh57dq1PProoxQVFVFVVbXfY91yyy3MmjWLO++8k7vvvptkMsn48eP50pe+xOWXX37Un1s/k2EYxrDt/QTU3d1NSkoK0MUpp/hZvBjOPRfOOAN8vpE+O6WUUkoppZRSSik1WoXDYXbt2kVJSQlOp3OkT+eEcaDXtT/r6+rqwu/373cfWol6BDZulNtvfyuNfh0OmD8fTj8dJk2C4mIoLYXs7JE+U6WUUkoppZRSSiml1OHSEPUwffwxfPghvPEGvPoqVFdDOCz333hjz3VdLglXJ02Sm9kMc+fC9Onys1JKKaWUUkoppZRS6vilIephys+XQPQrXwHDgLffhtdfB7cbKiulZ+ratdDXB6GQPPb663vuw+2GyZNlP+npUsm6aBGcfTZoxbZSSimllFJKKaWUUscHDVGPApNJeqKeccbej23bJoFqWxts3QqbNsFrr0EsJgHr2rVy6/frX0t1akkJTJwIHR3y59e+BjNmQGamHE8ppZRSSimllFJKKXVsaIg6zMrK5PZpPT1QWysB65Yt8Oyz8NFHkEhIW4AdO+QGsGoVPPSQ/JyeDhkZEqQuWACf/7xUso4bB1b921RKKaWUUkoppZRS6qjT2G2EeL0ylH/yZLl/7bXyp2FAc7MEq++/D48+KvedTqiqksrUjg5Zd9s2uP9++dlmk2A1IwMuvRQqKiS8LSmB3Nxj/vSUUkoppZRSSimllDphaIh6nDGZJPTMzZXeqP/5n4OP9fXB9u3wl7/AO+9ID9XWVmkTEArJOo2NcNtte+9z3DipXJ04UX6222X/qanH6IkppZRSSimllFJKKTVKaYg6irjdMG2a3D4pmYTNm+G552RSK6dTKlm3bYP6eqlu/WR7gE8qKZGK1YkT5f6YMXD++TBlivRmVUoppZRSSimllFLqZKch6gnAbJbQc8qUvR9raYG//x2CQWhokGB19Wr5E2DXLrm98srgNtdcAy4XTJgAhYUQCMDMmfD1r0vYqtWrSimllFJKKaWUUupkoiHqCS47G77ylb2XJ5MSntbXSzuAbdvg8cel/2oiIe0BNmyQG8Dbb8P//q/8nJUlPVi9Xrjwwj3bBDgcx+65KaWUUkoppZRSSil1LOiA7ZOU2Qzjx8OZZ8LSpdJHtaYGIhEJULdtg+efh+9/HyZNkmH/eXmybWvrYFXrb38LF18M5eXSbsBul3V/9CNYtgzefBM++khCW6WUUkoppZRSSil1YrrrrrsoKSnB6XQya9YsVq5cecD1ly9fjslk2uu2ZcuWgx7rqaee4uyzzyYlJQWv18vUqVP5+c9/Tkf/bOzDQCtR1V5sNhnKP2GCVJp+UjAolasPPggbN0ql686dEqj29EhYWlUFd9yx934nTJCWAxMmQFqaVK2eeSbMmKH9V5VSSimllFJKKaVGq8cff5wf/vCH3HXXXcyfP5977rmHCy64gM2bNzN27NgDbrt161b8fv/A/aysrAOuf/3113PLLbfwox/9iF/+8pfk5+ezfft27r77bv70pz/xgx/84Kg8p08zGYZhDMueT1Dd3d2kpKTQ1dW1x1/wyc4wpOL01VelUjUalbB161aZ7OpAXC6pip0wQXq4jh0LX/2q9GHNz9eAVSmllFJKKaWUUieHcDjMrl27Bio6DcOgL9Y3IufitrkxmUxDWnfu3LnMnDmTZcuWDSybPHkyX/jCF/jVr361z22WL1/OwoUL6ezsJHWIE/C8//77zJ07lzvuuGOfYWkgENjnvj79un7SULO+UVuJumzZMpYtW0ZVVRUAFRUV3HDDDVxwwQX73eaRRx7h1ltvZfv27aSkpHD++efz61//moyMjGN01icuk2n/k1v19MBbb0mVamWl3N54A7Zvh3hc2gds2iQ3kP6rjz0mP7tckJEhoeyMGfDFL0JpqQSuWVnwqX/3SimllFJKKaWUUieMvlgf3l95R+TYPdf24LF7DrpeNBpl7dq1/PSnP91j+Wc+8xneeeedg24/Y8YMwuEw5eXl/Nd//RcLFy7c77qPPPIIXq+X73znO/t8fKhh7OEYtSFqQUEBN998M6WlpQA89NBDXHTRRaxbt46Kioq91n/rrbf4xje+we23386SJUuor6/nX//1X7n66qt55plnDvn4z219jktnX3rEz+Nk4PXC+efv+7FYDKqrJVDdtEnC08ZG8Plk4qtQCOrqZN1XXpHbJ1mtsHgxVFRIuOrxQGYmnH46aKGwUkoppZRSSiml1PBqa2sjkUiQk5Ozx/KcnByampr2u11eXh733nsvs2bNIhKJ8Kc//YlFixaxfPlyzjzzzH1us337dsaNG4fNZjuqz2EoRm2IumTJkj3u/8///A/Lli1j1apV+wxRV61aRXFxMd///vcBKCkp4Vvf+ha33nrrYR3/sqcv49W6V7nl3FvI8+Ud1j6U9F8tLZXbBRfAT34y+FgsJpNdvfqqVLImEtKTtbJS+rDG43J76SW5fZLFAhMnwrhxMtHVjh0StF56qVSxulzH9nkqpZRSSimllFJKHSq3zU3PtT0jduxD8emh/4ZhHLAdwMSJE5k4ceLA/Xnz5lFbW8uvf/3r/YaoB9vncBq1IeonJRIJnnjiCXp7e5k3b94+1zn99NO5/vrr+dvf/sYFF1xAS0sLTz75JJ/73OcOuO9IJEIkEhm4393dPfDznzb8iWe2PMP1C67nR6f9CIfVcXSekAIkYB0/Hr79bbl9UiwG69fD++/L/e3bJVx95x3o7JTAdfNmufX729/gttvk5zFjZGIrw4AzzoDzzpPAddw4aROgfViVUkoppZRSSik10kwm05CG1I+kzMxMLBbLXlWnLS0te1WnHsxpp53Gn//85/0+XlZWxltvvUUsFjvm1aijemKpjRs3Mm/ePMLhMF6vl0cffZTPfvaz+13/ySef5MorryQcDhOPx/n85z/Pk08+ecAX/cYbb+RnP/vZXsvf2PwG179zPavqVgHgsrpYOmspV824iinZUzCbNIUbKfG4tAjYsUNaAnzwgbQB6O6Wx4LBg+/D5RoMVsePl0C3sFDbBCillFJKKaWUUmr4HGgCpOPZ3LlzmTVrFnfdddfAsvLyci666KL9Tiy1L1/60pfo6OjgzTff3Ofj7733HqeddtqITCw1qkPUaDRKTU0NgUCAp556ivvuu48VK1ZQXl6+17qbN2/m3HPP5Uc/+hHnnXcejY2N/OQnP2H27Nncf//9+z3GvipRCwsL6erqwuvz8ujGR7nquauIJqID62S6Mzm76GxyvDl8c/o3mZE3Y8RKjdWeDAM6OiRgfe45WLtWAtPOTllWVyfr7I/JJGHq+PGQmwu1tTBpElx+ubQNyMvTKlallFJKKaWUUkodntEaoj7++ONcdtll3H333cybN497772XP/zhD3z00UcUFRUBcO2111JfX8/DDz8MwB133EFxcTEVFRVEo1H+/Oc/c/PNN/PUU0/xxS9+cb/Huuaaa/jNb37Dj3/8Yy6++GLy8/OprKzk7rvv5owzzthnuHrSh6ifdu655zJ+/HjuueeevR677LLLCIfDPPHEEwPL3nrrLRYsWEBDQwN5eUPra7qvF3Zzy2aWPr+UpJFkQ8sG+mJ9e2yT6kxleu50ZuTOINeby/zC+cwtmIvVfEJ0UzihBIPSf3XbNpm0ascO6b/6979LJevB2O3SJsBkgvnzYcECKC6GnBzp0zprlky0pZRSSimllFJKKfVpozVEBbjrrru49dZbaWxsZMqUKdx+++179Da94oorqKqqYvny5QDceuut3HvvvdTX1+NyuaioqODaa6894Cjzfv/3f//HnXfeybp160gmk4wfP54vfelLfO9739NK1KFYtGgRhYWFPPjgg3s99k//9E9YrVYef/zxgWXvvvsup59+OvX19eTn5w/pGAd7YaOJKKvrV3PP2nt4YvMTRBNRkkZyr/XsFjvlWeVUZFVQlFJEiiOFxeMXMzVnKhazZehPWh0zySQ0N0uLgB07pB/rG29AKCShaU2N9GI9EJNJJrwqLpZbezv4fLBkiYSumZmyjlJKKaWUUkoppU4+ozlEPZ6d1CHqddddxwUXXEBhYSHBYJC//OUv3Hzzzbz88sssXrx4rxLhBx98kKVLl/L//t//GxjO/8Mf/hCz2cx777035OMO9YXt1xnqpLqrmnWN6/ig6QPu/+B+QvHQftd3WBxMzJxIRVYFJkyUZ5XzubLPMSV7ilauHuficaivh9dfl0mvnE5oaYGqKpngqq3t4PvweCA7W1oOjB0LX/+6/FlUJG0CJk6EtLThfiZKKaWUUkoppZQaCRqiDo+TOkS96qqreOONN2hsbCQlJYWpU6dyzTXXsHjxYmDvEmGA//3f/+Xuu+9m165dpKamcs4553DLLbcwZsyYIR/3UEPUfekIddDW18aWti1sbt3MX7f8lbWNazEwiCfj+9zGZrZRml5KjicHs8nMvMJ5XFh2IZMyJ5HqTD2s81DHVjQKlZXQ2CjB6q5d8Ne/QkODTFzV3Dy0/WRnSx/WsWOlirW9HaZPh4sukmXaLkAppZRSSimllBqdNEQdHid1iDpSjkaIuj/ReJS6YB2bWzezrmkdd6+5m7a+Nqxm6159Vj8p25ONCRO53ly+VP4lZuTOYFLmJIpTi7U1wCgSDktLgLVrpS9rICDVpzU1cquqGtp+0tOl9YDTCeecAzNmSLialiah69Sp4HYP5zNRSimllFJKKaXU4dAQdXhoiDoChjNE3Z+kkaSmq4atbVv5y6a/sLJmJQ6Lg0AkQEOwYb/bWUwWHBYHk7Imcf7485mYOZFJmZMYnzaeDHfGMTl3dfQkErB9O7S2Ql2dBKtvvw1r1khoGg5DV9fB92MyQUkJFBTIrboaUlPh4oth2jRZlpkpE2sppZRSSimllFLq2NEQdXhoiDoCRiJEPeD5RLr5oOEDHlj/ADs6dpDvz2dr21a2tW8jkojsdzuLycLphadTnlXOxIyJZLgzmJQ5iZl5M7X36ijW1SXh6lNPwdatMGaMtA+orpa+rJ2dQ9uPxSLBbHY2LFwowWphoewnPx8uvBBKS2U9pZRSSimllFJKHR0aog4PDVFHwPEWou5PIpng71V/57Udr2EymQiEA2xt38rG5o20h9r3u53ZZKY0vZSyjDLGpY0jEoswe8xsPjP+M4zxj8FsMh/DZ6GOtlhM2gI0N0s1a22tBK7NzZCRIYFrYyMM5beC1SqBqsslfVknTYIvflHC1jFjJLAtK5OqVw1blVJKKaWUUkqpg9MQdXhoiDoCRkuIuj9JI8nHrR+zpmENZpOZLW1b2NK+hdd3vk53pPuA27ptbkrTS3FanPgdfs4pOYezis+iLKOMDFcGJpPpGD0LNZxiMZn0at06aR0QjQ4Grm+8AT090logmRza/tLSJFjNz5f7bW0yEdaSJbIsP1/aCWifVqWUUkoppZRSJzsNUYeHhqgjYLSHqAfSE+2hIdhAbVct29q3saJ6BS9XvkwsGSMSj5AwEvvd1u/wY8JEYUohl5RfQllGGWUZZZSmleJ3nlivk4J4fLCadfVq6csajUqwWlsL9fUy9P9QmExQUSGVq/n5cr+3VybGOuccWZaRIZNtKaWUUkoppZRSJyINUYeHhqgjYOCF/fKX8T/22EmT6MQSMaoCVWxr38Y9a+9hc+tmMt2ZErp21x5wW4vJQkV2BbPzZ1OWUUZhSiFZ7ixOLzwdt03LD09UhiFVp/0tAhoaZCKsdeukFYBhyLKmJqlsHQqbTYJamw0WLJDANTdXQt1gEGbNgrPOgpwcaTOglFJKKaWUUkqNJhqiDg8NUUfAwAsL+JcsgYcflrHIJ7G+WB8rq1fyzJZn6Ap34bK52Na+je0d22npbTngtmNTxlKaXsr4tPHEk3HGpY1jUckiTsk5Ba/de4yegRpJ8Tjs2AEffijBZ3/gumKFTIblcEAkAi0H/qe0l5QU6OsDux0WLYJx4yRwjcVk+cyZEsRmZmrPVqWUUkoppZRSxwcNUYeHhqgjYOCFtdvxR6OSzDz1lDR5VHvZ0LyBldUrcdvcVHdVs619G+/UvkN118HHeud6c8nx5BBPxpmSPYWLJl4kgWv6eNJd6cfg7NXxJBqVcPXddyV0zcyUlgJNTfDee7Bzp4Shvb0Sug6V2QzZ2RAISGB7/vlQVCTLYjEIheS/95w5kJUloaxSSimllFJKKTUcRmuI+o9//IPbbruNtWvX0tjYyDPPPMMXvvCFg24XjUa54447eOSRR9i+fTtut5uJEydy9dVXc+mll2Kz2Y7K+R2NENV6VM7kZPTaa3D55ZLczJkDP/kJ/M//jPRZHXem5kxlas7UvZbHEjF2BXbR1tdGZUcllR2V3PfBfXSEOvDYPHSEO2jqaaKppwmAj1o/4vGPHh/Y3mq24ra5OXPsmUzPnc749PHk+/IpTSulJK1EJ7k6AdntUFwstwMxDOjqkn6t/YFrTs5g4Lp6tfRrNZtlkqxkUpYDhMPw+OMH3n9qqgSrDodUshYWSuAaj8vyqVNh7lxZlpZ20nT8UEoppZRSSil1Euvt7WXatGlceeWV/NM//dOQtolGo5x33nl8+OGH3HTTTcyfPx+/38+qVav49a9/zYwZM5h+HBUtaiXqIdojnY7H4aKL4K235MFFi+AHP4DPflbHBx+hQDjAjo4dPLf1OV7f+ToWs7yeOzp30BBsOOC2VrOV8qzygTYBPdEeyrPK+cz4zzA+bfzAvpSKx6G1VSbDevtt2LUL8vJkWUsLrF0LNTXSw7W3d+i9W/tZLBLqWq1w2mlQUCDhaigEHR1S4bpokSzLzJR1fT6ZVEsppZRSSiml1Mlnr4pJw5CedCPB7T6sD6gmk2lIlai33nor1157LWvWrGHGjBl7PBaLxYhGo3g8nkM+/r7ocP4RsNcL29UFZ5wBmzYNrlRQAF/4glSnjh07Yud6ouqOdPPU5qdY27iWopQidnbupLKzktX1q+mKdB1wW7vFTklqCT67j6SRZFb+LM4bfx7j0sZRklZCqjP12DwJNeokkzLkv64O/v53qKqCCRMkbG1pgVWrpOrV6ZQ2AJ2dh3+syZMlzM3IkPfK5mY45RQ491wJWzMyZP/9lblWHVOglFJKKaWUUieEvcK+3l7wjtCcMT09cBgh5lBD1GnTppGbm8srr7xymCc4dBqijoB9vrCGIeOGn3kG/vhHaG8f3ODcc+Gb34TPfEaSDzWsmnqaqA5U0xHqoLKjko9aP+KJzU8QjAQxmUxEE9EDbm82mfHYPJxTcg5lGWWMSxtHmjON4tRipudOx2F1HKNnoka7aFTCz9WrpcI1O3uwwvX992HbNmkJkEjIslDo8I7jcEiv1owM2VdHh4S7Z589GLhWVUkoO3++fMfjch3NZ6qUUkoppZRS6mg5mUJUt9vN0qVL+d3vfneYJzh02hP1eGEywemny+2mm+DXv4af/UzGCr/+utzMZkk25s6Ff/kXmDdPmyUOg1xvLrne3D2W3X3h3QAkkgnquuvY0bmDZz5+hnfr3sVr9xJJRNjZuZOW3haSRpJgNMhft/51n/sv8BcwLm0cxSnFtPS2MDFzIhdPvpgJ6RPI9eZiNunfqRJ2u/RLLSwc2vp9fdJWoLJStm1rk9vq1bB5swSfDocsa22VSbZAJtGqq5Nbv4YGWLFi/8dyueTW1wf5+TBrFqSny23jRkhJkQm2Cgtlmd0u79m5udqpRCmllFJKKaWOKbdbwsyROvYwMgxjVM1po5Woh2io6TShkEw+9c478OKLew73BykdW7AATj1VAtV58yQhUSOmtbeVF7a9wJa2LeT78tkV2MXOzp2srFlJIBw46PZOqxO/w48JEzPzZnJm0ZkUpxZT4C/Ab/dTnl2O1azfW6ijwzAgGJTK07Y2KYBfuxY2bJCWAi7XYOD6/vtSGWs2S6uBw2WxyCRd6ekyaVZlpfzaOu886VySni6Tc3V2Qnm5fGeUlgZ+v/Z5VUoppZRSSqmhOFDF5Gihw/kVcAgh6qft3Anf+IakHFbr3t8iWCwy88y8eTBzJkybBhMnatnXcSIUC9Hc20xTTxO7OnextnEtT338FD3RHrx2L7VdtSSMg886NCF9AkWpRRSnFBNJRLCarSwqWcSCogWM8Y3RSa/UsOoPXtva4KOPJHC1WuXLxc5OWf7SS/LrqahIesD2h7RH8k7RP8GWyQRTpkj1a2qqVMLW10NpKZxzjixLTZU2CJmZsm5ODthsR+f5K6WUUkoppdTx7mQKUW+55Rauu+66fU4sFY/HiUQiOrHUaHbYIWo/w5BSsPfflyrVu++Whon7YjbL9N2nnip/TpsGU6eOXC8MtV+xRIza7lqe+fgZ1jauxefwEYqFqApUsb19O029TQfdh9VsJc+bR0eog0x3JldMv4KilCKKU4sxm8wU+AsoSi3SalZ1zBmGhKmtrVJk3x+svvKKLJswQebY6+iALVugpkbC2Vjs8Hu9fpLHIxWvPT0Srs6YMRi4bt4sj517rkyylZoq24RCcn/SJJ14SymllFJKKTV6jNYQtaenh8rKSgBmzJjBb3/7WxYuXEh6ejpj9zPpeiQSYfHixWzatImbbrqJM844A5/Px5o1a7jlllu4//77mT59+lE5Pw1RR8ARh6ifZhgypXdjo4Spq1ZJuPrhh/vfJicHzjxTgtWpU2XcbHGx9lg9jvVF+/io9SN6Y71UB6qpClTxwrYX2BXYhcPioLWvlVjy4OOsU52plGeVU+gvJNOdyZa2LZRllHH1zKsZmzKWDFfGqOonok58/aHrxx9Lz1e/X6phAwH5Nbdpk1TCpqbKskBAgtF4/Oidg88nfV47OuRX7syZMsGW3y/tB3btkl+hixbJen4/NDXJn1OmSC9Yp1NbEiillFJKKaWG32gNUZcvX87ChQv3Wn755Zfz4IMP7ne7SCTC7bffzqOPPsr27dtxu91MnjyZpUuX8vWvfx3rUaqK0RB1BBz1EHVf4nEZa7t6tXyKX79ebm+8IY0N98VslkrVyZPlVlgoScGkSToWdhRIJBM09jSysXkjf9/1dxp7GnHZXFR3SeBa2VFJ0kgedD8uqwub2UbciDOvYB7zC+dLuOrOIBAOMCtvFqfknHIMnpFSRy4eh+5uCVa3b5fA1WSSoLM/cP3b32SdkhJpDxAIyMRagcCRtSD4NJtNgtRQSELZqVMHA9cdO+S85s+X80hJgWRSqnULC2XiLr9fbhaLhrFKKaWUUkqp/RutIerxTkPUEXBMQtT9aW6G5cvl03ltrZRxvf02VFfvfxuLRcbalpfDuHFS7rVwoVSxDvMsa+roSRpJ6cca2EVjsJGarho+bPqQt2vfJhQLkTASNPc2D2lf6a50Cv2FjE0ZS1tfG2aTmc+VfY4FYxdQ6C8k25ONw+rAbNLKZjW6xWKDYWsgIC2pm5ogL08qULu7pUJ240ZpCZCVJW0JursltO2fhOtovkuazbK/MWNkUIHPJ7/Sd+2C7GzpDevzya0/nJ09W8JZnw/sdtk+P1/CWg1klVJKKaWUOrFoiDo8NEQdASMaou5LLCZNCLdskU/XH38sY2GffPLAzQhNJpk5ZvJkaTg4btxguJqTo5/MR6FIPEJddx3v1b/HhuYNmE1m2vvaqe2u5eO2j6npqhlSNWs/r93LOSXnMMY3hjG+MQTCAdJcaSwsXsiU7Cn4HL5hfDZKHR+SSenF2tUl311t3iy/dtPTJWzt6oKXX5aq07KywerZmhr5fqt/bsCj0Rv206zWwcA1GJTzmjhRfrX7dv/3rKyUcHbRosF129ulsrasTNoa9C/XeQyVUkoppZQaeRqiDg8NUUfAcRei7k8yKZ/iYzHYuVPC1RdegBUrpBRqf20BQD5NFxbKelOnwuc+J5+2J0yQ0ic1anWFu6jtrqWmq4bartqBvqxeu5fWvlbquuuIJg7wb+MTfHYfme5MgpEgBf4CPlf2Ocb4xlDgL8Blc1GWUUaBv0ArWpVCfhV3dw+2wHa5ZFkwKMs++EB+5RYVybJgEN59Vypoc3MhkRjsJRsOD995Wq2DIazPJxOHhcNQUSFvA/1h665dkJEh7bn71zUM+TM3V1oXaJtupZRSSimlDp2GqMNDQ9QRMGpC1AMJh+XTeH/V6i23yBjX7Gyoq5MAdn+cTglSzzpLeq6Wlclt/Hh5TI1qhmHQGGxkXdM66rrrAKjrrqM+WM/LlS/TEerAbrETjAaHtD+r2ToQrPrsPjpCHUzImMCSsiUU+AsY4x9DjicHl801nE9LqRNKLCaTZPVXvQaD8N578uu7oEBCzmBQvj979125X1o6GM5+9JFU13o88nZwoO/UjoTXK11jurrk7WH69D3D2b4+CWcnTZJlTqe8FWVmSovv/nV9PtmPDpBQSimllFInAw1Rh4eGqCPghAhRDyQSkU/eTz4Jzz8vYz6tVti2TT7dHkhKCsyZMxispqXBaadJqwAdJ3pC6Yn2UN9dz/v17/Nm1ZtE41FSnanUB+upD9azrnEdCSMx5P2ZMDEubRyl6aXk+/JxWp209bVRkVXBZ8Z/hjxfHnnePBxWxzA+K6VOTtEotLTIr/lgUHrD9geuy5dLG4PiYqmeDQbl/nvvDXaFCQYllG1slGB3uDidUv3aH6rW1ck5nXHGYNgaCEjrhLIy6VbTP/lXIiG9cHNzZRullFJKKaWOVxqiDg8NUUfACR+iHkh7O9x9N6xbB1OmSLO9bdtkgqsDlTLZ7TIrSmmpTGzl88G8eRKwFhfL4+qEYhgGrb2tBKNBWnpbqA/W83bN26yoXoEJEx67h/pg/SG1DwCwmW1YzBam5UxjYuZE8rx5uG1ueqO9VGRXcMbYM8jz5mllq1IjwDAGK1sjEQlXGxqkGjYUkorT/nB2xQppCVBcPNjTtbkZ1q+XfWVkDIazR/sqxeGQcNUw5DwLC+Xc+t+etm+XnrdnnSVVsenpgwHumDGyvVJKKaWUUsNFQ9ThoSHqCDipQ9T9aWuTT8ldXfLpeds2me76pZcO/unXbIaxY6V8qaAAliyB8nJpDzB+vJQbqROWYRhsa9/GppZN2C122kPtNAQbeL/+fVY3rMZsMmM1W2kMNhJJRIa83xRHCgYGNrON0wpOozyrfCBwjSfjTMmewqz8WXjt3mF8dkqpI2UYErbW1EiQabdLuNrYKG8xoRDMnTsYzr79NlRVQX6+tBMIBKT1QX390Tsnr1eC1YwMqcr1emXirtxcWR6LSVecSZOkGjY9XW5W69E7B6WUUkopdeLSEHV4aIg6Avpf2B+sW8ft06Zh0iZt+5dMDvZY3bFDKlcfe0wqWX0+6OyUpngHYrdLqdL8+YPBalaW9GNNSzsmT0ONPMMw6Ax38vddf2dL2xayPdl0hDpoCDawumE1G1s2YjFZiCaihOJDnwbdY/OQ480hGAlis9g4s+hMJmVMItebi8PqIJFMUJFVwbTcaVrdqtQolkwOVrV2dUm4unq1tAZPT5fK1K4uCWdffFEqaqdOHQxha2qkavVwmUxys9th9mwJeXNyZJ+hEMyYIQM0cnKkPbl+f6iUUkopdfLSEHV4aIg6AvpfWF54gX8rK+N3paWYNUg9PIYhfVbXrIE//EE+vZaWSthaWSmfXg8kI0NC1dJSaXKXkQGnny6fRseM0T6sJyHDMOiOdNMQbODZLc+yo2MHxWnFdIQ6aOxpZH3jenZ07sDAIJ48tOaNfoefHE8OXZEu7GY7ZxWfxaRMCVydVicJQwLXU7JP0d6tSp1gDEMm8eruluCzvV1aFbz4ogzGmDZNwtb2dnlLq6mRCtV4XMLZQ2UySUvyadPk7Sw7e/Cx6dOl/Xj/crP5qD1NpZRSSil1HNAQdXhoiDoCPhmi4vFwRW4u902ciEWD1KPvnXfg73+XgLS3V4LV9ethw4aDb2uzSaO7/jYBF10kE1z131JTh/vs1XEuGAnS3NtMc08zz259lppADcWpxQTCAZp6m/io5SOqAlUAhzRJFkCaM40cbw6BcAC7xc7ZxWcPVLjaLXYSRoLJmZOZkj1FK1yVOsHF4/Id4YoVEq4WF0v/15YWWLlSOuB4vTL5VXPzoVW8Wq0SuLrd0sO1uFjCVbNZerfOmiWhq1a2KqWUUkqNHhqiDg8NUUdA/wt777ZtfLu+ngRwSVYWf548GbuWgxwboZC0B0gkJFjdsQP+/Gf5OTUVWlsPPkW0xSLTSs+cKZNeFRbKp8y5c2VaZ53sSu3WX93a1NNEc28zz3z8DLXdtYOBa08TH7V+RG1XLQYGSSN5SPv32r1kubPojnRjNVtZMHYBEzImkOXOwmq20hvrpTyrnFPzTyXLnYXNYhumZ6qUGmmGIdWsb70lb20lJYOB66uvwubN0nogGpXlySH+uklNlXC1rU0my/r852UQR1GR9HIdN06+r1RKKaWUUiNvtIaov/rVr3j66afZsmULLpeL008/nVtuuYWJEycecLtoNModd9zBI488wvbt23G73UycOJGrr76aSy+9FJvt6HwG1hB1BHzyhX0jEuErmzcTMwzm+/28Nm0aLh1CPvISCZlFZOVKeOQRaYRXWAg7d8oMJc3NB97ebJbq1ZISKfFJTYUFC+DUU+UT55gxOkOI2qf+3q3NPc009TTx9MdPU9tdS0layUDg+nHrx9R11x1W4ApS5RpNRLGYLczJn0NpeinZnmzMJjOBSIBJGZNYULSAbE826a50zCb9ckepE1E8Lm9pL70kk2mVlMhbX329TLBVVydvYdHo0Pbn9UJFhcz1OHasTJpVViYDOUpLJbzVQTdKKaWUUsNvtIao559/Pl/96leZPXs28Xic66+/no0bN7J582Y8Hs8+t4lGo5x33nl8+OGH3HTTTcyfPx+/38+qVav49a9/zQMPPMD06dOPyvlpiDoCPv3CXrRxI8+1twNQ4XbzuwkTWKQTHh3fPvhAPmGmpkoTu5074b33ZJYROHhpj8Ui7QKysmDhQhk/WVQk9ydNkp+1klUdhGEYBKNBWnpbaOlt4fltz1PbVcu4tHF0hbto7WtlQ/MGKjsqsZgthOPhQw5dzSYzFpMFs8nMKTmnUJxaTKYrE4Cm3iYmpE9gUckiMt2ZZLoz8dq9pDnTMGtVvVInhP5ervX1sHUrPPnkYPvxmhqorobt2+W7x4Px+Qb7vE6fDosWSdhaWChvidOnSwsBpZRSSil1ZD4d9hmGQd9QhyAdZW6z+bAnVG9tbSU7O5sVK1Zw5pln7nOdW2+9lWuvvZY1a9YwY8aMPR6LxWJEo9H9BrCHSkPUEfDpFzYQi3HBhg183NdH1+5PIRdnZvKb8eMp0bFxo4thSO/V3l4JVnfuhHvukT8LC6VNQE0NxGIH3o/JJFMvFxdLsBqPS3nPOedIwDp2rI6bVIcsaSTpDHXS0tvCqztepbqrmkJ/IV2RLlp6W1jXtI7NrZuxmW0YGHSEOg77WFnuLPJ9+WS6MzGbzDT1NFGSWsLi8YsHAte+WB953jwmZU7C5/AdxWeqlDqWolFpE9DeLpNg1dTAxo1S4drbK98JtrUNbV8lJfIWV1Qk+zWbpVfrmWfKcu3NqpRSSil1cJ8O+3oTCbwrV47IufQsWIDnMEdcV1ZWMmHCBDZu3MiUKVP2uc60adPIzc3llVdeOZLTHJKTOkRdtmwZy5Yto6qqCoCKigpuuOEGLrjggn2uf8UVV/DQQw/ttby8vJyPPvpoyMfd3wvbEYtxY1UVd+3uk2oBflBQwM+Ki/Hq0O8TRzIJa9fC889DMChTI1dVSTnPG28cvBdrP5dLPk2eeqpMv1xUBHl5Er5WVEi5j1JHIJaI0dbXxju177Cjcwe5nly6o9209bWxrnEd65vX47A48Ng9tPW10drbSiRxCDPafILH5iHTnYndYqcj1MEY3xjOLj57IHBt6GkgxZHCvMJ5jEsdR7orHYdVS9aUGi16e2V4/6uvwpo18hbW1yeB6/btUt06FOnpsl1qKnz5y4PfK9rt0kXnlFOkqlUppZRS6mR2IoSohmFw0UUX0dnZycoDnLvb7Wbp0qX87ne/O5LTHJKTOkR9/vnnsVgslJaWAvDQQw9x2223sW7dOioqKvZav6uri1AoNHA/Ho8zbdo0vve973HjjTcO+bgHe2E/6O7m9HXriOx+WfPtdq4vKuLy3NzDTu/VKBGLSZhqt0NTk4Srr74Kr7wiy1wuWdbbe/B9ZWQMjpMMhaSi9ayzJGAtLJSwVcN5dRQZhkFzTzOVnZXYzDYC4QBtfW180PgB79W/h91iJ8OdQVtfG219bXzc+jEJYwhjgPfDaXUSTURJcaQwI28G6a500p3p7Ozcic1i4+yisynLLCPdlY7T6sRqtjIubRypztSj96SVUkdFNApbtkjrgOpqCVdfeEEmx3K5pJK1p+fg+7FaB6tZc3JkP+PHw2WXSeBaUACjqC2YUkoppdRhORGG83/3u9/lxRdf5K233qKgoGC/67lcLr71rW9xxx13HMFZDs1JHaLuS3p6OrfddhtXXXXVQdd99tln+eIXv8iuXbsoKioa8jGG8sK+3N7Of+3aRUc8zq5wGIAUi4UrcnP5j8JCCvQTwMnLMKQP6wMPwEcfyawdzc3yqXPNGmlcNxRms5Tr5OTAvHkSrBYWyqfLyZNh4kQJXnUWEDWMkskk3ZFu2kPttIfa+bDpQ96rfw+zyUymO3MgcF1RvYLeaC8eu4dAOHBYE2r1c1ldZLgzSHel09bXhgkTc8fMZULGhIGJtFr7WhmXOo55hfPIcMm6Lpu20FBqpBiGtAr46CN4/XVoaJBq1P7Adf16+b5wKPovocrLYeZM+U4xLU3aEZSXw9lnyyAR/d5aKaWUUqPVaJ1Yqt/3vvc9nn32Wf7xj39QUlJywHV1OP8ISCQSPPHEE1x++eWsW7eO8vLyg26zZMkSIpEIr7766gHXi0QiRCKDQ1y7u7spLCw86AsLEE4k+ENjI7+rq2PH7jDVDHw5O5sfFRQw5yDbq5NQT4+Eqj09MnaypgbuugtaWmQmkMZGCVoP1pcV5JNmQYF8Uo3HZdKrc84ZDFzHjpWZQpQ6hpJGkq5wF1WBKja3bqY31ovP7qM91E5HqIMXt79IW18bxanF9MX66Ah10BhsJBgNHtFxzSaZLKsopYixKWNJd6VjwkRVoIox/jFcUHoBaa40Up2pdIY68Tv8VGRXkO/Lx27RieKUGm6hENTVScBaUyOdc157TZY7HLKsr29o+zKbITdXfjYMmD1buueMGSOBa0+PfN84fboO6lBKKaXU8We0hqiGYfC9732PZ555huXLlzNhwoSDbnPLLbdw3XXX7XNiqXg8TiQS0YmljpaNGzcyb948wuEwXq+XRx99lM9+9rMH3a6xsZHCwkIeffRRvvzlLx9w3RtvvJGf/exney0fSog6sG4sxvQ1a6iK7NlvcLLbzdeys7k8N5fCUfQfQ42wZBJWrZJWAQApKfLpsqYG/vrXoU2z3M9slnC2tFSCVa9Xlk2bJiU+BQUatKrjQiKZoK2vjb5Y30Dg+nLly9R11zE+bTyRRIT2UDtb2rawuXUzVrN1oEdrPDnEXsX74ba58dg8dEe6SXGmMGfMHNKcErjWdtdiwsS8gnmUZZSR6kzFbXNjMVsoTikmzZV22LNZKqUGGYZUm65aJRNfOZ0ShjY0wKZN8MEH8vYYjcqfQ2EySfec7GzZVyIhgeuMGbLM55MK2okT5W0xLU0rXJVSSik1/EZriPqd73yHRx99lL/+9a9MnDhxYHlKSgqu/UyuHYlEWLx4MZs2beKmm27ijDPOwOfzsWbNGm655Rbuv/9+pk+fflTO76QPUaPRKDU1NQQCAZ566inuu+8+VqxYcdBK1F/96lf85je/oaGhAbv9wBVGR1KJ+kmGYbC5r49oMskddXX8paWF6Cde+jNTUvh6Tg6XZGWRprMqqCMRDEoP1v5ynhdfhL//HTweCUn7K1wDgaHtz+eTYNXrhTPOkMC1oEBmCCkokPuZmbKOUscZwzAIRoN81PIR1YFqvHYvfXGpcP2o5SPer38fi9lCrjeXznAngXCALW1biMQjGBz526PFZCHVmUqaK43uSDdJI8kp2acwIX0Caa40LCYL1V3VjPGNYdG4RbKuMw2b2UaWJwuP/eh866rUySKRkMEbDQ0yB+SWLRKI9vXJsm3bYNeuoQetn5aaKsfoH+BRViZvh3a7TLI1ZgxceKEsS0+X42RmSocdDWCVUkopNRSjNUTdX/HIH//4R6644or9bheJRLj99tt59NFH2b59O263m8mTJ7N06VK+/vWvYz1KQ4dO+hD1084991zGjx/PPffcs991DMOgrKyMCy+8kNtvv/2QjzHUF/ZgOqJRpq9dS+2nqlNtJhOneDx8PTubi7OyKNlPWq/UEUkmZazkunVSgVpfL+Hqa6/Bhg3gdks5T1fX0PZns8knxzFjZGaR7GxYtEhmBCkokOV5efIpU6lRIpFM0B3ppjPcyc6OnaxrWkckEZHANdRJZ7iTV3a8QmtvK0UpRcSSMTrDnTT3NNMVGeL/nYNwWp1kujNJc6Zht9ip7aolzZXGZ8Z/hlRnKqnOVBqCDQCcmn8qEzMmkupMxWf34bF7tBesUvuRSEhla0uL3F57DSorpdV4NCrLKith61apgj2UQR774nBIkJqSIm+F1dXg98tbpd8vt/p6OfaMGRLQ+v1ScdvbK2+hJSUaxCqllFIng9Eaoh7vNET9lEWLFlFYWMiDDz6433WWL1/OwoUL2bhxI1OmTDnkY/S/sDWv11C4qPAIzlYC3VXd3eTZ7fxfayuPNDez4VMzt1e43SzJzORz6enM9fuxabWfOpZ6eqRk549/hJ07ZZxjQ4M0rnvvPenfeig8HhkX2R+sdnbKlMtnnSWfDseM0fYB6oQQT8TpCHcQS8QGKlzf3PUmNV01jE0Zi2EYBMIBtndsZ03DGixmCxmuDALhAJ3hTnqiQ5jKfAjMmClIKRiocG3pbSEcDzMzbyZTsqeQ6kzFbrGzq3MXeb48FpUsGghn3TY3NouOjFAKpBV5ICBzQ65aJW+NGRnynWRHhwSuq1bJ/exsWdZ/O5q8XrmFQhAOy/egRUXy9mqxwMcfy+OLF8syj0fetvv6pA9sWZkss9vlLTg9XQaUeDzaH1YppZQ6XmiIOjxO6hD1uuuu44ILLqCwsJBgMMhf/vIXbr75Zl5++WUWL17MtddeS319PQ8//PAe21122WVs376dVatWHdZx+1/YF+0vcub7Z+Kd5j0aT2fAT3fsYFlDA9l2O7tCIT5Z+GAzmViUlsa5aWmck5rKNK8Xs/baUyPFMKTqNBKRT3J1dbBjB9x9t5TwzJw5GLjW1Ax97KTLJa0Bxo6FOXNk6uW8PDnOxIlQUSFhq8MxvM9PqREUjoep7aolmojSF+sjEA6ws3Mn79a9SzwRpyi1aCCcXVW3ivZQO2nONKKJKIFwgFB8iFOdD0GmK3MgiHVanGxt30qaM42LJl00ELi29rWCAVNzpjIxc7AaVvvBqpNdMgmtrRJY9vTI22ZNjXwPGYlIgNndLbe335bvJnNz5W2wu1tC2M7OY3Oudrv0iY3FpP9rbq5Uwtrt0gbBZoMFC2SZyyVzXba1yXMoL5dlNpsMaPF4ZF2PZ7CaNhKRt/MxY2Td/n1reKuUUkrtSUPU4XFSh6hXXXUVb7zxBo2NjaSkpDB16lSuueYaFi9eDMAVV1xBVVUVy5cvH9imq6uLvLw8fve737F06dLDOm7/C/sCL5Camcr0FdPxlB/dnnWGYRAzDHoSCV7p6OCehgZW7GNYtddi4RSPhwvT01mYlsZMnw+HVqqq41Fzs8z6EYvJJ7T6einbeeQR6eE6dqws6+4e+j7T06XcJpmECRPgtNMGA1e7XUpuCgs1bFUnpVAsRG1XLc19zTgsDjpDErj+o+Yf1ARqyPPlYTFZCEQC1HbVsqF5AyCTaHWGO4kmokd8DmaTmaSRxGa2cUrOKQOBa0tPC8FokJl5M5mRO4NUZyoeu4fqQDV53jzOKDpDltk8GsIqtVsoJEFkV5eEsR99JN9RZmYOhpSNjbBihbQemD5dlvX2Suee5mZpJ+BwyLJgUMLd44XPJ+fmcEjYGgzK2/zYsfKW7nDIc7ZY5PvV/vXb2uR1KCyEqVMH9/HBBxLOnn66tFBwOOQSo61NWjaUlQ2u29Ehr2FenlxWOBzaNkEppdTI0hB1eJzUIepI6X9h/z7977Ae7Ll2pq+YjrvMPWzH7IjFeKm9nR2hEF6rlb8HAqwIBAh+qkGXw2RimtfLKR4Pn83IYLbPR4HDoR9C1egRDMKbb0o5Tn+ZSkODjJt89VWZycNmk6ZxQ5WRMRisxuNSyXr66bIsP18+gY4dq2GrUp/QXwlb01UDQCwZIxAOUB2oZmXNSiLxCOPSxhGIBAiEA2xo2kBnuBOn1UlfrI9YMnbE52AxWbBZbMQSMcb4xlCWWTYQrn7Y9CEpzhS+VP4l0pxppDpTB1oglGeVMz59PC6rS9//lDoIw5DQsj9wraqSMNbrlbfhcFhCxn/8Q36eM0f+DIUknN21SypLs7NlWTAobQ3icRk8Eg7LralJHrPZ5LvPeHykn/mBmc1ynjabhLn9gWtDg4TUpaUyyZjdLqF2dbWsN22aLLPZJPTt73GbkyPLg0EZtJORAbNmybL+Scnicfn+NztblkUiEn6npsrx+tft6Rk8r/7WDBr6KqXUiUVD1OGhIeoI6H9h23a1sfOinfRu6MWWbWPmuzNxjTt2E3iEEwku+egj3unuZo7fz5pgkLbY3h9as2w2Zvl8lLpcnJWSwmy/n7EarKrRKpGQTzYdHfIp7/nnZUxkZubg2MKqKpk061Clpw9OgGUyDZbyzJsny/Ly5FOQTvam1AEZhkE4Hqalt4Vt7dto6W0hzZVGICyB69s1b7MrsIscTw42i41AOEBTTxNb27eSNKTtRzx55AmLzWwjxZlCZ6gTu8XO/LHzBwLXjlAH3ZFupuZMZVbeLFKdqaQ4UogmohSlFpHrzcVpdep7pVLDJB6X0LWhQaprU1MlcIxGJWTsn3grN3ewa9Brr8k2c+ZIwBmNwpYtMvlXZqb0ho1GZf1//EN+njxZguJoVC4RmprkbdzrHVz3UAbBHK9MJnmeZvNguNvf9zYclsubzEypzo3F5DV2OCTItVollN25U/r+lpVJZa/NJut++KF8p71ggSyzWiU87+iQgUDFxbIsmYSNG+W48+cP7rehQV7jwkJpiW/b3Wq7pkbOYdKkwf2Gw3LMlBT5+7daJSA2DPlZfyUrpU4WGqIODw1RR8AnX1hzjZm1p67FiBjY8+3MfGcmzqKR+QduGAbbQyGu27mTZ9vayLDZaI/F2NdkshlWK7N8PqZ4PMzx+Zjj91Ps1A+L6gTSP+2yxSKfmhoa4LnnYM2awfGMDQ1yBV9ff2j7Npth3DipYs3NlWWGIeMIZ86UoDU3V0pJ+j8pKKWGzDCMgT6w29q3sSuwC7vFjgkTgXCAumAdy6uWE4qFKE0vHQhnKzsqCUaDAANh7JGwW+ykOdOwmq3EkjEmpE9gVt4ssjxZZLmzaOppYnz6eGbnzybXm4vf4df3UaVGqf6gNRaTYLWzU6pADUPCvEhEbuvXSyXouHFyiRGLQW0tbNokwWxZmSyLRqW1Qnc3nHKKBLexmLQe+PBDWXfSpMFjfvih7Le/fUH/RGZNTRIe+nyD64aOXsvrUcfhkNejPwwOhaQaNz19cHlVlYStZWUS/lqtEvg2NcklYGnp4Lpr1sjf8dy58hpbrbLezp1ymTdt2uC677wj4f8ZZ0jPYKtV/o1s2ybfs/cH0lYrrF4t686ZM3hunZ2y38xMuWTsX3fbNgmgJ06UANxqlX9rra3yb6+wcHDdYFAuQ32+wUvM/k/y+vaj1IlFQ9ThoSHqCPjkC+uxe1h35jp6PuiBBFgzrJTdXUb2l7JH9BxjySShZBKbycSG3l5e6ejg51VVGIDZZCK+j7/yFIuFKR4PFR4P41wuTvP7meLxkKEhkDqRGYY0SKuslCvShga5Pf+8zIyRmSlXpQ0NEsYeShsBkE9YZWWDgWv/5FrTpsn4vtxcuWVk6Fg8pY4SwzDojfUSCAdo7mlmXeM62kJtjPGNGQhc36l9hx2dO8jyZOG0OukMddLW10Ztd+1hH9duseO2uUkaSYpTi5mWM41sTzZZ7iwC4QATMiYwO382BX6ZpEsDV6XU4YrFJKSLx+XnYFAuU+JxuaToD1y3bZPvlHNyJLiNxSTMW79eLm+mTRvc1wcfSIA4fryEjfG4rPv22xLcnXba4PE2bJDjFRfLd8axmLSD+OADOb+KisHzq62V/aSmyjnE4xIStrTIZVj/efWvrw7ObB6s3jUM6OuTn7OzBwPX5map7C0oGAxyw2G55HW55Hv//krfrVsltC8vHwxtQyEJmT0eWLhwcN2PP5Z/UxUVUFIiy6JR+bt3ueCsswbXramRSvPiYqkU75+8rqpK1u1vf2G3y3MAOde0tME2FfpWqU5WGqIODw1RR8CnX9hYe4y+7X1s//Z2etZLP7bsr2Uz4X8nYEs/fgLIeDJJbSRCnt3Oxt5e1gaD/E9NDXWRCBbYZ8UqQK7dzhSPhyKHg+leL7P9fircbrw6lao62USj0gBuxw4ZF9fUJLfnn4fNm+XK1WyWq9bmZqmGPRRWq1y95ufLp51PBq4zZw4GrqmpekWp1DAxDIPuSDcmk1S9doQ6eGPnG6xvWk+mJxOX1UVLbwvVXdW8XfM2sWQMp9U50I91qJxWJ167F8MwKMsoY+6YuYzxjyHPmwfAtNxpjE8bj8um7UOUUicPw5DLp1hMLoP6f25rk+A1JUWWJRISwra2gtstoVv/uuvWySXbpElyuRSPS3uI6mpZr7BQ1o3HB9s+zJghl2HxuAR827dLGD1+/GC4+/bbcg6nnDLYZr++XqpL/X4JCvvX3bhR1i0pGdxvZ6dcNjocsu/+dVtb5U+PR55/f1B9qJeRJ6L+NhUgdQ2fDFyDQVlWUCCvqdMpfYjtdqkW9vkkqG1pkdu4cVIB7HLJbfNmCfBnzZJ/Vy6XhLYej+xX64jUSNMQdXhoiDoC9vfCJqNJqm+qpvqX1ZCUCacm/nEiGednjODZHljSMKgMhfBZLLTGYmzq7eX5tjb+0tqK3WQieoB/GmMdDsa7XKRZrZzq8zHb52OS280Y7beqlHx9/847ciVeVCRXzc3N8MIL8hV+VpZcGTY1ySeDQ/01bLPJVXxOjoS3/aUbp5wioWt2thwjO1snzFLqGOiL9dHa28ryquV80PgBGe4MnFYnLb0t7Ars4uXtLxNLxvA5fHSEOoa83yx3FoUphdjMNkyYODX/VM4YewZjU8ZSmFJInjcPi1mr2JVS6kTUPwlb/62/j69hDAaufX3SrqC/9cQnK4B7eiSwdThkWVeX1AKYzRLw9q+7ZYuEvAUFg/sIBKRi2WKR8LF/3Q0bJPgtKRkMg7u7ZToCk0kC6f51t22Ty9y8vMG+xz09EjyDXKr2P6e+vsH6geNBf+9kn08u4S0WqWnIypJlvb3y3EpLZb7atDS5dXXJ8y0rk+2VOlwaog4PDVFHwIFe2GQsybuF7xJrHpzgKe9beYy/bTxW3+ip3OyJx2mOxci22djc18em3l7+a9cumqJR0q1WOg4w1sZjNpNtt5Nvt3N6SgozvV4mud2Uud24dbiyUnvr7YW33pJZGoqK5EqtqQn+9je5qs3KkqvKpia5oj1U/VfKnwxcEwkJXGfOlGWZmYN/6v9TpYZVOB6mMdjIqzteZXXDalKdqVhMFuqD9VR2VPJ+/fsYDP3SzGa2MWfMHAlW/YWYTWZ8dh+nFZ7G9NzppDnT9MtNpZRSxz3DkCrc/t7EoZC0BOjpkYFa/ZPPbdsmyzMyBief6+6Gl1+WbebNG9x+0yYJjvtrC0IhufRev14uifPzpc1BKCTVrUczyHU6B1spBIMSUp9xxuAleUOD/LxggVTKer062EwN0hB1eGiIOgIO9sJ2v9dN1c+qcBY7aVjWAIAt20bxfxeTtzQPs818rE/5qOmIxfBYLATjcbb09fF4SwsPNzfjtljwWyzsCIX22xYAwGuxUOx0cnZqKhNdLia63UxwuSh0OrHoO4ZSBxcISOBaXS3jxvrHKPUHrrm5Epr2Lz+c5mL9V5nZ2YNj46ZMgVNPlceysmSsU0mJjH/S/7tKHVX9LQUSRoLarlpqump4cvOTrGtaR5Y7i2gySm1XLXXddSSMg4/39Ng8FPoL6Yp0ke3J5pLySyhKLWJsyljyvfkUpRZhs+i4RaWUUie3REKqent7JdDt6ZHK0hUrpOq0vFwC12BQ2kZs2CCXwmlpUsnb0SFVtoebrrhcUuUaDkvbiYULZbK5oqLBFhXTpmmrgZPFaA1Rly1bxrJly6iqqgKgoqKCG264gQsuuOCA20WjUe644w4eeeQRtm/fjtvtZuLEiVx99dVceuml2I7SP3wNUUfAUF9YgM43O9n2rW2EKmUaTec4J+N+NY6sS7JOqKqQpGFgNpmIJpPsDIX4fmUlW3p7mZeSQl0kwta+PtoPEOaYgGKnk8luN6UuF8VOJxN2h6xFTid28+gNnpUaMeGwzAhQUyNXYP3B6osvStOovDy5CmtpkSrXzs5DP4bdPtg6IJEYvMLrH++UkSEh7LhxEvpmZOiVn1JHSSgW4v3699nevh2/0z8QuP6t8m/UdtXisDrojnQPaV9pzjTKs8olWPXl0xHqoDyrnPNLz2dsylj8jgNf7yillFJKxOMSwAYCEqyuXy/tDmw2CV37u3y9+aZcrttsgxNrHYzNJpf1Y8dK6NrTI5fdS5ZIa4GCAqmnUKPfaA1Rn3/+eSwWC6WlpQA89NBD3Hbbbaxbt46Kiop9bhONRjnvvPP48MMPuemmm5g/fz5+v59Vq1bx61//mgceeIDp06cflfPTEHUEHEqICtC1qot189btscx3qo9xt44jbWHacJ3mcefl9nYebm7GaTaTZbOxpa+PrX19bA2FDridGShyOil1uXCZzZS5XJzm9zPJ42Gc04lLhx4rdeQSCWmeVVUlQecnK1w3bJDA1emUZfX1EswertRUCV8TCQlWp06VNgKZmXJFWVgoVa+5ubJMq12VOmyhWIja7lrWNa7j6Y+fpj3UToG/gJquGmq6atjZuXNIrQNSHCm4bC4sJgun5p/K6YWnMzZlLGP8Y8j15DIubZz2ZlVKKaUOU0+PXAa//z6sWiXdtRwOueSuqoL33hvaZGNOpwStaWkSrM6cKRW05eXS71aNHp8O+wzDINk3Mo2DzW7zERUBpqenc9ttt3HVVVft8/Fbb72Va6+9ljVr1jBjxow9HovFYkSjUTwez2Ef/5M0RB0BhxqiGoZB+3PtBNcHMWGi9te1JHrkN6B/np+x14wlY0kGJvPJFxIkDIO/tbfzQTDIaX4/VZEIO0Ih/trWxrZQCKvJRPwg/zyzbDY8ZjOTPB7m+f2UOJ2Mc7kocTrJtdsxa/ii1NHX1ydhqsMhV3xtbdKIqj9w9XplWW2tfPVuGHtOsXoozGa5ZWdLl/7+wLW6WhpJLVwox8zMlAA4K0u+mldKHVQwEmRd0zoi8Qid4U5qumpY07CG13e+TiwZw2Ky0BkeWpV6SWoJY1PGMjZlLPFkHJ/dx4KiBZyafyqF/kI89qNz8auUUkqdjKJR6aNaWyuXwa+9JqGr3S49YHfulAFg+2O1SrXq5z4nnbpmzJABZDoH7fHp02FfojfBSu/KETmXBT0LsHgO/cvyRCLBE088weWXX866desoLy/f53rTpk0jNzeXV1555UhP9aA0RB0Bhxqiflq0OcrO63bS9EDTwDLXBBcFPy4g9xu5WNxayZE0DBoiEQAsJhOVoRAbenv5RVUVHfE4UzweKkMhug/ydZwZGOdyUepyMc7pJM9uZ/zuNgElTidpOqxYqWOjf6xSZ6eEq2+8Ic2ksrOl+VNrq3zV/sorcvWXlyfr9fQc3vFsNglYMzLkVlcnFbALFw4ut1ol7C0pkVkF0tJ0/JNS+xCMBKntruXJzU+yvmk9OZ4cgtEgNV01bGnbQmtf65D2k+JIIZaMke5KZ1HJIvJ9+eR580gkE2R5spiZN5OStBKc1tEzZE0ppZQ6XsTjMunWI49I567CQpky4aOPoLFx/9t5PHDJJTBnjgwGmzZNglk1skZziLpx40bmzZtHOBzG6/Xy6KOP8tnPfna/67vdbpYuXcrvfve7o3G6B6Qh6gg40hAVoOvdLjb/82aMiEEynCQekH6h1nQrY747hrx/ycNZoB8iDsQwDNpjMe5rbORvHR3k2+14LBZ2hcNsD4Wo2x3CHkiKxcI4lwsTMN7l4oyUlIHAtdjpxKmtApQaWeGwfMX+4YcSeLpcErhWV8PTT0tFbHm5BK5tbdJk6nDf0kwmCVJDITnO7NmDgWssJlemkybJV/f94WxGBrjdR/c5KzXKdIQ62Na+jXgyPtAm4LGNj1HbXUuaK42W3hZ6okP/QiTdlU6GK4PuSDe53lwuKL2APF8e+b58bGYb+b58StNLSXWmnlD95ZVSSqnh8vHHMmisp0cupTdskKkTenv3XtdqlWB10SL4+tdh3jypb1DH1mgezh+NRqmpqSEQCPDUU09x3333sWLFiv1WorpcLr71rW9xxx13HKUz3j8NUUfA0QhRAYyEQbQ5isVvoemBJmpvryVStTv4M0P6eenkXZVHxpIMzHatjjoUvYkEr3R0sHn35Fa7QiF2hcM82txMVSSC12KhZwhNZVxmM8VOJzO9XoqcTsY6HBQ6nYx3uRjrcGg/VqWON4EA7NghTaNMJmhvlwrXxx+Xx+bNk2X9Xf5bWmQM0xC+dNkvk0n6t/ZPpBWPS7g7YYJ8nd8ftobDMr1qSQmkp0uzK6VOAoZh0BXp4oOGD3hz15sEo0Fyvbk0BBto7GnkjV1v0B3pxmKyEEseYBzip9gtdjLdmXjtXgLhAFnuLBYWLyTLk0WWO4u+WB8pzhSmZk+lOK2YdFc6VrN1GJ+pUkopNXrEYrB8Obz9trQKWLdOahc6OvZed+xYCVYvuAB+8hO59FXDa7ROLLUv5557LuPHj+eee+7Z5+M6nP8Ed7RC1E/reruLdWetw2QyYcQH/0qsmVZyL8sl7+o8POXaT+xI9FevWk0mbGYzVeEw73V38+vaWrrjcU71+dgVDrMrHCY4hJA122ajyOkk1Wol3WplmtfLFI+HYqeTIqcTv1U/rCl1XDMMCT0NQ64Y6+rgr3+VcHX2bAlc29vhH/+Q8VEZGTK+qX95PH54xzWZpL2AzSZXrQUFMsFWRoYErHV10urgtNPkKjU9XR5LSdGWA+qElUwmCUQCNAYbWdu4lld3vEokHiHfl09DTwONwUZWN6wmmoge1v5NmPA7/EQSEVIcKcwZM4c0VxqpjlRaeluwmC3MyJ3BhIwJpDnT8Nq9eO1e8rx5eOwerXpVSil1wjMMePFFeOopqUlYvx42bdp7oNfkyXDOOTJdwaWXyqWqOrpOpBB10aJFFBYW8uCDD+7z8VtuuYXrrrtunxNLxeNxIpGITiw1mg1XiAoQaYrQu7EXZ7GTpgeaaHqwiWjT4IcFzzQP2V/OJuvLWbhLdQjpcDEMg6dbW3kjEKDQ4cBiMlEdDvNhTw9vd3djgiHMZQw2k4k0q5XT/P6BYLXQ4aBkd7uADJtNP5QpNVrFYrBxo7QWKCwcDFb//ne54szOlqC0vV1C2fXrD7/VwCe5XBK69gerNTUSrp55JowZI8ttNmkz0N/v1e+X4FapE0A0ESUSjxAIB2jta2VD8wbe3PUmiWSC4tRiWvtaaetrY0X1CrrCXXjsHroj3Ud0TJvZRqozlTRXGr3RXhJGgoqsCiakT8Dn8GExW6jtqiXbk828gnn4HX58Dh+GYZDiTCHXm0uKIwWbRXuxK6WUGl26u+GPf4SHHpJWAPX1e1/SnnEG/PM/w4UXStWqOnKjNUS97rrruOCCCygsLCQYDPKXv/yFm2++mZdffpnFixfvc5tIJMLixYvZtGkTN910E2eccQY+n481a9Zwyy23cP/99zN9+vSjcn4aoo6A4QxRPy3SFOG9kvdIhpOYrHtWqLrL3eRclkP2l7NxjdOZqI+FxO4Jr9qiUYpcLqrDYarDYe6oq+PDnh4mut3EDIPqcJj2IVSouc1mipxOChwOTECZ283pfj9FuwPXPLsdswYfSp04IhGpJO3okNs778jYqdRU6cfa0SF9XZ97TnqzlpbKZFzt7ftuWjVUFouEq3190r5g1ixpbpWRIWUG4bCUEnyyGjYjQ/rQ6u8gdQKIJ+N0hDr4uPVjVlavpC/eR0lqCZ3hTjpDnbxU+RLNvc0UpxaTNJJ0hjpp6W2hK9J1VM/DYXHgsXvojfbitDqZmjMVn8OHz+6jpbeFaCJKRVYFZRll+Bw+7BY7jcFGMlwZnJJzCh67B4/Ng8PqwG/347F7sJi1NYhSSqljp6MDVqyAZ56BRx+VS8lPGjtWLiuvvx7OPntETvGEMFpD1Kuuuoo33niDxsZGUlJSmDp1Ktdcc81+A9R+kUiE22+/nUcffZTt27fjdruZPHkyS5cu5etf/zrWozTKV0PUEXAsQ1SAeE+c7ne68Z3qo+2ZNlr+r4XO1zr3KIV0V7jJuDCDzCWZ+E/zY7Loh96RtrW3lz80NhKIx5nl81EdDlMVDvO3jo4htQoAsAAei4UJLhdTvV6Kd1eyFjoclLhcFDgcOHRor1Inh/p6mV4VpBq1vR2am2UK1s5OGfrf2SlXtps3y2NW6+G3HOiXmSn9XvvHaQWDUuE6Z85g2BoKSXXsuHGyvsej4asa9QzDIBgJ0hHqwGqx0hnqJBAO8HLly+zq3MX49PFYzBaCkSC7Art4t+5dLCYL49LGEYwG6Y50U9tVe0h9Xg+H0+rEbXPjtDrpDHVit9iZljsNj82Dx+6hpaeFYDTIxIyJTMyciMfmwW6xs6NzB36Hn3kF8/DavXjsHgzDwGlzkuHMwO/047K6NKRVSim1X8kkvP661AS88ILUByQ/MffR9OlSofrVr2qF6qEarSHq8U5D1BFwrEPUfdl40Uban2/HO9NLz/oe+EQmZ/FbyLwok4zPZZC6KBV7pn1EzlHtW3c8TnU4TJbNRk8iQVU4zN8DAR5qasJkMjHO6aQ6HKYuEmEoUWuu3U6hw4HLbCbDamWmz0e5x0Ohw8FYp5NsbRmg1MnJMKTlQCIh4WpTEzz7LDQ2yoRXgYAEru++K82u0tKkBUBHhwS0RzLZlt0u+4rFICcHTjllsMK1sVGOddpp0mqgP4hNT5dtlDqBGIZBOB4maSSJJCIEI0Hquut4p/YdIvEIk7Im0R3pJhgJ8vqu16kOVFOaXorb5iYYDdIYbGRjy0ZMmMj15tIb66U32ktv7Agq0w+R3WInlohhNpkZmzIWl82Fy+qiO9JNd6SbQn8hpRmluKwuHFYHG5s34rK6OLPoTHwOHy6ri65IF8FIkMKUQsanjcdlc+G2uemL9ZHqSCXTnYnb7tbQVimlRrm2Npl46rnnpA3AJ7/L9/vhkkvgjjtksJM6MA1Rh4eGqCPgeAhRAaJtUWxpNuJdcTpe6aDmlhp6P/zURbVJhv1nfDaDtMVppJyRgsWlF6ejQTyZ5A+Njbzf3U2Fx0M4maQ6EuH97m429PZiBpIH3QuYgRSrlRleL2N3V7KmWa2UuVyMd7kodDrx6CzhSqlPSial6rWqSipMAwEJVleuhNWrJfDMyRnsA9tfdmCzSXB6uCwW2W9/sNrcLMHqvHlSvtDf79Vmk6rX/mV6YalOMsFIkJbeFswmM2aTmd5YL809zbxd+zahWIhpudPojfbSF+vjrZq32BnYSXFKMemudHpjvbT1tfFu7bskSVKaXjoQzPa3FBhJFpOFpJHEY/eQ5c4aCG2rAlVYzBZm5s4k1ZU6UHnbGGykwF/AKTmn4LQ6cVqdfNTyEXaLnVn5s0hzpuG0OgnHw/TGeslyZ1GYUojT6sRhcWA1W/HavTis8rNSSqmjo60Nnn4aHnsMli8fXO7zwde/Dt/6llSqqn3TEHV4aIg6Ao6XEPXTulZ10fRwE7ZMG8m+JJ2vdNK7ac9Q1eQwkTI/hdQzU0k5MwX/XD8WtwZoo0nSMGiKRumJx8mw26kJh6mJRLi5uprKcJjpHg+9ySQ14TAN0eiQJsDKsFrJsdsxAeNcLhakpAwErmMdDvJ2T66llFL7FY9Lv9e+Pqlmff99CVw9Hplkq6NDrqYff1z6u06aJCUK7e2yPDmUr4X2w+2Wylu7XaaLHTNGQlinU5aXlUFFhZxHdrY8pq1QlNqLYRhEE1GSRpKkkSQUD9EV7mJd0zqCkSCTMicRiocIxUJ80PgB2zu2k+/LJ8+bR1+sj65IFy9tf4lwIsz8wvmE42FC8RAft35MbXctGa4M/A4/oXiIvlgfTT1NI/2U92AxWXBanZhNZkLxEG6bmwJ/wUA4Wx2oJmkkmZI9hUx3Jg6rg75oH7XdtWS5s5iRN2Ng3R0dOzAwmJI9hWxPNg6Lg3gyTiAcIN2VTlFqEQ6LA4fVgcVkwWPz4LRJsKvVuEqpE83778ONN0rHqerqweUpKXDppXDrrTog6dM0RB0eGqKOgOM1RN2Xjlc62PiFjZjMJqypVqINe1YXmKwmfHN8pJ6Zin++H/9cP/YsHf5/otje28uTbW1EkklKXS5qIxFqIhH+1NREbzKJ22ymbwjBhQnIsduZ4HIx1uEgy2bDY7Ew1etlkttNwe7qVm0boJQ6LIEAbN8uLQTc7sEK1wcflPB19mzo6ZGfN22Sq2+HA6LRww9f7Xbp7VpYKMGqwyFB8IQJMGOGLMvJkT9dOnmjUsMhaSSJxCPYzDYiiQiheIhdgV1UdVbhsrrI9GQSioXojfXyt+1/ozfWy5z8OcSTcULxEJtbN7O5dTNZ7ixK0koIx8OE42He3PWmTNKVXUHSSBKOh2kMNtLS2zIQcobjYSKJCPHkEfaNHgYWkwW7xU4kEcFusZPrzR2onO2vFh6XNo4cb85AOLuzcyd+h5/Z+bNxWB04rU5qumqIxCOUZZRR4C/AYXVgGAZNPU2kOFOYmDERh9WBw+IgYSRwWBykOFJw2904LLIPq1mv75RSR49hSFXqPffAE08MXsZlZcEPfwjf+Y7Mt6o0RB0uoypE7erq4plnnmHlypVUVVXR19dHVlYWM2bM4LzzzuP0008/FqdxxEZTiAqQjCWJ1ERwjnPSt6WPwIoAO3+6k0TXvjtu2nJspJ6din+OhKreGV6tVj3BGIZBWyxGitVKKJmkNhzmpY4OHm9pwWE2U+J0UhOJUBuJUBUOD2mfbrMZt8WCz2JhxifC1TF2O2OdTgocDjK0P6tS6mhJJGTyqmBwsMK1rk4mvOrpkRD2H/+Q0ofUVGm+1dIiQeyhsliguFhC1/x8GYcGUt06Y4Ysy82VYFYpNaq09rbSHenGY/OQMBJEEhFqumrY2rYVh9VBUUrRQDj76o5XCUQCzMydic1iIxwPU9lRydqGtfidfsozywknZN23a94mGA0yIX0CNouNSDxCW18bdd112Cw2/A4/kXiESCJCOD60a62RYsKE3+GXINfqoDfaSyQeIcebQ643F4fVgdlkZkfHDhxWB3PHzB0IYZt6mwhGgpSkllCSVjLQQqEqUIXb5mZqztSB/cYSMUwmE+nOdFKcKQNhcH/FrsPi0OtIpU4ga9ZI/9TNm+USDaRv6uzZcNddMpDoZNYf9hUXF+PSL/SPmlAoRFVV1fEdojY2NnLDDTfwyCOPkJuby5w5cxgzZgwul4uOjg42bdrE2rVrKSoq4r//+7/5yle+Mpync8RGW4i6L13vdNG5vJP0xen0ftRL1z+66Hi5g2jjPvpgmcFZ4iT17FRSTpcWAO5JbkwWvYg5GbwVCPBhTw9lbjcd8Tg14TCvdXayPBDAY7FgNZloG2IPRIfJRIHDQYHDAUC23c5sn4+y3YFrwe4qV7NeICulhks0Ck8+CTt3wrRp0NUlvVeXL4dVq2RcWWqqXM03N8v6Q+VwSNXq9OkwfryEq36/BLinnAKlpVJqoa0ElFKf0B3upjvajdPiBBOE42Gae5rZ3LYZM2bGpY0jkogQiUdYWbOS5t5mJmdMxu+UILauu46VNStxWBzMHjObSFyC2Xdq36Glr4WyjDL8Dj/heJj2vnY2t27GYrZQ6C8c2G9bXxuxpEwgljSOoL3KMLNb7DgsUlEbTUbxO/wD7RIcFgdVgSqsFitTc6ZKiwSrk0A4QHuonXxfPmXpZQOBbGVHJS6ri4rsCvwOPy6bi3gyTjwZJ9OdSa43F5fVNdCX12VzaZCr1DCIxeS78Jtvlpb8IN+T/8u/wHXXSQv8k1EsFqOyspL8/HxSUlJG+nROGO3t7bS0tFBWVoblU3PDHDchanZ2Nt/4xje44oormDJlyj7XCYVCPPvss9xxxx1ccskl/Md//MdwntIRORFC1H0JrAzQ8IcGrD4rjgIH3e91E3wvSLRp7w+QZo8ZV6kL/xw/vjk+vNO8eKZ4dNKqk0zCMLCYTIQSCRqiUX5VXU1lKMQZKSkE4nHqIhE+6Omh9hBm+TYBqVYrUzyegWDVZjIxzumkwuOhyOkk227XHq1KqeGXTMLrr8OWLVIO0doKDQ2y7L33pCLVZpNlQ51Qy2aTcDWRkMB2wQKYOFH6uOblySeF/Hyw6gQ3SqljJ56MS2sFiw2LyUIkEaEz1Mnm1s1EE1FK00sHqmbX1K+hpruG4tRistxZRBISwr5S+QoJI8HC4oUD4eyq+lVUdVYxLm0ceb48IokIXeEu3q59m6SRZFrOtIHWCnXddXRHunHb3APnMNITnX2aCRNOqxOXzQUG9MR6SHGkUJJWMhC0bmvbBiaYnT97YHK0YCRIXbCOfG8+s/JnDaxb112H3WJnYsZEMtwZuKwubBYbTosTv9OPy+rSHrnqpJFMwn//N/zmNxAKyTKHA370I/iP/5CW9icTwzCoqakhFouRn5+PWb+EPyKGYdDX10dLSwupqank5eXttc5xE6K2traSlZU1bOsfaydqiLovsUCMLZdvIbguSPZXsgmuDhJcEyTZu49vqM3gyHfgmeYhZX4K3hlevNO82HPt+o3tSaw3kaAmHCZhGHgtFmp3twn4ZXU1zdEos/1+2mMxaiMRmoY4EZbVZCLTasVsMlHkdDLP76fQ4WCMw0Ge3U7B7smwHPpGo5Q6FgxDKlcfeggqK2HWrMHA9R//gI8/lkmuQiFZ92BMJglUCwokXO3pkWD1zDOlmrWgQO5rfyyl1AnGMAySRnIgOIwn4mzt2Ep3uJvx6eMHWiBsat5EZUclOd4cCvwFhONhemI9PPvxs4TjYRaPW0wsGSOSiPBB4wdsatlEob9wjzD4hW0vEE/GmTNmDgkjQSgWorqrmsZgIx67VLGGYiFC8dCIVufazDZcNheRuBQlFKYUkuHKwGP3EEvEqO+uJ9OTyZz8OXjsHtw2Nzs7d5JMJpmZP5NCfyFumxsDg85QJ9mebMoyyvDYPQPVuvpZTR1PEgn4+9/hF7+AFStkmdksE1Ddd598H32yiEaj7Nq1i+SRTMCq9pCamkpubu4+f+8dNyEqwLPPPsuSJUv2KpcdjU6mEHVfjITBtu9uo/X/WvHO9GIymehZ30Osbd9VONY0K67xLqlYne7FU+HBPdmNLe0k+u2nhuTjnh5eDQQwIxNZ1UUi1IbD3NPYSCiZJM9upzkaZahvIZk2G/l2OylWK2agzO1mls9Hvt3OGIeDfLudLK1qVUodC/2Vqk1NsGsX3Hkn1NbC3LnQ2Cj9XDdtkvYCQ2W1ysRXM2dKsFpQIMcpK5NWBUVF0kpAKaXUYTMMg5quGroiXaS70oklYjIJWucutrVvw2Vzke/LHwhcX6l8he5oN9Nzp2PCRCgWYlvHNja1bCLFkUJRatHAuusa1xFNRMnx5siEabsnUhuJCc9SHCmkudJw29yYTWYagg0Dk5W5bW48Ng+13bXEEjGm5EyhJLUEn92HzWKjI9RBtiebiqwKfA4fPrsPr92rVbTqiBgGvPCChKfd3bJswgQZ9n/xxfKd88kgmUwSPZT2Umq/bDbbATPJ4ypEtVqtZGZmcvnll3PllVcyadKk4T7ksDnZQ9RPMgwDk8mEYRgElgfY9q1tJHoSpJ6VSs+HPfRt7WN/iZclxYKr1EXK6Sm4y914yj24y93YM3ViDrW3WDKJ1WQiYRg0x2I839bG39rb8Vmt5PUHrpEI7/S/wx6CXLudsQ4H+Q4HfosFu9nMZJeLU7xe8ndPjpVi1dlplVLDLBSSYLWnRz451NVJ79Zly2SirFNOkerWurrBcW4H09/j1TDkk8f8+YOBa06OTJiVlnbyfBJRSqnjXCwRoyvcRSgewmVzDQSu79S8Q1tfG+PTx2M2memL9bG9Yzvv17+P0+pkUuYk+mJ99EZ7WVG9gkA4wPi08ZjNZnqjvbT2tdIQbMBismA2mYkkht5u60j4HX6y3Fn4HD7sFjs1gRp8Dh9nFZ2F1+7F5/DR2ttKPBmnPKuc8enj8dkliLVb7YzxjSHVmaqB7EksGIRvfAPeekvmEgU491wJU2fNGtlzUyeW4ypEbWho4I9//CMPPfQQO3bsYN68eVx11VV8+ctfxuPxDPfhjyoNUQ+sP1gFSIQSfHzpxwT+HiDl7BSSfUn6NvcRqd3/m7bFa8Fd4cY7zYu7zI2rzIW7zI1znBOzTYdnq/0zDIOWWIy6cJhCp5PmaJT6SIRn29p4rbOTbJuNbLudht3LGw/hGz0L4LJYqHC7KXG5yLfbSbVa8VutlLvdjNu9zHUCVNsrpY5zhgGrV0urAKsV3G6or5fA9cknIRKRfq1D/VLJ6YTCQmkdYLXKOLpJk+DUUyVozcmRitfcXLDrF51KKXUiSCQT9MX62NG5g+aeZlIcKZhMJnpjvdR01fBu7buYTWYqsivojfbSF+vjjV1v0NTTxMTMiTitToKRIA3BBra2b8VisuC2uQlGg8NSSeuz+0h1phJNRAf69E7KnESqMxW3zU1leyWZnkwWj1tMqjOVVGcqHpuHXG8uKc4ULYY4AQSDcMst8Otfy6UOwNVXwz336Jyd6ug4rkLUT1qxYgUPPPAATz/9NCaTiS9/+ctcddVVzJs371iexmHTEPXwfDJc7Xyzk1037AIzpJyWQu/mXvo29xHeFd7/DszgGu8aCFU/+adjjM6UqQ5NwjD4RyDAlr4+pnu9tMRiNEQiPNfWxjvd3WTabLgtFhoiETriQ78QTN3dOsBvtTLX56PY6STP4SDdamWM3U6B00me3Y5PJ41RSg2XZFI+TQSDEq7+9a8SuKang8cjlaxVVYNT4B6KlBQJU3NywGKBeFwC19mzB5dnZUFmprQS0PdmpZQ6qRiGQTQRZUfHDhp7GnFYHZgwEYwGqemqYWX1SuLJOFOypxCMBglGgqysWUlDsIGxKWOxW+x0R7pp62ujta/1qJyT2WQm051JpjuTFEcK9cF6Uh2pnF96/sDyaCKK1+5lSs4UJqRPwG1zH5Vjq6Nv40aYNw96e+X+/PnSK3UUD3ZWx4njNkTt19PTw1/+8hf++Mc/smrVKiZNmsRHh3NBf4xpiDp8dv7XTrre6iLj8xkkAgn6tvbRvaqbSM2Bh5uY3WapVh3vxDXehWeKZyBg1d6r6kgF43Hub2xkWyjEgpQUmqJRGqJRXu3oYGNvL6lWK5Fkkr5DaPjtMZvJtduJGQZpVitz/X6KnU5y7Xay7Xby7XbyHQ4ybTbt2aqUOvoMAwIB6c+akiLBal0dvPgirFkjYajXC83N0rO1qenQj2G3y1S6GRkSpobDMG4czJgxuDwclirY8eMlfE1Lk3BWKaXUSc0wDMLxMJ3hTmxmG4FwgK5IFyurV1LZWUmeNw+n1UkgHKA6UM2K6hXEk3HGpY2jK9JFIBygMdhIwkgc1vG9di/Znmw6Q52kOFK4YMIF5HpzyfHkYDFbSHWmMjV7KuPSx2E1a3HEsRYOw/e/D489Jl2Q7Hb40Y/gpptOromn1NF13IeoADt27OCPf/wjy5Yto7u7m1hs35MTHU80RD22erf00v63dswOM55yD6FtIfq29lH3v3UQR8ZZH+C90ZpmxZZtw1nsxDvdi3uiWypax7uw59kxmTWgUofPMAxihoHNZKI7kWBXKMT/1tdTE4lwTmoqzdEoTdEob3d1UReNYjeZiB7Cr1wLkG23k2e305dIkGmzcVpKykDgmrf7lqutBJRSwyWRgOpqaReQny/BanPzYOCamysVrv2Ba3394R/LZJL2BIYhQW5ZmfR0TU2Vc0hLg9NOk/YCqanSiqC/OjYtTe4rpZRSQF+sj7ruOuLJOLFEjPZQOzs6dvDCthfojfVySvYptIXaaO9rZ23jWtr62rCarUQTQ2/5ZTaZyfPmke/LpyPUQa43l3+a/E+MTRlLYUohY3xjyPPlYTbpePPhUFMD//qv8NJLcj8zUwbfTJ48suelRqfjNkTt6+vjiSee4IEHHuCtt95i3LhxXHHFFVxxxRWMGTPmWJ7KYdEQdeQZhkHvhl76tvWRfkE60YYofdv6aLirgY6XOrDn2cEM0foDvwGarCbsBXa8U70DwapzvBNXqQtnkfZgVUdP0jDo2P0lkctioSkaZVcoxO11dTRGo3wmLY2WWIzGaJS1wSCth/GFUorFIsGqw0EwHifbbud0v5+i3S0EcnbfMrS6VSk1XJLJwSA1J0cmxGpvh9deg7VrJezMzJRlTU2wfLmEtH7/0Hu4HojDIeFqf1nK9OlyPL9fGqh1d0NREVRUyDKfT1oSZGbKufn9cnM4tBWBUkqdhJLJJL2xXpp6mtjavpUXtr5AR7iDSZmTaOpporm3mXdr36Wtrw2zyTzkStcMVwbTcqdRmlZKcVoxyWSS+WPnMzt/Nh776Joj5nhjGPDTn8Ktt8r9zEypUD333JE9LzX6HHch6ttvv80DDzzAE088QTwe54tf/CJXXXUVCxcuPKz9LVu2jGXLllFVVQVARUUFN9xwAxdccMF+t4lEIvz85z/nz3/+M01NTRQUFHD99dfzzW9+c8jH1RD1+BZrj5GMJnHkOUj0Juj9uJfN/7yZaH2U7K9lE6mJENoRIlwVhgONvraAc6y0B3AUO6Q9QKlrIGy1eLTqTw2PUCJBYzSK1WTCZjLRGI2yKxzmd3V1tESjLEpLoykapTEa5aPeXroThzZMyQRk22wDoWowkSDbZmOO30+hwyHLdz+eZbNh1U7tSqnhlEjIEP5YDDo6ZPrdNWukh2tOjrQdaG2VT0S9vTB3roShgYBUx3Z1SeB5NC9n+yv7vV4YO1bCVr9fSl7sdpgzR0JXnw+iUTmfMWNg4kSpyvV6pSrW75ef3W5tU6CUUicQwzCIJ+O0h9qp7aplfdN6ntz8JF2RLopSi6jtqqW2u5a67rqD7muMbwwTMiZgN9tJdaaysHghp489nbKMMpxWHWExVE8+CddeC5WVcllw443wX/+lk06poTuuQtSysjJ27NjBjBkzuOqqq/ja175GSkrKEe3z+eefx2KxUFpaCsBDDz3Ebbfdxrp166ioqNjnNhdddBHNzc384he/oLS0lJaWFuLxOKeffvqQj6sh6omh9ZlWmh9txjVOqk5DO0L0bemj428dQ9renmvHmm7FVerCO8OLe4KErM7xTmwZNp3oSh0TgViMmnAY06cC19/X19Meiw30cG2KRtkZDhM6hL6tIIFrhs1Gjs1Grt1O9+7Ade4nA9fdt2ybDZtepSiljiXDkKrTZFI+MQUC0NYGzzwjwevs2RAKSci5ahWsXy/hZ36+TLzV3S2BLUj42T9LxXBwuaRRWzQq4WpxsQSs/ZN9mc1SOdvfHiEeh85OuV9RIcs8u6uVUlKk4tbjkf3q716llDoutfW1sa5xHdFElPZQO5UdlayqW8WK6hUkkokDVrKaTWaKUoowm8xUZFfw1YqvMiV7CpMyJ2GzaOPPfQmF4Hvfg/vvl/vZ2fLd7IQJI3teanQ4rkLU73//+1x11VVMmzZtWI+Tnp7ObbfdxlVXXbXXYy+//DJf/epX2blzJ+np6Yd9DA1RT1yJcILOVzsJ14bJujiL0I4QocoQdb+ro/fDXuxj7CT7ksQ7Dzxbu8luwjHWgXeKF+c4J84Sp4S1JU6cxU4sLq1GUcdeczTK9r4+zIDbYqE5Fhvo4doZj0sP11iM5miUylDokANXgHSrdSBU7Y7HybTZmOf3U+h0DlS39k+e5dAP/Uqp44FhyKcup1N+7u2Fjz6S6X9dLgkx+wPXRx+VP087TcLQYBA+/hi2bJFgMzNTtu/tPbzJuA6XzSZBssMhAbHbLbfmZlk+aZJU9brdUvnb2CjnOm2aPEe3Wyp6rVZpd5CRIctdrsGg1u2W4+iXxEopdVQkkgkC4QCVHZVs79jOH9b+ga3tW8nyZFHXXUcgHNjndnaLnUxXJtmebJZMXMLicYuZljsNv0OziX733w9Ll8rbus8HK1bIvJZKHchxFaIOt0QiwRNPPMHll1/OunXrKC8v32ud73znO2zbto1TTz2VP/3pT3g8Hj7/+c9z00034XK59rvvSCRCJDI4O3x3dzeFhYUaop5EkvEkkdoIFrcFe46dWGeMrre72P5v20l0Jci8OFMC1x2hg/ZhBbDn2XGOc2LPteMsceIp90g/1hInjnwHJot+QFEjqykSoTIUwmY24zKbaY5Gqdpd4doRi7EwLY2WaJTmWIztfX30Hkbg6rdYyN7dMiAYj5NhszHb76fA4SDbZiNjd/Vrts1GprYVUEqNNu3tErKmpUng2h/Orl4tFahlZbKspweeeEJaGZx2mlSV9vTAtm0S5Hq9Eoz29Mj69fUSjI4Ei0UC1URCziEnB7KyZBlIuwOvVyqA+0PYujrpRztpkgS0/es2NUk1bUXF4Lomk4S2fr+EttqbVil1kjIMg6aeJp7b+hyPbnqUUCyEzWJjU8smuiN79xA3YaIkrQSX1cVZRWdx5YwrmZozFbvFPgJnf3x4/HG46ip56/T54OmntU+qOrDjJkQ9//zzueGGGw46ZD4YDHLXXXfh9Xr57ne/O6R9b9y4kXnz5hEOh/F6vTz66KN89rOf3e95LF++nHPPPZcbbriBtrY2vvOd73DOOefwwAMP7PcYN954Iz/72c/2Wq4hqtqXpj810fZCG75pPix+C+FdYXrW9xB4MzCk7U12E9YUK45CB77ZvoFwtb+S1ZamQzfU8aV19yRZFpMJp8VC8+6WAnfurnA9KyWFlt0VrlsPM3AFqXLNttvpSyRIsVqZ4/NR4HCQZbeTYrGQY7fLfZuNdJsNs37wVkqdiGIxqZx1OGTIf1+fhJcbNkgAW1oqy/r64PnnoaUFZs2SULKvD7Zvh5UrJeycNk321dcH778voe+YMRJchkJyPxQa2efrcMhztlikP21/4NrZKcFycbHcXC5Z5+OP5bmeffbgum1t8im6pERuLpfst7tbgtz+6t3+lgv6/qGUOk4ZhsGuzl38z8r/4YPGD8j15vJR60fUdtfuta7D4mBG3gwyXZmcO+5cvj7162S6M0fgrEdOVxd84Qsyj6XNBrfdBj/4wUiflTpeHTch6v33389///d/4/P5+PznP8+pp55Kfn4+TqeTzs5ONm/ezFtvvcXf/vY3LrzwQm677TYKCwuHtO9oNEpNTQ2BQICnnnqK++67jxUrVuyzEvUzn/kMK1eupKmpaaAf69NPP82XvvQlent791uNqpWo6kglehME1waJdcZIPSOV0M4Q4V1hqn9RTe/GXtwVbpLhJJHqCEb8wP8dzR4z7jK3tAYoceIscuKa4MJV4sJR5MDi1FYB6vjVsbuHq8VkwmE207K7wvXO+nra43E+k5ZGayxGayzGhz09dMTjmIBDfZOyAJk2GzHDwGexcKrPR/7uClePxUKKxcJ4l0uW2e34LRbtY6yUUp8WiUgAGY1KRW1fn4Sq774rLQFKSiR8DIWgtlbGS1osg71oQyH4xz9k3bIyqTANhaRf7YYNsm5BAYTDsryjQ6pcR1L/JGVut0xu5nJJq4fqaml3cOqpEkC7XPI8WlvldZgyZTC0XbdOKmrnz5c2D06nvHbhMOTlQWHh4LoOh0xWppRSR6Clt4X7193PU5ufIpqIUh+spyO091wfFVkVLBi7gNljZnNB6QXk+fJG4GyPrUgEvvEN+L//k/tf+xo88sjInpM6Ph03ISpI2Pnkk0/y+OOPs3LlSgKBgBzcZKK8vJzzzjuPpUuXMnHixCM6zrnnnsv48eO555579nrs8ssv5+2336aysnJg2ccff0x5eTnbtm1jwhC7DWtPVHU0JULyYcHispCMJwksD1D18yqMiEHa4jTCu8KEd4UJrg1iRA/+X9Wea8eaacWebcczxYN7shtnsfRidRZpP1Y1evTE4zRFozjNZglcYzGqQyHubGigNRbjvLQ02uJxWqJRVnV307B73fBhVLraTCasJhNus5mpXi9jdle0OsxmnCYTpS4X41yugfYDPg1dlVLq6ItGJWzsb98SCklbhA8+kE/BkycPhrOrVsGuXVKFmpU1GM6+/rq0GjjttMF1N26U9gFZWRKAhsNSxdrYKMfpD05HUn8w63LJ69DVJb1py8oGl/dXG8+fLz1t+ytya2slmP1kG4UdOyS8nTJlMAy2WmWZ3y8BtlLqhGUYBjs7d/L8tuf5zTu/oaWvhWhi77ZzBf4CvlrxVc4ddy4LihbgtrlH4GyHXyIBp5wigxUA/v3f4dZbdV5GtafjKkT9tK6uLkKhEBkZGdhsR2948qJFiygsLOTBBx/c67F7772XH/7wh7S0tOD1egH461//yhe/+EV6enoO2Bf1kzREVSOh45UOutd0453uBQPCO8N0vtlJ+1/bMTvNYIFk78HDI4vXgrvcPRCqOoocuEpcgyGrRy+q1ehjGAaB3VWrbouFtt0Vr8saGmiKRjkvPZ22WIyWaJQVXV1UhkKkWq3EDYOew6h6MgEOs5kJLhd5u4NVm8mExWRigtvNJLebLJuNLJtNK12VUup4lkjIp+hoVALXmhrpO+t2S7AZCkmguXy5BK9z5gxWzn74ofSuzc2VlgChkKyzYoW0ICgvl/A3HJbAtrNzsOr0/2fvvsOkqs82jn/PmT6zvdJh6U1QQBRRsaFibNEkGo1KLFGjJiYx+to11miMJRqjJoK9K5YodkRBBKQXkb6wbGf77vTz/nGWRSIoZXdmF+7Pde21szNnzu9ZYBi49znPLxhM6reN2721y7a21g6RCwq2Bq6hEGzaZIe1BxxgH+fz2cG1adrhbH6+fZ9l2eF3To49ciEQ2PZDnbYiSWdZFhWNFXxR+AWfF37OY18/RmOkcZtjtmxYdUK/E7jusOsoyCxIUrVtIxaD887b2oV61lkwebJ9mb8ItPMQtTVcd911TJgwge7du1NXV8eLL77I3XffzdSpUxk/fjzXXnstRUVFPP300wDU19czaNAgDj74YG699VYqKiq48MILGTduHE888cROr6sQVdoLK24R2hQiVhvDP8hPdHOU4Logq65aRcOiBjKOzMAKWwTXB2la2US86cdDVleOC083D45UB/4BfgLDA9t0sjpTnQn4zkTaVtyyiFgWHtOkKRZjQzDIf0pK2BgKMb55pEBZJMJHmzeztLGxJSQtj0Ro3I1OVwPId7vJbw5VXYZB3LLo6/MxLCXFDlybw9g8l4t0p1Ohq4jI3syy7NC1qAiqq+3L/rcEuWvWwKpVdpDbqdPWjtoPPrBnu+6/v91t29Rkz7j99lv7+VuODQZh2TI7yN2ysVlTk/05GRwOO5AOBOxu2Koqe5eXIUO2Bq0bNtgzfocNszcgCwTs55aW2h3Ew4bZ9/n99jkyMuxz+P2aYSuyG6LxKB+t+YhNdZuYUTiDD9d8+L25qkPzhnJy/5M5otcRHN37aExj72jbfOYZOP98+6+ccePg44/VnC+2vT5EveCCC/j4448pLi4mPT2dYcOGcc011zB+/HgAJk6cyLp165g2bVrLc7755huuuOIKZsyYQXZ2Nr/4xS+4/fbbd7oLFRSiSsfUsKKB0mdLsaIWaQelEVwXJLguSPG/i4k3xHGkOIjV/3hHnuk18fb24h9od7N6enjw9vTi7WHfdmW7FP7IXm1zJMJzpaVsCIUYl57eMlLgvc2bmVdXR2ePhzSHg7JIhPJweLc20nIZBjnNnaxu0yRuWfT2+RgeCJDrdpPncpHpdNK5eexApkJXERH5MVtm3AaD9izWLeHszJn2PNoBA7ZuKrZiBcyduzXs3HLs1Kl2Z+6wYXb71pYgeNUqu1s1I8MOehsa7BA3Efx+e+2GBvvzgAFbw9myMvv7HjjQHv0QCNhpSXGx3XW7//72fSkpW8PZzEz7+/Z4FNDKPsOyLN5c8SZ///LvlDaUsnrzamLW1v8bukwXvxr2Ky4eeTGju47u8P/ufOcdOPlk++dZBx4IX32ll7vsAyFqsihElb1JuDRMcF0Q/2A/VswitD5E+WvlbHp8E84MJ4HBAYLr7cA1ujn6o+czfSaeHnYnq6ezh8B+AXx9fS0hq6e7Nr+SfUckHufjqirWBIMcmJpKRfOmWe9UVDCrtpauXi85Lhfl4TCl4TDrvrOJ4a5wNoeu/ubAtYfXy/AtHa7NQWyB12uPHnC7yXQ6MfUvRRERaUtr1tidpNnZ9tcNDfY4gFmz7MBy8OCtgevUqXbgOXjw1kB0wwZ7DqzLBV27bj22stLuxG1rTufWjdM8Hru2lBQ7YK2osEcYDBpkh7YpKXbdRUX29zty5NZjAwF7Dm0goAGM0mFsbtrMeyvf45lFz/D+6ve3eawgo4Bj+xzLxP0nclDXgzpsoHrOOfDss/btP/4R/vY3Ban7OoWobUQhquyrCu8tpH5+PVnHZRGts0cHVH9aTf28egyPgRXaub9KtowK8PTw4O3hxd3Zja+Pr+VrV566WWXfE7MsVjQ2sjEYZKDfT3k0Snk4zNuVlcyoqaGrx0Mnt5vySISScJg5dXW7vZYDSHU6MYDObjdDA4GWTbMilkV3j4d+Ph+dmu/LcrkUuoqISPvQ2Gh3w7pcdpja0AAbN8KXX9pDD4cO3Rq4vv++HcYOHmyPPNhy7IwZdkg6YIB9X329fVxbjzzY0vUaCNhBrMcDo0bZYWtqqj3aoanJ3lBs0CA7fE1NtevLz4feve3vIzVVgawkTHFdMU8vfJpFZYt485s3aYg0tDzWM70nfxzzR3417Fdk+bKSWOXuue02uOkm+/att269LfsmhahtRCGqyFaxhhhNa5owTANfXx+hohDBwiArr1hJaEOIrOOziFZHCRWGaFrdhBX+8b9uDI+Bu5MbR8CBr4+PlANSWjpZvT28djerX92ssu+yLIvK5rmtvb3elg7Xtysr+by6mi4eD109HsrCYYrDYd7dvBmANIeD2t3cSMttGGS7XPRv3jQrz+WiIRajs9vNfikpdGkeLbAldHUodBURkY4kHLYD1S3hbF2dfdn/jBl2cDt0qB1m1tXBJ5/YXbVbQs26OrvrdtYs+/rgHj3s++rrt27c1do8HrvOnBx7VMGWcHX1ajt8Pfxwuys2Lc0+zuGw58127WqPLMjIsINkkV3QEG7gteWv8dv//nabMNXj8PCTfj/h/APO54R+J3SohpiHHoLf/96+/dvfwiOPJLceSZ52G6JWV1fz6quvsnr1av785z+TlZXFvHnzyM/Pp2vXroksZbcoRBXZPXUL66h4swKHz+5EDRYGCa4PsvH+jRADVycXkdII7MTfSM4MZ8t4AFeuC1eOC/9AP75ePjzdPPbmWAEFrSJgb6S1ORIhx+0mFI9TEYnwXmUl02tqyHe56OrxUB6JsCkc5oXSUkLNm15VRCJUR398jMf2BEyTnl5vy6ZZtdEoeS4XI1JT6docuG7pfs1W6CoiInurqiooKbFDTKdzazj7/vt2aDtmzNbAddo0e7OwHj3skLOmxh5fsHSpHcS6XK07a9Y07Zr69bPD2MxMe2Zufb3dDXvAAVsD10gEunWzQ9isLDvElX2WZVnMKZrD7E2zeWLeEywqXdTyWH4gn2vGXsOFIy4k1ZOaxCp33s03w1/+Yt++4go7WJV9T7sMURctWsQxxxxDeno669atY8WKFfTu3Zsbb7yR9evX8/TTTyeqlN2mEFWkdcUaYgQ3BPH19YEFoaIQpc+UUvZiGe4u9qX+oUK7w7VxaeNOn9f0mjgznPiH+PH1bg5Xu3taQlZPNw/OVP0EXuR/xS2r5fL9cDzOp1VVfF5TQ5bL1TJSYFMoxL+Li2mIxRiRmkplczds1W6GrtlOZ0uoWheLkel0cmBqKt08HnLdbnKaH89zu8l2OnHqMkYREdmXxOP2wMZQyA5X58+Hb76xQ860NPu+0lJ47TU7nB071u6CramBxYvt4DY1dWuX7Z7y+8Hns7c479oVhg+3g9icHHs2bKdOcPDB0KWL3RGbk2PPjZW9jmVZzC6azUkvnER5Y3nL/emedC4acRG/O+h3dE/vnsQKf1w0au+Xt3y5/TL7739hwoRkVyWJ1i5D1GOOOYYRI0Zwzz33kJqaysKFC+nduzczZ87krLPOYt26dYkqZbcpRBVJDitmUT6lnMZvG8k+LptwWZjQhhBlL5VR/Um13X2a6iC0IUSsbucuWXakO/B082C6Tdyd3aQckIKvYGs3q6e7B2eaglaRnbW0vp5ZtbUEHA5y3W7KwmE2hUI8XFREbSzGYenpVDbPe10fChHcjc1BDCDT6STX5SJsWaQ7HIxMTaWH10t+c8jaxe2mk8dDvttNwKGudBERkRbRqL2R17RpdvA6ZIjdMVtVBZ99BkuWQF6e3XFaVWXPb1240H6uYez+eALDsAPfPn22Bq4lJZCbC0ceaY8b6NTJnv+am6txAx2MZVlMWzeNFZUreGDWA6yoXNHy2Lie4/jHhH+wX/5+Sazwh4XDcPbZ8OqrdvP1nDnQt2+yq5JEapchanp6OvPmzaNPnz7bhKjr169nwIABBIPBRJWy2xSiirQ/VtwiHoy3zEoNV4ZZc80amtY2kffzPCKlEUIbQ1R9UkVwTRDDbezUfFawO1q9BV483Ty4u7gxfSa+3j58fX14unrwdPXgyndhOtUZJ7IrikMhVjQ24jQM0p1OyiMRikIhHty4kc3RKMdkZrK5efbrsoYGKvdgtEC+290SuB7YHLjmud1kOhzkud0tAWyaw9Gh5niJiIgkhGXZs2F9PrvDtbISvvgCvv7ansealWWHrcXF8NZb9rEFBfZxlZV2cLur/H47cN0SrJaU2LfHjbPnwObn219nZ2ujrXYmbsV5Z8U7nPX6WdvMTj2p/0ncftTtDMsflsTqdiwctvP8mTNh4EB7JHJWx9svS3ZTuwxR8/PzmTp1KgcccMA2IeoHH3zABRdcwIYNGxJVym5TiCrScUWqIwTXBnGkOnDnuwkVhWha2cTqq1cTKYuQ89McwsV2h2vTyibiwZ3skjPB9NndrIHBATxdPLi7unHnuvH28uLu6sbTxYMz06mARmQ31EejbAqHcRkGfoeD8nCYonCY+zZsoCwc5visLCqjUUrDYebW1VEcDuMAdnUbLa9pktfc4ZrqcDA6NZWezQFrqsNBtstFX6+XTh4PmU69nkVERH6UZdnXSS9YYHeXpqTYgeumTfDUU1BdbV9LXVpqB6VlZbve7ZqRAYMHQ/fu9uzWyko7aD3iiK1BrDpbE64+XM9tn93G6qrVvPHNG8StOAYGw/KH8fRPn26XYWpxsT2dorzc3jtu1Sq7iVr2fu0yRP3Nb35DeXk5L7/8MllZWSxatAiHw8Gpp57K4YcfzgMPPJCoUnabQlSRfUPdgjpqPq/Bme3Ek++xA9fVTRT+tRArZJE6OpXwpjCh4tBOJzWm18SZ7cT0mvgKfASGbQ1cPV3srlZ3FzcOny4/Ftld4Xic8kgEB+B3OCgNh9nQ3OFaEg4zPjOTikiE0kiEObW1FDWHs5Fd/OeQyzBaAtcUh4ODmjtcc10uvKZJisNBb5+PLm43uepyFRER2TnV1fYc18ZGO70qKYH16+HZZ+3H9tvPvq+kxA5Ld4Zp2kGrYdjXaB9+uN0pW1Bgjy4YPFgzW9vYt5XfctOnN/HS0pcAMDC4cMSF3DTuJrqldUtyddu69164+mr79vXXw+23J7ceSYx2GaLW1tZywgknsHTpUurq6ujSpQslJSWMGTOGd999l0AgkKhSdptCVBGJNcVagk4rZlH6Uimb39uMt4cXbw+vHbiuaaLsuTIAnNlOopU7fxmTM9OJu4sbZ7oT02/i6+sjMDCAu7O75cPT2YMjoLBVZE9YlkV1NIoFeEyTsubA9Z9FRZSEwxyRkdESuH5VW8uGUAiPYRDajX86OQ0Dl2HgM00G+v108XjIcbnwGgZu06TA66W3z0eOy0W2y0Wm00mqglcREZEdW7cOZs+2N8xyOmHDBrt18JVXoL7enq1aVASxneh46NTJ7lotKLA34UpLszfHGjnS3jxLIwP2WNyKc8f0O7h35r3Uhe0NzjwOD78/6PfcNO4mAu72kwdddBH8+9927v722/CTnyS7Imlr7TJE3eKTTz5h3rx5xONxRowYwTHHHJPoEnabQlQR2RmWZRGtiRIuCRMYGCAWjBEuDlP8n2KqPqjC18+Hp4vd4RpcF6T2y9pdXsOR4mgJVR1pDpypTnz9fPj6+LYGrp3cuLJdCmJEWkEoHicSj+M0DMoiETaGQjyxaRObwmEOTU+nMhKhMhplVk0Nq4JB0hwOYpZFw25soAVbN9HaEqq6DIOoZdHN42FQIECm00mm00nGd47Jav7sM0297kVERGIxe0TAf/8Ln39uh6OmCWvXwrffwooVP34Ovx/694dQyO5k/dnP7A25+ve3A1fZJZZlMXPDTK775Dqmr58OgM/p4x8T/sEFIy5IcnVb/fa38Oij9h+ZOXPs327Ze7XrELUjU4gqIq0tHonTsKSBcGmYtIPTCBeFCW0KUfyfYmqm1+Af4MeV67LntW60Q9ddYmKPDehih6rONCfOTDtw9fby4u7UHLjmuzFd+im7SGuwLIuwZeExTZpiMYrDYZ4oLmZjMMjxWVlsjkapiET4sKqKeXV15LvdZDRvsLU5EtmtbtfvchoGTsMg0+mkt9dLZnO4Wh2NkuZwMNjvJ8/tJr254zXD6STd6STN6STd4SCgLlgREdkX1NbCsmV2sLpunR2uvvyyPcc1NRU2b/7hjbHS0+2QddQoe1eioUPtGa/5+Qn7Fjoqy7KYvGAy5791fst9J/U/iYcmPESvjF7JK6xZOAxHH23voZaSYjc1KwLae7XLEPWhhx7afhGGgdfrpW/fvhx++OE4HO33ElWFqCKSTLHGGJXvVhLeFCbr+Cw7WC0OUTKphJqZNfj7+3FluQiX2EFsdPOu7YZq+ky8vb32fNbO9kgBV44LX1+ffV++G1e+C2e6NtURaSsxy+LdykoKg0EOSU+nPhZjczTKe5WVTKuupqfXSz+fj6polMpIhPerqgDIcjqpiUZ3eUOt7TGx5766TJNuzaMH0h0OTMMgGI/T2e1mgN9vB68OR8uM2EyXixSHg1SHgxSHA3/zc0RERDqkSMQOVr/4Av7zH3sOa16e3cFaVrbj57lc9nFnnmnvVDR8uL3lu9uduNo7iLmb5nL1h1fzeeHnRONRfE4f1x56Ldcceg1uR3J/vVauhAED7L3Oxo2DadOSWo60oXYZohYUFFBeXk5jYyOZmZn2LLLqavx+PykpKZSVldG7d28+/fRTunfvnqiydolCVBHpKKL1UcpeLCO4IUjOCTl2sFocovTpUurm1uHr68MRcBAqDhEpjWBFd+HtwAGOgANfX19LF6szzYkr14W3oLm7Nb/5/iwFriJtxbIsNkejVEej9PJ6MYH6WIzPqqv5tLqaHJeLAX4/myMRNkejPFJUREMsxhEZGYQti5polJVNTRSHw3iaxwW0Rgj7XW7DIKs5XE1xOKiPxXAZBn18PnJdLlIdDhyGQSgeJ8/loqfX23JsqtO59XbzZ40qEBGRdqG62g5Wp0+3A9PNm2HJEjt5217MYpp2S+PBB8P48XbH6siRkJ2d8NLbo2Xly7js3cuYtm4aAF1Tu/LBOR8wOHdwUuu65hq45x779ief2A3HsvdplyHqCy+8wOOPP86///1v+vTpA8CqVau4+OKL+c1vfsPYsWM588wz6dSpE6+++mqiytolClFFZG9hxS0M0w4iItURNj26ifCmMNknZhMqDhEuCVP2fBkNixvw9vJiOA3CpWFidbsYsRh24Ort48XT2YMr34Uj1YEr22V3vXbxtASurmwXhkPhiEgiNcRilIfDuEyTLm43TfE4Nc2Ba2kkwglZWcSBmmiU6c3hbGe3m6GBADWxGDXRKJ9UVRED8lwugvE49bEYuzcJ9scZ2J2yPoeDLm53S8haFY1iAP18Pjq53QSaw9naaJQcl4u+Ph8pzaMKfKZJmtNJwOEgYJrqmhURkdazbh288ILdwerxwMKFsGgR1NRs//hAwG53POssGD0aRoyw79sHWZbFxCkTeXrR04A9K/X+4+7nNyN/k9QfoF56KfzrX9Czp/1bqSho79MuQ9Q+ffrw2muvsf/++29z//z58zn99NNZs2YNM2fO5PTTT6e4uDhRZe0Shagisq+xYhZW1ML02PNSg5uCbHxgI5HSCLmn5xIuDRMuDVP2YhmNSxvxFngx3AaR0gjR6l0bJ4BhjxTw9fG1dLOaKSauTBfePl683by48l124Jrj0gxXkXYiEo9TF4uR5nDgNE0sy2J5QwMza2vxmyZDUlKoj8Woj8V4ZONGyiIRTsjOxm0Y1MVizK+vZ3p1NdkuF0MCAepjMepiMZY0NBC1LHymSdNubtC1K0zAbZp2CNscrtbGYsQti94+H109HgKmidMw2ByNkuV0MigQsMPZ5vvTm+fLfjeg9ah7VkRk32ZZ8MYbMHUq5Oba3arz58OqVd8/1jTtztaBA+GXv4TjjoMePeyt4vcBlmXxt5l/49VlrzJ702wAThlwCv8++d/k+HOSUlN9vd04vHatva/YK68kpQxpQ+0yRPX7/UyfPp1Ro0Ztc/+cOXMYN24cjY2NrFu3jqFDh1JfX5+osnaJQlQRkR2Lh+NYMQuHz55tHSoJUfRgEaHSEHmn520NXF9o7nDt48X0mIRLw0QrdzFwBQyPgbeHF1eeC3eeG9Nv4kx14i3w4unuwZXrwp3rxpXnUugq0gGVhELUxmJ093jwmCaNsRjLGxr4pKYGn2lyQEoKdbEYDbEYz5aWUhwOc1h6On6Hg4ZYjG8bG5leU0PA4WBoczjbEIuxorGRsGXhNU2CCQhnwd7sK9flaglXG+NxIpZFT4+HHl4vgebZsiXhMOkOBwekphJo7rK1LAu/aZLbvBnYlvsDponT1N9rIiId1pdfwuTJUFcHTU32NvBFRd8/rksXO8UbMgTOOce+vZeHqnErzgOzHuD/Pvo/IvEIAVeAl3/+Mif0OyEp9Xz0kT2FAeChh+CKK5JShrSRdhmi/uQnP6GkpIR///vfHHDAAYDdhXrRRRfRqVMn3nnnHd5++22uu+46Fi9enKiydolCVBGR1vG/Ha6h8hCbHtlEuCxMzsk5REojLYFr/aJ6fH18mF47cI1URNida4WdGU47UM114fA57I20Crz4evta7lfoKrL3q4pEqIvFyHG5WrpcVzc1Ma26GhMYmZpKQzxOQyzGy2VlFIZCjE5NJdPloj4WY01TEx9WVeE1TUakpNDQPMJgWUMDjfE4KQ4HkXicUAL+mW0AGc2zYwMOB8FYjJBl0c3joVfzfFmPYbA+FCLV4eCgtLSWY2OWhdMwyHe5yGsegbAloPWZpsYbiIgkw/LlcNNNdqdqVpb9Ofo/zQa5uXDEEfbH6NH2bNW99O/sGYUzGDd5HDHLHil20+E3cfMRN2Maif13umVB//5283BaGqxZo3G2e5N2GaKWlJRwzjnn8PHHH+NyuQCIRqMcffTRPPPMM+Tn5/Ppp58SiUQ49thjE1XWLlGIKiKSeJZlYcUsTKf9j6XI5gibHt9EuDRMzik5RMojRMojlDxdQv28evyD/LiyXITLwrvd5QrNoWuuC9NvYrpNvL28+Pr77KA112V3wG65nePCdCt0FdmXhZrDVL9p4nM4iMbjFIVCTK+pIWJZjGgea9AQj/PfykpWNjYyLCWF3OZwdkMoxLubN2MCB6el0dB87OL6empiMdIdDizsObatvQHY9vibxxEEHA4ilkVTLEZnj4fezZ2zAYeDVY2NBBwODk5La+mSjcTjxICubjddPJ6Wc2wJaN2GofEGIiI7q7HR7lC9/nqYbV/eTiSy7TEejz1TdcIEOOYYyMxMfJ1t6KUlL/GnD/5EUZ3dpfuLIb9g0imT8Lv8Ca1j/XoYN87+/MtfwvPPJ3R5aUPtMkTd4ptvvuHbb7/FsiwGDhzIgAEDEl3CblOIKiLS/lmW1fIf9GhdlIopFYRKQuT8xA5cw+VhSiaVUDurlsB+Adx5biLlEUKbQjR927Tb6zoznDhSHBhuA093D/7+flw5dsDqyna1dLhuCV0dAYeCBBHZKZHmsQOu5pmz1dEoM2pqqI/FGL4lnI3F+KS6muWNjfTz+ejsdtMQi1ESDvNmRQVR4LD0dDucbZ45WxaJkOF04jIM6mMxGhMw3sABLYFqHGiMxchzu+nz3XC2qQmfaXJgaio5zWMQIpZFJB6ni8dD9+2Es1s2ExMR2WtZlh2qzp8Pn34KL78MS5Zse4xpQq9ecNBBcPnlMGbMXtGlalkWkxZM4pJ3LiESjzAgewAfn/sxXdO6JrSO2bPhkEMgFrN/+X/+84QuL22kXYeoHZlCVBGRvVesKUbNFzVEq6JkHJVhd7iWRSieVEzNFzUEhgbwdPPYgeuGELVf1tpPNNmt8QKG28D0mLjyXPgKfC3hquE08PTw4Onq2SZ0dWVrxICItL7v/uApFIsxr66OzdEogwIBGpo3BJtZW8vShga6ud1083ppiMWoikR4pbycpnicIzMzW8LZZQ0NbAiFyHQ68TkcLQFvOAH/7fAYBgGHA6dhEIzHyXA66e3zETBNAg4HJeEwHtNkiN9PtstFisPRMrYgz+Ui1+0m1eHY+tE8KkHhrIi0W8uW2QM7166F99+3xwF8V/fucPLJcMopdhul252cOlvJZ+s+48QXTqQ+XI/f5Wf6xOmM7DIyoTXceCPcfjv4fLBunb0PmHRs7TZE3bhxI2+99RaFhYWEw+FtHvv73/+eyFJ2i0JUEREBexOtxm8aiVZHST80ncjm5pECk0uo/qyawH4BvN29RCoiBAuDVL5ZCYCnm4dweRgrtHtvv2bAxNN5a7hqRS1cnVz4B/hx57m3DV1zXDjTnep2FZGki1sWK5uaqAiH6eH10tQ8c3ZeXR2LGhrIcbno0RzO1sdivFBaSmM8zmHp6YQsi4bmTcVWB4NkOJ2kO50tx9bF2n64QcA0SW3u2A3G42Q6nQzw+1vC1opIBJ9pMigQIL85iPWaJimmSbbLRZrTSarDQZrTiVubgYlIW1q61N71aP58CIftztUtnE67jfIPf4DjjwevN3l17oGbP72Zv0z/CwB+l59nfvoMpw06LWHrB4OQnm7/8h5+OHz2WcKWljbSLkPUjz/+mJNPPpmCggJWrFjB0KFDWbduHZZlMWLECD755JNElbLbFKKKiMiusuKW3dW6OUJgUADLsog1xCh9tpTqT6sJDAngLWgOXNcEKfpnEViQNjaNaEWUSEXE3kxrNxhOoyVQtWIWziwngSEB3J3cW0cNfCd0deW4cHgdrfwrICLSdr5taKAyGqWX10u4OXCdW1fH7NpaclwuBgUCLd2w/ykupi4W4+iMDGgeYbC0oYElDQ1kOZ10crupaw5mq/53I5dWYgIOwyDX5bID1uZO15polByXi6GBQEvoGmreqKybx0OOy0XqljDW4SDd6cRrmvpBmYjsWFMTfPwxvPUWTJ687SzVtLStHaqnnALN+9Z0FNPXT+eOz+/gg9UfAPDwhIe5bPRlCVv/D3+ABx4AhwMWL4ZBgxK2tLSBdhmijh49muOPP56//OUvpKamsnDhQvLy8jj77LM5/vjjufTSSxNVym5TiCoiIm3NsizijXEcga1hZtW0Kmqm1+Dr68PT3dMSuK6/ez3xpji5p+XaYWt5hMYVjcTqdr8zy5HiwHAaONIc+Af6cefbm2c50+yNttxdtgaw7lw3zkwnhqn/xItIxxa3rJZL+wHm1NRQEY0y0O8nDtRFo8ytq+OT6moynU72T0lpCVyfLSmhOhpldFoaBlAXi7E2GGRDKITbMHAYBk1tMG/WaRikNweqYcvCAPr6fHTzeEh3OvEYBrWxGPluN0P8ftKdTtKczpbnpDePKzAVxIrs/b75Bv7xD3uu6ttvw8aNWx/zeGDiRDj/fDjwwA4zQzUaj3Ll1Ct5ZM4jAPxxzB+579j7ErJ2PA6nnmr/Uh5/PLz3XkKWlTbSLkPU1NRUFixYQJ8+fcjMzOSLL75gyJAhLFy4kFNOOYV169YlqpTdphBVRETau4blDTQub8TT3YO7s9sOXFcHWfeXdcRqY+T9Ko9opd3hWjOzhnBRGEeKg3gwjhXdjX8WGGB6TTw9PC0jBcyAiSPgwNvTi6e7Z5vQ1ZXjwvSre0pE9m7x5q7YqGWR6XIRjcepi8V4s6KColCIEampOAyDuuaxBu9v3ky608mBqakt4ew7lZXURKP099s7UNdFo1RFo626AZgBpDZvzBWMx0lzOBgcCNghq8NBUzyO2zDo0xzOZrpcZDqdZDidZDZ/eB26gkGkQ4nHYeZMe+OphQu3fWzoUDjuOLjmGsjNTU59u8CyLI586kg+W29fU3/nUXdy7WHXJmTtlSthyBC7wfe//4UTTkjIstIG2mWI2qlTJz755BMGDx7MkCFDuOuuuzj55JNZuHAhY8eOpb6+PlGl7DaFqCIisjcJl4cJbQzhynbh6e4hWhMluDbI+tvWEy4P0/nXnYlU2h2uFW9X0PRNE+6ubhw+B5GKCNHq3bvc1fSaLWMETJ+J4Tbw9vTi6+PbZrzAltDVme3EdGqOoIjsm767+dfmSISlDQ1ELYu+Ph+1sRg10SjPlJRQGApxUFoaPtOkJhplWWMjn1RV4Xc4GOD3UxONUhuNsj4UItqK/w30GAaZLldLnb29Xnp5vWQ6nfgdDhpiMTq73QwOBLYNYF0uUtUJK5I8lmXPTl261N6U6rXX7IGfW5x2Glx8MYwf3667U2uDtQz71zDW16wH4J5j7uHPY/+ckLX/9Cf4+98hEICKig47Znaf1y5D1FNPPZWf/OQnXHTRRVx99dW88cYbTJw4kddff53MzEw++uijRJWy2xSiiojIvsqyLKLVUQzTwJnuBCBSHWHDfRsIbQqRf3Z+S4dr2Ytl1M6qxdffh6eTPX4gXB4mXBT+kVV2zJnptEcNuAw8XT34+vm2znTNcuHK2xq6unJcONIc6nYVEdmOjcEgFZEIndxujOZ5rEvq63mrshKnYTA2PZ2aaJSaWIyXy8rYGAoxPCUFj2lSFYlQHA6zKbz7f59/lwEtoWqaw0F9LEaWy8VBaWlku1xkN2/ole1y0d3rJa95lmyqQ3/Hi7S66mr485/hySftbtUtBg2CCy6ASy+F5s749iYej/OX6X/h1s9uBRLXkfrttzBwoJ1Hn3suPPVUmy8pbaBdhqhr1qyhvr6eYcOG0djYyFVXXcUXX3xB3759uf/+++nZs2eiStltClFFRER23ne7p2LBGBVvVhDeFCbn1JyWDtfSZ0upnlaNf5AfX2+fHbiWhKn9stY+iQHszpQBp4HhtTfW8vW2A1dnphPi4Mp14enmwZXtwpnhxJnp3Po53YnpUteriMiONMVirA8GiVgWPb1eqqJRqiIRXikrY0VTE8NTUgg4HFRFo6xobGTq5s24DIOBfj9V0SjV0Sil4TB7MpTAZRgYgN/hYL9AoCVwjVgWXtNkgN9Pgddr3+9ykdP8uNPU3+8iP6quDj7/HKZOtTekqquz73e54Le/hauugm7dklrijtz22W3cNO0mAC484EKeOPmJNl/z7LPh+echPd2+xL8DTEGQ/9EuQ9S9gUJUERGRthePxKmfX0+kMkLWsVlEqiJEKuzAdfMHmwkMDuDv7ydSESFUHKL8xXIAPD09RCujxOp3f2MtsDfXcmY4sWIWjhQHvr72mAFnhhMzYOJMceLu7MaV5doawGY4caQ5cKY6MRzqjhIR+SErGhtZ29REZ7cbt2lSFY2yuL6eF8rKiAOHpqdTGYmwORrl06oqKqNRMp1OmuJxgnswEzbH5SLX5SLP5cLC3pxrsN/P4ECAPLebHKeTXLebTm43GU6nRg2I1Nba16z/+99b73M44Mwz4YYb7DbMdubQJw9lxoYZAPz1mL9y9dir23S9WMzej2v+fLjkEnj00TZdTtpAuwxRe/fuzZw5c8jOzt7m/urqakaMGMGaNWsSVcpuU4gqIiLSvliWRaTcDlkDgwMAxJpilL9Szub3N+Pr68M/0E+k3B4psOHeDVghi+wTs4nWRYlWRQmuCxKr3bPg9bvMgIkzzYnpNbHiFq4cF96eXpxpdtCKZY8ncHdy2wFs8/3/+1kdsSIitkg8jgW4TZPGWIxvGxt5q6KChnickampLYHrq2VlrAkG6efz4TJNKiMRysJhamK7/ne80zDIaQ5cDewLIwYHAgwJBMhr7m7Ncbno7PGQ73KR4nS29rct0n6sXAmvv253p06btvX+o46CRx5pV2FqU6SJQycdyrzieRgYTDlzCicPOLlN1/z8czj8cDBN+/Yhh7TpctLK2mWIapomJSUl5OXlbXN/aWkpPXr0IBQKJaqU3aYQVUREpOOz4hYYtIwaaPy2kYalDfas1T4+otVRwmVh1t64lmhVlE7ndyLeECdaHWXzB5up/7oeTw8P7s5uolVRotVRImWRVq/T9JkYDgPDY8+BdWXbs15Ntx2uuvLssQTOVCeOVEdLJ+w2t9McOAIODFPdVCKyb6qLRplbV0dlJMJAv5+y5mD1udJSvmlspL/fj9s0KQ+HKQyF2LCb/y9NcTjo5HbjMgychsHQQID9AgE6u93kud3kNc91zXG5cKjDVTqyefPslss5c+yvDQN++Uu48cZ2E6ZalsUl71zC4/Mex+/yM33idEZ2Gdmma06YYGfMWVlQWdmmS0kra1ch6ltvvQXYG0s99dRTpKentzwWi8X4+OOP+fDDD1mxYkVbl7LHFKKKiIhIPBTHilo4Ag4ArJhF2ctlRCojZJ+SDWGI1kap/G8lle9W4u/rJ21MGrHaGNHaKBvus7thM4/LxIpYxGpjBNcHiZRHwAG0XlNsC8Nj2CFsqt3pGg/HMb0m3p5eeyOuVDtsNQOmPaYgzdly7DahbIpD4wpEZK8Vjccpi0SojETIcrkoC4cpj0R4vrSUxQ0NDPD78ZkmZZEIa5qaWNbYuMujux1AXvPIAAd2x+t+KSkMCwTo6vHQ1eOhm8dDvtutsFXar7IyuPJKWLAAli+37zMM+PnP4f77oUuXZFYHQCQW4cQXTuSD1R+Q4k5h6aVL6ZHRo83W++wzOOII+/aLL8IZZ7TZUtLK2lWIajYP7zYMg/9dzuVy0atXL+677z5OPPHEnT7no48+yqOPPsq6desAGDJkCDfddBMTJkzY7vHTpk3jyCOP/N79y5cvZ+Au/KREIaqIiIi0Bitmgbm1GzZYGKRxeSOuXBeB/QLE6uzAdd2t64iUR8g/Ox8MiNXGqPqkis3vbsbTw0Pa6DT72Loo1R9XY0Ut3J3dxINxorXRNglkzYCJw2+PJXCkOfD28Nodr6kOiIMj1YG7k7sltN0mjP2f26ZTIwtEpGOKWRYVkQi10Sid3W6Kw2FKwmGeKilhYUMDA5pHChSHQqwJBlnZ1LTLa3R1u1tCVdMwSHE4OOB/Ale/w9EG353ILpg/H269Fd580/7a5YKbb7ZnqXq9SS1tQ80GCh4sIGbF6JralWWXLSPN03ZZzjHHwMcf258//LDNlpFW1q5C1C0KCgqYM2cOOTk5e3yut99+G4fDQd++fQF46qmnuPfee5k/fz5Dhgz53vFbQtQVK1Zs8wuSm5uLYxfedBSiioiISHvV+G0j0ZoogaEBHD4HlmVRN7uOircrcOW4yBiX0RLOrr9tPeHSMHm/yMP0mcRqY9R9XUfN5zW4cl34+vuI1caI1cUIFgbZo220f4DhNHCkOXBl2YGr6TWxYhbODCfeAu/W8QQpDpzpzpawtmVUwXdua4asiLRX8ebAtSoaJdXhoCQcpjgc5umSEpY0NNDf78cEipoD1/LIzo+IcQKpTiejU1NbAtd0p5MCr5chfj89vF68ClolES69FP71r61fFxTAfffBqafaXapJcvOnN3PXF3cRiUc4vu/xvP3Lt3GabTPDeP166NsXolH48ks4+OA2WUZaWbsMUdtaVlYW9957LxdccMH3HtsSolZVVZGRkbHbayhEFRERkb2VFbeI1cewYhauTFfL/ZXvVRIpi5BxdAam1w5cq7+opuy5Mlx5LnJOzCFaGyVWF2PDAxsIF4fJnpCN6TftEHat3WVreA2cKU6idVGsUOv/E9TwGDjTnOAA02Xa3bC59mgC02+CAa4cF+489/ZHFXzntulRICsiydEUi7GsoYGN4TBd3G42hkIUhUI8U1rKqqYmuns8NMXjFIVCNMR37idc+S4XXTweQvE4PTweJmRn08PjoYfXS0+vlyyns+XKCJE98s478O23dni6aZN93+jRMGkSDB6clJIsy2LWxlkc/fTRNEWbuGTkJfzzJ/9ssz/zF1wATz4Jxx4L77/fJktIK2s3IepDDz2008f+7ne/2601YrEYr7zyCueddx7z589n8HZemFtC1F69ehEMBhk8eDA33HDDdi/x/65QKLTNhle1tbV0795dIaqIiIjITopURWj6tgnDZZA6IhWAeDjOxoc20rSqiewTs3FluojWRan9qpaSJ0twZjnJ/WluS+ds+avlRDdH8Q/xY7rtcDZSESFaHW2boh1gekw7cN0yqoDm+zq5cee7f3BUwTYjC7ymwgkRaXWWZbGmqYnXKyrYHInQ3++nqHljrNfKy6mMRvEYBqGd+C+/CXT1eBjs99PT66Wz202aw8GBaWkM9PvJcbn095jsmvp6+Otf4e677bZMhwPuuAOuusq+nQRTvpnCaS+dhoXFwxMe5rLRl7XJOitWwKBBYFnwxht2I660b+0mRC0oKNip4wzDYM2aNbt07sWLFzNmzBiCwSApKSk8//zznHDCCds9dsWKFUyfPp2RI0cSCoV45pln+Ne//sW0adM4/PDDd7jGLbfcwq233vq9+xWiioiIiCROtCZKtCZqz1lt3tArVBRi8/ubMb0mWROyWgLXjX/fSMPSBrJPysbT1UOsNkb94npKJpfgTHOSdUJWy6iCuq/riNXFcKQ7sCIW8cbWn1tgOI2WQNWKWThSHHh7bR1VYHpMHCkOe4Ov9K3jCZzpTnuEQXpzKJumGbIisvOaYjEMoCEepzAYZHp1NS+WlxONx+nl81EYDLI+GKR0J0YHpDgc9PF6cZsm2S4Xh6WlMSotjd7NnawuU383yQ784hfwyitbvz74YHjqKejfPynlnPHKGby87GWcppNFlyxiUO6gNlmna1e7EXfQIFi2rE2WkFbUbkLUthQOhyksLKS6uprXXnuNf//733z22Wfb7UTdnpNOOgnDMHjrrbd2eIw6UUVERET2HvFofJsgsn5RPaFNIVL2S8HT1YMVs6hfWk/Rw0UYToPO53VuGVVQ9I8i6hfXkzk+E29Prz2qYH2Qzf/djOExSNkvhWidfWykLIIVbf1/ZpteE8Nl4Mxy4u7ktoPWNCfxcBxnpj1H1pXhagleW0LYLYFsmgOHV7MRRWSreXV1zKqpIc/tpjYWozAY5POaGqZVV+MyDMKWxQ/9bWYCbtOkk9vN+MxM+vh89PZ66e310sfnI8Pl+oFnyz5h3jxYsAD+8AeorQWPB264Aa67DhIcwH+27jOOeOoIAPbL24/ZF83G62z9za+mTIHTTrO7URcuhGHDWn0JaUXtPkTdsmxrXhJwzDHH0KdPHx577LGdOv6OO+7g2WefZfny5Tu9hmaiioiIiMgW8XCcUFGIeChOYGCg5f7KqZU0LGkg7eA0fAU+onVRGr9ppPDOQgC6Xt61pXO29JlSGpc3kjo61e6crYsRLgvTsKgBDDs4jTe1Yoes2TyWoIu7JVzdwt3Nja+nryV4daQ6cGY4W47bEso6Ag5d2iuyl7Msi4ZYDKdhsC4YZE0wyH0bNrCyqYm+Ph9l4TBrgkGafmQua4bTydBAgAE+X8uogEPS0+nn86mDdV+zYQP8+tf29vUA++8Pr79ub0CVQFNXTeXcN86lvLGcK0ZfwUMTdn4M5a444wx4+WW7Gfell9pkCWkl7TZEffrpp7n33ntZuXIlAP379+fPf/4z55xzzh6f++ijj6Z79+5Mnjx5p47/2c9+xubNm/nkk092eg2FqCIiIiLSmizLIh6KYxhGy4ZW0fooNZ/VEA/Hyf1pLvFInGhNlJLJJdR8UUPamDQCAwNEa6ME1wfZcN8GrKhF/ln5xGpjRGui1M2rI1IawZFmd57GamOtV7QBps/Ene+2Q9YMJ/GmOM4MJ74BPlw5rpb7XZnNtzOdLfeZPs2JFdkbWJbFnNpa3qiooDEeJ8PpZHVTE2uCQWbV1v5gB6sD6O3zMcDvx2eaDPb7GZeRwbCUFLLVvbr3WrsWxo6FkhK7TTMzE1580d6FKYHeW/keJzxvj4N888w3OXnAya2+xuLFdgeqYcCcOTByZKsvIa2kXYaof//737nxxhu5/PLLGTt2LJZlMWPGDB555BFuv/12/vCHP+z0ua677jomTJhA9+7dqaur48UXX+Tuu+9m6tSpjB8/nmuvvZaioiKefvppAB544AF69erFkCFDCIfDPPvss9x999289tprnHbaaTu9rkJUEREREekIQiUhwsVhXLkuvN28WHGLUHGITY9sIlIdodPZnVpmzVa8UUHtV7X4B/vx9fERq4kRLg9T9X4VAN4Cb8uxtEYW+51u2C2Bq+E0wABPFw++Pr6WwPW74euW25oNK9K+WZbFpnCYhXV1ZLlcrA0GWdHYyNuVlcyrr8dpGER/IIro5HbT0+Mh3enkkPR0xmdmMiQQIN3p3OFzpAMJh+GTT+CWW+Crr+xL+m+5xb7EP4E/YLty6pU8+NWD+Jw+Vl6xkq5pXVt9jYMOgtmzYehQO1SV9qldhqgFBQXceuutnHvuudvc/9RTT3HLLbewdu3anT7XBRdcwMcff0xxcTHp6ekMGzaMa665hvHjxwMwceJE1q1bx7Rp0wC45557ePzxxykqKsLn8zFkyBCuvfbaHW5EtSMKUUVERERkX2DFLSKVEaLVUfz9/PZ9lkXVR1VUT6/G19eHf4CfaHWUcHGY9bevJ1YfI/9X+faogqootXNqCa0P4chwYDgMotWtE8KaARPDaeDKceHr7cOZ5cSV5cKyLNx5bjw9Pbhz3biyXS2POTOdmC6FryLJFo3HaYzFqI3FWNHUxOL6eu4uLKQyGqWL203hd/Yk+V/dPB4CpskAv58TsrMZmZLC0EAAb5J2e5c9FArBFVfAE0/YXx96KLz3HqSkJGT515e9zumvnA7A6K6jmXn+TBxm6/5Z+tvf4M9/tm+vWJG0/bTkR7TLENXr9bJkyRL69u27zf0rV65kv/32IxgMJqqU3aYQVURERERk50Rro4TLwjgCDjydPViWRWRzhKIHigiXhck9I5d4fZxoVZSKdyqomV6Dt48Xf38/0aoo0aooNZ/XAOBIcRCr37ME1pHmsAPVLCfxUBxnmhP/YD/uTu6W+105LjuAzXHhynXhSNX8V5FEsCwLwzCoj0ZZ1tjIvzZt4sPNm0l1OqmNRikKh7f7PAfQ3esl1+XiyIwMJmRlsX9Kija06kiGD4dFi+zbQ4bAG29Av34JWfqc18/hlWWvEIqFuO3I27jh8Bta9fzxOBxwgP3tnX8+/Oc/rXp6aSXtMkQdOnQoZ511Ftddd902999+++289NJLLO4Avc0KUUVEREREEsOKWzStaiKyOULagWlYlkW0Okrl25VsnroZT08PKfulEN0cJVIRYcN9G4gH42QckUGsPkakMkJ4U5h4cPc35jJc9qxaM2Di7+e3RxDkunCkOHCkOPD28uLp7MGV67KD1xwXplsdryKtrToSYXpNDX8tLGRTKEQfn49FDQ2URyLbPb7A6yVgmhyYlsapOTmMTE2li9utH4q0R6EQXH45vPOOPSs1PR1eeQWarzRua08vfJrzppyHaZjMvnA2I7u07vDSL7+EQw4BtxuKiiAnp1VPL62gXYaor732GmeccQbHHHMMY8eOxTAMvvjiCz7++GNefvllfvrTnyaqlN2mEFVEREREpP3a8t+bLUFJ48pG6ubV4cp04e3lJbI5QqQiwrpb1hGtipL7s1zijXEilRFq59QSXBXETDEhDvHG3QtfDZeBu7Pb7nDNdeEIODBcBt6eXnx9fbjz3bjz3bjyXLjz3C0bionIrtkye/XOdev4qLqaXJeLonCYdTu4yjXf5aKvz8d+gQAn5+RwaHo6qZqz2n4UF8PPfw4zZoDDAZMnw69+lZClz3j1DF5e+jJDcoew8JKFrX5Z/4EHwty5cPvtcP31rXpqaQXtKkRdsGAB+++/PwBff/01999/P8uXL8eyLAYPHsyf/vQnDjjggLYuo1UoRBURERER2TvFGmKEikOYbhNvDy+xxhjhijDrb15PuDRMzuk5xOvjRCoiVH1cRe2Xtbg7uXFmO4mUR4hURnZr5qsjzYG7kx2sOlLt+bHeAi+BwQE7aP1O6OpI0XgBkR9TFYnwWnk5DxcVUReL4TNNvmls/N7L0wCGBAKMSEmhr8/HKTk5DAkEcOg1ljzhMBx8MMyfb3/9+ONw0UVtvuyXG77k0EmHErfi3HPMPfx57J9b9fy33w433gheL9TX2xmxtB/tKkQ1TZMDDjiACy+8kLPOOov09PS2XrLNKEQVERERERGwxw1YEaulkzQei1P8WDFN65vIPi7bHilQHqHyv5VUfVSFu6sbXy8f4dIw4bIw4aLtz3j8IabXxJXv2hq4ms2B65CAHbZ23vrhTFGHncgWTbEYC+rr+e2337K8sZFsl4tN25mzmuJwMDo1lYPS0jgoLY1x6emar5poX30Fhx0GW0Y1PPgg/O53bbpkKBqi5wM9KW0oJeAKsPKKlXRO7dxq51+1auuY10mTYOLEVju1tIJ2FaJ++eWXPPnkk7z88stEIhFOP/10zj//fI488si2XrrVKUQVEREREZE9ZVkWFW9WEFwXtGe41sQIl4btea/vb8bd2Y23wEukNEK4NExw7a5vwmsGTDxdPXagmu7EcBv4+/nxD/bj6ezZGrZmONXdKvuULTFIaTjMV3V1PLxxI59UV2MaBtHtRCRD/H6OzcpiXEYGh6Wnk6VQte1t2AD3329/APzlL3DDDdCGf1ctLVvKuVPOZV7xPM4YcgYv/uzFVj3/CSfAe+/BT35ij3+V9qNdhahbNDU18fLLLzNp0iQ+//xzevXqxfnnn895551Ht27dElXGHlGIKiIiIiIiiWRZFtWfVRMqDJFyYAqxmhiR0ggVb1bYgWsXN74CH+GSMOHiME2rmnZtARM8XT14um8NXB1+B74BPnx9fXbg2sWNK9uFYSpslb1TOB6nNhplUzjMV7W1fFhVxSvl5d87zgAynE6OyMjg7Px8Dk9PJ9ftTnzB+wLLgttug5tvtr/+/e/tULUNg9R5xfM48IkDiVtxpp49leP6Htdq5165Evr3t8tfvRoKClrt1LKH2mWI+l2rV69m0qRJPP300xQXFzN+/HjefffdZJSySxSiioiIiIhIe2XFLao+qqJpbRPpY9OJVkYJFYeoeKOCqg+r7Nmrnd2Ei+3ANVod3fmTm+BIceAf6MfX24e7qz2r1d3VDnE93ewQ1nRqoyzp+CzLYn0wyOc1NTgNg8+qq/mspoZvGhu/d+xgv5/ePh+/zMtjQlYWmepUbV2HHmpvNgVw5ZVbu1PbyB+m/oEHvnqAHF8OhX8oxOfytdq5jzsOPvgArr4a/vrXVjut7KF2H6IC1NfX89xzz3HddddRXV1NLLYbU9gTTCGqiIiIiIjsDay4RdlLZTR920T6uK2Ba+VblVR/Xo073+5KDReHiZRHdu6kJrjz3RhOA1e2i9QDU/H1aQ5Yu7rxdPPg6erB4dOuKtIxvV5ezuSSElIcDhbV17P0f0JVExidlsaxmZkcm5XF6NRUXKZ+sLBHpk2D44+HUMj++m9/gz/9qc2Wm1k4k7GTxgJw0YiLePykx1vt3E89Zc9DdTqhthZ8rZfPyh5o1yHqZ599xpNPPslrr72Gw+HgF7/4BRdccAEHH3xwokvZZQpRRURERERkX2BZVsus1GhjlMK/FhJcFST7xGzCJWFCG0Nsfm8zjcsbcaQ6iAfjWJGd+++lM8tpB6rdPGCAt6eXlBEp+Hr78Pb04unmwXQreJL2rzwc5p4NG/hXURGmYVD7P81hTsPgqIwMzsjL44SsLDp5PEmqtIOrrIQnn7RbOAGeew7OOqvNlhv75FhmbpiJy3Sx6NJFDMwZ2Crn3bwZcnLsSQU33GBPK5Dka3ch6oYNG5g8eTKTJ09m7dq1HHLIIVxwwQX84he/IBAIJKKEVqEQVURERERExGZZFtGqKFbcwpXlIlIeoXF1I+tvXU+oKET2T7IJF4cJFYWoX1BPdPNOjg8wwPSZeLp5SDkgBW8PL96eXnt0QG8fnh4eXBm6ZFraD8uyaIzHqYxE+LCqincqKphSWfm944b4/RyWkcF5+fmMTkvD1KZuO8+y4A9/gAcftFs5p06Fo49uk6WisSinvHQK7658lyN7HcnH537cahvwnXoqvPkmjBkDM2e2yillD7WrEHX8+PF8+umn5Obmcu6553L++eczYMCAtl62TShEFRERERER2XXhsjANKxowPSYOv4PQxhBNK5sovLOQSHWE9EPTCRWGCBWGiAfjP3o+R5oDbw8vzkwnpt8ksF+A1BGpdidrDw+ezh4MhwIqSY5oPM6XtbX8t7ISn8PBfysrmVNXt80xndxuTsnO5qe5uRyZkYFbl/3/uKoq6NPH/uz327NS99+/TZZaW7WWIf8cQlO0iTfPeJOTB57cKuctLYXu3SESgXnz4IADWuW0sgfaVYh68sknc8EFF3DiiSficHTs2TcKUUVERERERNqOZVmUv1HO5vc24+nkwZnlJLg+SNO3TWx+b/POn8iwN8IKDA/YYwIKvHZHa1+v3c3axYNhKmSVxCkNhzltyRJm1dbiM00a4lt/WOAyDEanpvK7bt34SXY2gQ6enbQZy4Jf/hJef91OITt1sts522ir+8vfvZxH5jxCti+bsj+XYRqtE3SfdRa88AJcdBE83nojV2U3tasQdW+iEFVERERERCTxLMsiUh4hXBzG19dHcEOQ0PoQxZOKqfm8Bk8Pe45qqDBEaGMIK/rD/9U13AbeXl68BV4A/IP8pI9Jx9fHh7e3F1emxgVI26iPRjGBz2treaO8nOfLyqj7zixVn2lyYnY2p+fkcHJODj4FqtsKhWDFCvjVr2DxYujf3w5Ss7Nbfal3VrzDSS+eBMAjJzzCbw/8bauc9+OP4ZhjwDShpARyc1vltLKbFKK2EYWoIiIiIiIi7Vtkc4RNT2wiuDZIxuEZBNcHCa4JUvF2BZHSiL2F+o9MDDD9Jo4UB/6BflIPTMVX4MPbx4uvrw9vLy+mU5deS+tYUFfH3zdupCYaZUlDA2uCwZbHnIbBT3NyOCc/n+OysnTJ/3cVFcEhh0BhoZ1Ivv++nUq2snGTxjG9cDp9Mvuw/LLluBx7/gOWUAhSUiAahYkTYdKkPa9Tdp9C1DaiEFVERERERKRjijXFCK4P4kx1Eo/ECa4NUvtlLUUPFxEPxvEP8NO0tskOWn+IAb4+Pnx97Q93Fzf+QX4CgwJ4C7yYbgVdsnssy+LrujruLCzkjYqKbR7Lcbn4aU4Ol3TuzAGpqa220VGH9vLLcMYZ9u3bb4frr2/1JerD9fR5qA9lDWU8duJj/Gbkb1rlvGefDc8/D/362Y21+u1MHoWobUQhqoiIiIiIyN4t1hCj6J9FVE+rxt/fD0DTmiYaljQQXBP84Seb2LNXe3sxXAaB/QJkHJZhd7D29uLw6tJs+XGWZTG/ro7PqqtZFwrxUlkZpZGt4X4/n4+Lu3Th7Lw8Onk8Saw0yb74Ag4/3J6VaprwyScwblyrL/PQVw/x+6m/p2tqV1ZesRKfy7fH56yrsycSnH8+nHRSmzTRyk5SiNpGFKKKiIiIiIjsm6K1UWpm1RDeGMbb20vTqiaaVjVR/J9iohVRTK9JPPgDcwIMcGY6ceW6SBudRuroVPwD/fgH+PF086izUHYoGo/zVGkpv1mxYptJFA7gJ9nZXN61K0dnZmLui3+G3nnHbul84QXo3Bnmz4f8/FZdIhQN0fm+zlQFq/jjmD9y37H3ter5JbkUorYRhagiIiIiIiLyXVs2vTL9JrH6GE2rmtj83mZKJpeAAe5ObppWNhGrje34JA5w57vJGJeBf4Af/0A/vgE+/P39OPzqXhVbdSTCJ1VVlEUiPFVayqza2pbHunk8/KFbN87r1Ils1z62MVpDA4weDcuW2fNRp06FVt6Qa/QTo5mzaQ4eh4eyP5eR5lEmtLdQiNpGFKKKiIiIiIjIrrIsi0hlhLXXr6Vubh2pI1OJlEdo/KaRxpWN8AP5qivfRcrwFPwD/Pj6+/APtOevuru41b26j5tVU8PhCxYQ+U604zEMzszL44/duzMsJSWJ1SXYsmUwYoS9a9PNN8Mtt7Tq6ZeWLeXop4+mtKGUW8bdws1H3Nyq55fkUYjaRhSiioiIiIiISGuqX1ZP2fNlxBvjuDu77WB1RSO1M2vhB/7H7sxw4h/sJzA0gLeXl9QDUwkMDeDOV7i6L9kciTClooKoZfHopk0sqK9veWxMWhp/6dWLozMz9/4/E2Vl0L07hMP2Lk0ffghHH92qS7yy9BV+8eovSHWnsub3a8jx57Tq+SU5FKK2EYWoIiIiIiIikgj1i+up/aoWb28voXUhGr9ppOKtCppWNIHBDgNWZ5aTwJAA3t5efH19pI9NJ7BfAHeOO6H1S+JZlsWMmhqOXriQ8Hfinv1TUvhz9+78PDcX1968g9Ezz8Bf/wpLl0JeHixcCJ06tdrp41acUY+PYn7JfK4YfQUPTXio1c4tyaMQtY0oRBUREREREZFkiYfjNK1swopbYEHD0gbq59Wz4b4NdqhqAjvY28rdxU3K8BRceS4yxmWQdlAavv4+TOdeHKrto5Y1NHD/xo14TZMni4tpjNt/KLKcTu4oKODCzp1x7q1hamMjHHwwLF4MP/sZvPJKq57+8a8f5+J3LsY0TEr+VEJuILdVzy+JpxC1jShEFRERERERkfYmHo7TtLoJby8vjd800rC0gaKHi6j7qg5nppNoVXS7zzO9Jv4hfnx9fPgH+8k4PIOU/VNwZe5jGxPtxSojEf5ZVMRf1q8n2hwB9fX5uLVXL87My8PcGy/zX7AARo2CWAymTIFTTmm1U2+s2UiPB3pgYXHlQVdy//H3t9q5JTkUorYRhagiIiIiIiLSUcRDceJhuwuxYXEDmz/YzIZ7NmBFLQy3Qbxh+22rnp4eUkek4i3wkjk+k7QD03BlK1jtqKLxOA9u3Mi9GzYQAyoiEQAG+f3c2qsXP8vN3btmploWDBkCy5dDRgasXw+tmOH88f0/cv+s+8kL5LH+yvV4nd5WO7cknkLUNqIQVURERERERDq6aG0UR4qDpjVNNCxsYO0ta2lc2ogrx0WkPLLd53h7eUkZmUJgSIC0sWmkjUrDlaVgtSOxLIuGWIwHi4q4t7CQmlgMgH4+H08PHMjB6elJrrAV3XMPXHONffuyy+Dhh1vt1JFYhD4P9WFD7Qb+c/J/OP+A81vt3JJ4ClHbiEJUERERERER2RvFQ3ZXaqwpRv38ekqfLaVkcgmm2yQe3H7HqreXl9RRqaQemEraIWmkjkzF4XMksmzZTYXBIENmz6Y+vvX39vxOnbird2/y3HvBJmTxODz9NPz612AYMGMGjBnTaqf/28y/8ecP/8zg3MEsuXTJ3tXJu49RiNpGFKKKiIiIiIjIviIejROpiGB6Tern1VM3t461N63FCu0gSjAhdUQqaWPS7I+D0/D28ipgaqcaYjHerajg3aoqJpeUAJDmcHB7QQGXdumyd2w+9etfw+TJ9uX98+ZBKwXE66rW0f/h/kTiEd7+5duc2P/EVjmvJJ5C1DaiEFVERERERET2ZfFwnIYlDXi6e2hY3EDd3DqKnyymaUXTdo83/SYZ4zLIGJdB2pg0Ukel4vCrW7W9+bKmhou//ZbFDQ0ADPH7+Vf//hyakZHcwvZUZSUMGGB/vvJKuL91NoKKxCJk3ZNFfbie/Tvtz/yL57fKeSXxFKK2EYWoIiIiIiIiItuKNcSomV1DvClOrDZG7Ze11HxeQ/38+u8f7ABPNw+Z4zPJPTWXtLFpuDI0W7U9eLuigtOXLiVuWcQAA/hT9+7cXlCApyN3pY4caXehGgYsWwYDB7bKaR+b+xi/ffe3xK04iy9dzNC8oa1yXkkshahtRCGqiIiIiIiIyI+L1kUpe6WM2pm1BAYFqPmyhtovawlvCm97oAEpw1PwD/KTe3ou6ePScefsBTM5O6hVjY2UhMM8WVLCpOZL/If6/Tw/eDD7paQkubrdtGYNjB5td6MedhhMmwatFAr/7OWf8dry17jggAv498n/bpVzSmIpRG0jClFFREREREREdo9lWay/cz1lL5bhK/DR+E0jTSu/PwbAP8RPxuH2CID0w9PxdPYkoVp5q6KCXy1fTl0shsswuKt3b/7QrRtmR5xxu369PRe1oQGeeQZ+9atWOe3MDTMZ++RYPA4P669cT35KfqucVxJHIWobUYgqIiIiIiIi0npCxSEK7ylk0yObML0msbrY947x9vaSfVI2WeOzSB+XjjPFmYRK9z0xy2LI7NmsaNoadB+RkcFTAwfSw+tNYmW76e674dproUcP+PZb8Ox5OB+Lxyh4sIANtRv4w8F/4O/H/b0VCpVE2tmsr8MOtHj00UcZNmwYaWlppKWlMWbMGN57772deu6MGTNwOp3sv//+bVukiIiIiIiIiPwgT2cP/e7vx2GNh3HQmoM4pPwQhrw+hC6XdWk5JrgmSNGDRSw+cTEzMmfw1cCvWH31ampm1RCPxpNY/d7NYRh8OWIEt/Tsyb/69ydgmkyrruaAuXP5tKoq2eXtussvh9RUKCyEv/ylVU7pMB2kelIBeOzrx2iKbH+DNen4Omwn6ttvv43D4aBv374APPXUU9x7773Mnz+fIUOG7PB5NTU1jBgxgr59+1JaWsqCBQt2aV11ooqIiIiIiIi0PStu0bC4gapPq/B081D1YRVVH1YRXBvc5jhHuoPMozJJPzyd7BOz8fXxYXTEy807gFWNjfxy+XLm1tXhNAwe7tePi7t0+fEntifDhsHixeDzQXExpKfv8Sk/Wv0RZ752JpVNlTxx0hNcOOLCVihUEmWfvJw/KyuLe++9lwsuuGCHx5x55pn069cPh8PBlClTFKKKiIiIiIiIdCBrb1pLydMleLp6aFzWSLQ6us3j3gIv2T/JJvvEbNLHpePwOpJU6d7pr+vX839r17Z8fXnXrtzfpw/OVtqoqc19/TWcfDJs2gTXXw+3394qp71v5n1c9eFVDM4dzJJLlyjI70D2+sv5vysWi/Hiiy/S0NDAmDFjdnjcpEmTWL16NTfffPNOnzsUClFbW7vNh4iIiIiIiIgkR8FfChizbgwjZoxgbMVYRnw1gpzTcuwHDQiuDVL0cBGLjl/EFxlfMG/MPIoeLSK0KZTcwvcS53fuzKFpaZyeY/+aP1xUxITFi6mKRJJc2U4aORIeecS+ff/9djdqK7hwxIX4nD6WlS/jq6KvWuWc0r506BB18eLFpKSk4PF4uOSSS3jjjTcYPHjwdo9duXIl//d//8dzzz2H07nzA6jvuusu0tPTWz66d+/eWuWLiIiIiIiIyB4wHAZpo9MY8uoQRq8czf6f7c/Qt4bS+TedcXdxY4UsamfVsvK3K/my65fMHTWXtTevpXZuLVZ8r7kwN6Fy3W6mHXAArw4dyhtDhhAwTT6qqmL0vHmsaGxMdnk755RTYMwYaGyEG25olVOme9MZ3XU0APfMuKdVzintS4cOUQcMGMCCBQuYNWsWl156Keeddx7Lli373nGxWIyzzjqLW2+9lf79++/SGtdeey01NTUtHxs2bGit8kVERERERESkFRiGgb+vn4zDMsg5KYcBjw1g1MJR5P4sF3dnN6mj7Y1/6r+uZ/1f1jPvwHl8kfUF31zwDeVTyok1xZL8HXQsjuZL1U/NzeXj4cNxGwarmpo4ZN48FtXXJ7m6nWAY8Ktf2bcnTYJvv22V05qGHbP9d+V/aYx0kEBZdtpeNRP1mGOOoU+fPjz22GPb3F9dXU1mZiYOx9Y5KPF4HMuycDgcfPDBBxx11FE7tYZmooqIiIiIiIh0POHSMJXvVrL6T6uJVm07R9UMmKQdmEbnSzqTc1IODr/mqO6sr+vqGDd/PsF4nBiQ7XTy8f77MzwlJdml/bAFC+CAA+zbJ58Mb765x6f8bN1nnPLiKdSEanj2p89y9rCz9/ic0vb2qZmoW1iWRSj0/RknaWlpLF68mAULFrR8XHLJJS2drAcddFASqhURERERERGRRHHnu+n8686MXj6afo/1Y/Arg+n6u654unuIN8SpnlbN8jOXMyN3Bkt/vpSyl8qI1kd//MT7uJGpqXw1ciRvDR3KgampVEajHL1gAQvq6pJd2g/bf3+46y67K/Wtt+CrPZ9jOq7XOK48+EoAJi2YtMfnk/alw3aiXnfddUyYMIHu3btTV1fHiy++yN13383UqVMZP3481157LUVFRTz99NPbff4tt9zClClTWLBgwS6tq05UERERERERkb2HZVmsuX4NRQ8UYbgNYjXfubTfCamjUulySRdyf5qLM23n91jZF1VHIhy3aBGz6+pIcziYtv/+HJCamuyyftivfw2TJ8O4cfDpp3aougfWVq2l90O9MTBY+/u19Mzo2Tp1SpvZ6ztRS0tLOeeccxgwYABHH300X331VUuAClBcXExhYWGSqxQRERERERGR9swwDPrc2YdDaw/l4MKDGfn1SHpc2wNPdw9EoW5WHSsmrmBG7gwWn7SYkmdK1KG6AxkuF5MHDsRtGNTGYoxbsID57b0j9dZbweOBzz6zQ9Q9VJBZwKguo7CweOirh1qhQGkvOmwnarKoE1VERERERERk79e4ppF1N66jcUUj8YY4jd9s3SjIcBpknZBFl990IfPYTExXh+1Ra3WNsRinLVnCZzU1BONxMp1OPho+nBHttSM1HoeBA2HlShg7Fr74Yo9POejhQXxT+Q2Z3kwqrq5o2XBK2qe9vhNVRERERERERKSt+Hv7GfzcYEbNHcXo5aM5cOmBdL+6OwBW1KLyrUoWn7iYL7t8ybeXf0vtV7WoTw38Dgdv77cfi0eN4uC0NKqiUU5YtIjCYDDZpW2faUKfPvbtGTNg8eI9PuU1Y6/BaTqpClYxff30PT6ftA8KUUVEREREREREfkRgcICC2wsY8uYQ8s7Ko+vvu+LKcxGpiLDpkU3MO3geX/X5isK/FRIq+f6m1/sSl2nS1+/n/WHDGB4IUBqJcNSCBdRH2+kYhPvvh+bxkPztb3t8uokHTGTi8ImANpjam+hy/l2ky/lFREREREREBCAejVP1YRVLT19KvCm+9QEHZE/IptP5ncg+MXufvtz/xdJSfrl8OQDHZWby7rBhmHu4eVObmD0bDjoInE5Yuxa6dduj083cMJOxT47F7/JT8qcSUj3tdJyB6HJ+EREREREREZG2ZDpNsidkM2L2CLr9oRv9HulH2sFpEIPKdypZetpSZuTOYM0Nawiub6eXs7exU3Jy6O/zYQLvV1Vxw9q1yS5p+0aPhsMPh2gU/v73PT7dmG5j6JPZh8ZII88sfKYVCpRkUyfqLlInqoiIiIiIiIj8kIblDSw6fhGhwu9c1m9ib0Z1cReyJ2RjONphN2YbqYpEeKeyknO/+QaApwcO5JxOnZJc1Xb85jfwxBPg9UJJCaSn79HpOv2tE6UNpfTL6se3V3zbSkVKa1MnqoiIiIiIiIhIEgQGBRg1fxR9H+hL/8f7k3FUBsRh8zubWXLSEmbkz6DwnkIiVZFkl5oQmS4X53TqxLU9egBw4YoVfFlTk+SqtmPLBlPBIDz++B6f7tf7/xqAlZtXsrJy5R6fT5JLnai7SJ2oIiIiIiIiIrKrGlc0suT0JTQubWy5zwyYdJrYiW6/74a/nz+J1SVGJB5nyJw5rGxqItPpZP6oUfT0epNd1lbV1XD99fDPf0LXrrBmDbjdu326WDzGiS+cyNRVU7nu0Ou44+g7Wq9WaTXqRBURERERERERaSf8A/wc8PkB9L63Nz1v7klgvwDxhjibHtnE7P6zWXDUAqo+rWJv7nVzGgYD/XZYXBWN8vOlS4nE4z/yrATKyLDnoXbuDEVF8MILe3Q6h+lo6UZ9dvGze/Xv7b5AIaqIiIiIiIiISAK4Ml30uKoHBbcUMGrhKIZ/NBxfPx8A1Z9Ws/Cohcw7eB4Vb1fslYGbYRg8O2gQT/TvT4bTyZy6Ou4sLEx2WdvyeOB3v7Nv33sv7OHvw0n9TyLgClBYU8jsotmtUKAki0JUEREREREREZEEMwyDzKMzGfj0QDKOyiBzfCam16Rudh1LTl7C7EGzKXulDCu2d4WpaU4nF3bpwiP9+gFw27p1zK6tTXJV/2PoUDBNWLoU3n9/j07lcXowDHsTsUfmPNIa1UmSKEQVEREREREREUmS9IPT2f/j/Rn+wXAOXncw3a/pjuk1aVrRxLJfLGPO0DmUPFNCPNqOLntvBb/My+O0nBxiwC+XLaMxFkt2SVulpcGWMQN//esenco0TIblDwPgwzUf7pUdxvsKhagiIiIiIiIiIu2AO99Nn7v70PnizgCYXpPGbxr55txvmDt8LhVv7T2X+RuG0TIPdU0wyNWrVye5ou847DC46y5wOGDaNFiyZI9O9+xPn8XtcFNSX8LS8qWtU6MknEJUEREREREREZF2pN8D/Ri1aBSjV42m4M4CnFlOGpc1suSUJcw/ZD41M2uSXWKruLtPH7p7PAA8smkT72/enOSKmhkG/N//wckn21//5z97dLqCzAKO7XMsAK8te21Pq5MkUYgqIiIiIiIiItLOpOyXgrerl57X9uSg1Qfh7esFoHZWLfPHzmfJT5fQ8E1DkqvcM4MDAdYdfDCXd+0KwK+/+YbKSCTJVX3HBRfYn595BkKhPTrV6YNOB+DV5a/uaVWSJApRRURERERERETaMVeGi34P9sM32Efuz3PBhIopFcwZOoeVf1hJtC6a7BJ3m2kY/LV3bwb4fBSHw1z67bftZ2RBQQH4fFBZCW++uUenGpZnz0VdUraEbyu/bY3qJMEUooqIiIiIiIiItHPZJ2Qzeslohrw8hAOXHEj2KdkQg6IHiviq31eUv17efsLHXeR3OLi4SxcAXikv54WysiRX1MzrhaYm+/Y//7lHpxqUOwiH4QDgX3P/taeVSRIoRBURERERERER6QAMwwAgMCjA4BcH40izQ7lIaYSlpy9l8UmLaVrblMwSd1tdLNZy+0+rV1MXbQfdtb17ww032LenT4f163f7VD6Xj0tHXQrAjA0zWqM6STCFqCIiIiIiIiIiHYzD62DUglF0v6Y7Pa7vgeEy2PzfzcwZMof1d60nHo0nu8Rdcm2PHtzduzd9vF5KwmHu2IPAslXddhscdRRYFkyatEenuv7w6zEwmF00mw01G1qpQEkUhagiIiIiIiIiIh2Qr8BHn7v70Pv23oxaNIr0cenEm+KsvW4t8w6a16G6Ul2myTU9enB/374A3L9xI6saG5NcVbMtG0xNmgTf6ZjdVZ1SOjG2x1gA3vjmjdaoTBJIIaqIiIiIiIiISAcXGBig9z29MdwGGFA/r565+8+l9IXSZJe2S07Mzua4zEzClsUfVq9Odjm2Qw6x56MWFsJHH+3RqUZ3GQ3A37/8e2tUJgmkEFVEREREREREZC+QPjqd0StGM/jlwaQdkkasNsbys5az/LzlROvawYzRnWAYBm7Tjqveqazk/c2bk1wR9uZSwaB9+5FH9uhU/bP7A7C+Zj0ldSV7WpkkkEJUEREREREREZG9hK+Xj7yf5bH/Z/vT8+aeYELp06XMHT6X2tm1yS5vpxyZkYHRfPsPq1YRiSd5vuugQXD22fbtqVOhomK3T3Xu8HPJC+QBMGXFlFYoThJFIaqIiIiIiIiIyF7GdJr0urEXnm4eAIJrg8wfO5/iScVJruzHXd61K7NHjCDX5WJ5YyOPFBUluyR49lkYORIiEXjmmd0+jc/l48qDrgRgyjdTWqc2SQiFqCIiIiIiIiIieyHDYbDfW/uRcXQG2SdnY0UtVpy/gjU3rMGKW8kub4dcpsmotDTuKCgA4JZ16ygPh5NcFVs3mPrPf8Da/V+/0wefDsDHaz+mqqmqNSqTBFCIKiIiIiIiIiKyl0oZnsL+H+3P0DeG0vOGngAU3lHI8rOXEwvu/k7ziXB+584MDQSoicW4fu3aZJcDp54KbjcsXQpffbXbp+mf3Z9+Wf2IxqP8c84/W68+aVMKUUVERERERERE9nKGaVBwWwFdftsFgLIXy1h49ELC5e2gw3MHmmIx1jdv6PTv4mLm19Ult6CSEtjSEbuHG0y5HW4AJi2YtKdVSYIoRBURERERERER2UcYpr1lk+E2qJ1Zy7wx82hc0ZjkqrYvxenksq5dyXE6sYAbk92NesABcNhh9u0pU6Bx93/drjrkKgwMCjILsPZgNIAkjmHpd2qX1NbWkp6eTk1NDWlpackuR0RERERERERkp1mWRdkLZQSGBVhy8hKCa4M4s5zs/8n+pAxPSXZ53xOOx1kfDDJw9mziwNcjRzIiNTV5BVkWFBTA+vXw2mtw2mm7eRqLyqZKcvw5rVyg7KqdzfrUiSoiIiIiIiIiso8wDIP8s/JJGZrCiFkjSB2dSnRzlIXjF9LwTUOyy/set2nSz+/nl3l5ANy+fn1yCzIM+NnP7NuvvroHpzEUoHYwClFFRERERERERPZB7jw3GUdkABApj7Dw6IU0rWlKblE78Ofu3TGANyoqWFxfn9xiTj/d/jxlCjS1z18vaX0KUUVERERERERE9lGeLh4AXPkuwpvCLDx6IcENwSRX9X1rg0G2zKO8ad26ZJZibzAFdoA6dWpya5GEUYgqIiIiIiIiIrKP6vb7boycN5JR80fh6+sjuC7IwqMXEioJJbu0bZyck8NhzfMq36yo4JuGJI4eOO44CATs2y++mLw6JKE6bIj66KOPMmzYMNLS0khLS2PMmDG89957Ozz+iy++YOzYsWRnZ+Pz+Rg4cCD3339/AisWEREREREREWl/Ug9IxdPZw/CPh+Pp4aFpZROLxi8iUhlJdmktTMNg+ogRnJydjQXcWViYvGL8ftiSQb33HgTbX+eutL4OG6J269aNu+++m7lz5zJ37lyOOuooTjnlFJYuXbrd4wOBAJdffjnTp09n+fLl3HDDDdxwww08/vjjCa5cRERERERERKT9ceW68Pb2AtCwpIFFxy8i1hhLclXburFnTwCeLy1ldTLnkY4dC127Ql0dfPhh8uqQhDEsy7J+/LCOISsri3vvvZcLLrhgp44/7bTTCAQCPPPMMzu9Rm1tLenp6dTU1JDW3EYuIiIiIiIiItLRxSNxlvx0CVUfVmF6TWK1MfLPzWfg5IEYhpHs8loc/PXXfFVXxy9yc3lpyJDkFXLllfDgg/ZGU6++mrw6ZI/sbNbXYTtRvysWi/Hiiy/S0NDAmDFjduo58+fPZ+bMmYwbN+4HjwuFQtTW1m7zISIiIiIiIiKytzFdJkNeHsKImSMYOmUomFD6dCmbHtuU7NK2saU39pXyctYn81L6LWu//TaE2tcMWWl9HTpEXbx4MSkpKXg8Hi655BLeeOMNBg8e/IPP6datGx6Ph1GjRnHZZZdx4YUX/uDxd911F+np6S0f3bt3b81vQURERERERESk3XD4HaSOTCXzyEx6390bgFW/W0XNrJokV7bVI/360cXtxgL+mszZqCecYH8Oh+Gjj5JXhyREhw5RBwwYwIIFC5g1axaXXnop5513HsuWLfvB53z++efMnTuXf/3rXzzwwAO88MILP3j8tddeS01NTcvHhg0bWvNbEBERERERERFpl3JOz8GR5sCKWCz92VLCZeFklwTA6LQ0nhs0CID/FBdTlKwu0OOPh3PPtW+/8kpyapCE2atmoh5zzDH06dOHxx57bKeOv/3223nmmWdYsWLFTq+hmagiIiIiIiIisi+omVnD/CPmQxyIQcYRGQz7cBimM/k9eZZlcfiCBXxRU8M13btzd58+ySlk+nQYNw4yMqC0FNzu5NQhu22fmom6hWVZhHbhpw+7eryIiIiIiIiIyL4i/ZB0hr46lOEfDceR4qB6WjVrr1ub7LIAMAyDs/PyAHioqIhQPJ6cQsaOhU6doLoaPvwwOTVIQnTYEPW6667j888/Z926dSxevJjrr7+eadOmcfbZZwP2ZfjnbmmpBh555BHefvttVq5cycqVK5k0aRJ/+9vf+NWvfpWsb0FEREREREREpF3LOTmHzCMyGTBpAAAb7t1A+WvlSa7KNigQAKApHueZkpLkFOFwQLdu9u1//CM5NUhCOJNdwO4qLS3lnHPOobi4mPT0dIYNG8bUqVMZP348AMXFxRR+Z7hwPB7n2muvZe3atTidTvr06cPdd9/NxRdfnKxvQURERERERESkQ8j7WR4VZ1dQ9lwZ30z8htSDUvF28ya1psPT0zkoNZWv6uqYVFLChV26JKeQ/Hz787RpEImAy5WcOqRN7VUzURNBM1FFREREREREZF9jxS3mjppLw/wGALJPzmbolKEYhpHUujaFQvScNYuoZbFw1CiGpaQkvoiFC+HII6GqCqZOheOOS3wNstv2yZmoIiIiIiIiIiLS+gzTYOirQ8k/Jx/DZVD5ViXlryT/sv4uHg8/zckB4NFNm5JTxPDhcOaZ9u1XXklODdLmFKKKiIiIiIiIiMiP8vX2MejpQfS4tgcAK69YSWRzJMlVwTnNG0w9WVxMbTSanCJ+9jP785QpEIslpwZpUwpRRURERERERERkp/W8rif+QX4iZRFW/WlVssvBa9rxVtiyeLK4ODlFHHQQ+HxQWQmzZiWnBmlTClFFRERERERERGSnmR4T/0A/AKWTS9n80eak1nN0VhZD/HY9jxcXk5Ttf7xe2NIFO3ly4teXNqcQVUREREREREREdknqyNSW29/+5ltiDcm7hN00DL444AD8psnyxkY+r6lJfBEOB5x0kn17/vzEry9tTiGqiIiIiIiIiIjsku5/7s7wT4fj6e4huDbI2pvWJrWeDJeLs/LzgSRuMPXgg/bn+fPty/plr6IQVUREREREREREdonpNsk8IpP+/+oPwMYHNlI7pzapNV3cuTMAr5SVURoOJ76Abt1g6FCIx+HDDxO/vrQphagiIiIiIiIiIrJbsk/IJuf0HIjDigtXYMWTMI+0WUUkAkAMeCxZ3ajHHGN/fuGF5KwvbUYhqoiIiIiIiIiI7BbLsmha1QRAw6IGyl4sS1otx2Rm0s3tBuCJ4mJiydhgat06+/OHH9odqbLXUIgqIiIiIiIiIiK7xTAMCm4vwN3VDi/X3riWeDg54aHTNPn2oIPIcjrZGArxXjLmkp59NhgGNDXBokWJX1/ajEJUERERERERERHZbTkn5jD6m9G48l0E1wQp/ndx0mrxORyc07zB1HNlSeiKPe00OPFE+/Z77yV+fWkzClFFRERERERERGSPOFOc9LqpFwDr/rKOaH00abWc1RyiTqmooD6a4DpMEyZMsG9PnZrYtaVNKUQVEREREREREZE9lj8xH1eui0hphKIHi5JWR3EoBEAwHufNiorEF3DccfbnmTOhpibx60ubUIgqIiIiIiIiIiJ7rOmbJiLlEQAK7y4kUhlJSh1HZGbibL79bGlp4gtwucDthmgUPvoo8etLm1CIKiIiIiIiIiIieyx1RCr5E/Nxd3YTq49ReHdhUupIdzqZOWIEAB9VV1MZSXCY27nz1tsvvJDYtaXNKEQVEREREREREZFWMWjSIAb8ZwAAG/+xkeCGYFLqODAtjf1TUohaFq+Vlyd2cacT7rzTvj17NlhWYteXNqEQVUREREREREREWk3W8Vmkj0vHClmsu3Vd0ur4ZV4eAE+XlCR+8d/+Frxe2LABli9P/PrS6hSiioiIiIiIiIhIqzEMg07ndQKgZFIJDd80JKWOYCwGwIzaWjYGE9wR6/PBuHH27alTE7u2tAmFqCIiIiIiIiIi0qqqPqiyb8Rh3Y3rklLD4ECg5fZLib6kH6BrV/vzc88lfm1pdQpRRURERERERESkVfW6pRfZJ2YDUP5aOU2rmxJewwnZ2VzVrRsAL5SWJnx9GhvtzwsWQENyunGl9ShEFRERERERERGRVuUf4Ge/t/cja0IWWLDxoY2Jr8Hh4OoePXAAX9fX8+2WUDNRLr4Y0tMhHodp0xK7trQ6hagiIiIiIiIiItImuv3B7gQt/k8xkepIwtfPdbs5NisLgOcT3Y16xBHwy1/atzUXtcNTiCoiIiIiIiIiIm3CP9SPK9dFvCFO8RPFSakhy+kE4MmSEizLSuzixx9vf37//cSuK61OIaqIiIiIiIiIiLSJ0JoQkXK7A3XjgxuJR+IJr2FLcLohFGJ+fX1iFz/sMDAMWLkSipMTIkvrUIgqIiIiIiIiIiJtIu2QNDr/pjPODCfhojDlr5UnvIbfd+/OgampQBIu6V++HLZ0v06fnti1pVUpRBURERERERERkTZhGAYDHhtAtz/as1E33rcx4ZfUj05L47oePQB4sayMeCLXP/BACATs2x9/nLh1pdUpRBURERERERERkTbV5ZIumF6Turl11MyoSfj6E7KzSXc4KAqHmVGTwPXdbpg82b791VeJW1danUJUERERERERERFpU850J2kHpwF2N2qimcCwlBQAplRUJHbxww+3Py9eDJs3J3ZtaTUKUUVEREREREREpE3Fm+LUzq4FoOLNCppWNyV0fQNY2Lyp1CvlCZ7LmpcHAwbYs1FnzEjs2tJqFKKKiIiIiIiIiEibcqY76XljT3wDfGDBxgcT243qNE1+160bJrAhFGJVY2PiFo/HodYOkHnnncStK61KIaqIiIiIiIiIiLS5nv/Xk/6P9Aeg+MliIlWRhK5/W0EBR2RkAPDfRF5Wb5rg89m3P/kkcetKq+qwIeqjjz7KsGHDSEtLIy0tjTFjxvDee+/t8PjXX3+d8ePHk5ub23L8+++/n8CKRURERERERET2bRlHZRAYFiDeEKf4ieKEr39idjYAbyd6LuqDD9qf162D5rEC0rF02BC1W7du3H333cydO5e5c+dy1FFHccopp7B06dLtHj99+nTGjx/Pu+++y9dff82RRx7JSSedxPz58xNcuYiIiIiIiIjIvskwDLJPsoPMon8WYVlWQtf/SVYWANOqq6mNRhO38IknQs+eEI3CrFmJW1daTYcNUU866SROOOEE+vfvT//+/bnjjjtISUlh1g7+ID7wwANcffXVHHjggfTr148777yTfv368fbbbye4chERERERERGRfVf1J9UAhNaHqPmiJqFrf1lXB0AM+CCRl/QDHH64/Xn69MSuK63CmewCWkMsFuOVV16hoaGBMWPG7NRz4vE4dXV1ZDX/BGJHQqEQoVCo5euaGvvFXbtlILCIiIiIiIiIiOy0zCszqS6vpmlVE6seX0X/4f0TtvbBDgeOhgZiwCvr1nGs15uwtUlNtT+/8QZcdVXi1pUftCXj+7GuaMNKdN90K1q8eDFjxowhGAySkpLC888/zwknnLBTz7333nu5++67Wb58OXl5eTs87pZbbuHWW29trZJFRERERERERESkndmwYQPdunXb4eMdOkQNh8MUFhZSXV3Na6+9xr///W8+++wzBg8e/IPPe+GFF7jwwgt58803OeaYY37w2P/tRK2urqZnz54UFhaSnp7eKt+HiCRPbW0t3bt3Z8OGDaSlpSW7HBHZQ3pNi+xd9JoW2fvodS2yd9kbXtOWZVFXV0eXLl0wzR1PPu3Ql/O73W769u0LwKhRo5gzZw4PPvggjz322A6f89JLL3HBBRfwyiuv/GiACuDxePB4PN+7Pz09vcP+4RCR70tLS9NrWmQvote0yN5Fr2mRvY9e1yJ7l47+mt6ZRskOu7HU9liWtU3X6P964YUXmDhxIs8//zw/+clPEliZiIiIiIiIiIiIdFQdthP1uuuuY8KECXTv3p26ujpefPFFpk2bxtSpUwG49tprKSoq4umnnwbsAPXcc8/lwQcf5OCDD6akpAQAn8+ny/JFRERERERERERkhzpsJ2ppaSnnnHMOAwYM4Oijj+arr75i6tSpjB8/HoDi4mIKCwtbjn/ssceIRqNcdtlldO7cueXj97///S6t6/F4uPnmm7d7ib+IdDx6TYvsXfSaFtm76DUtsvfR61pk77IvvaY79MZSIiIiIiIiIiIiIm2tw3aiioiIiIiIiIiIiCSCQlQRERERERERERGRH6AQVUREREREREREROQHKEQVERERERERERER+QEKUUVERERERERERER+gELUXfDPf/6TgoICvF4vI0eO5PPPP092SSKym2655RYMw9jmo1OnTskuS0R20vTp0znppJPo0qULhmEwZcqUbR63LItbbrmFLl264PP5OOKII1i6dGlyihWRH/Vjr+mJEyd+73374IMPTk6xIvKj7rrrLg488EBSU1PJy8vj1FNPZcWKFdsco/dqkY5jZ17T+8J7tULUnfTSSy9x5ZVXcv311zN//nwOO+wwJkyYQGFhYbJLE5HdNGTIEIqLi1s+Fi9enOySRGQnNTQ0MHz4cB5++OHtPn7PPffw97//nYcffpg5c+bQqVMnxo8fT11dXYIrFZGd8WOvaYDjjz9+m/ftd999N4EVisiu+Oyzz7jsssuYNWsWH374IdFolGOPPZaGhoaWY/ReLdJx7MxrGvb+92rDsiwr2UV0BAcddBAjRozg0Ucfbblv0KBBnHrqqdx1111JrExEdsctt9zClClTWLBgQbJLEZE9ZBgGb7zxBqeeeipgd7Z06dKFK6+8kmuuuQaAUChEfn4+f/3rX7n44ouTWK2I/Jj/fU2D3d1SXV39vQ5VEekYysvLycvL47PPPuPwww/Xe7VIB/e/r2nYN96r1Ym6E8LhMF9//TXHHnvsNvcfe+yxzJw5M0lVicieWrlyJV26dKGgoIAzzzyTNWvWJLskEWkFa9eupaSkZJv3bY/Hw7hx4/S+LdKBTZs2jby8PPr3789FF11EWVlZsksSkZ1UU1MDQFZWFqD3apGO7n9f01vs7e/VClF3QkVFBbFYjPz8/G3uz8/Pp6SkJElVicieOOigg3j66ad5//33eeKJJygpKeGQQw6hsrIy2aWJyB7a8t6s922RvceECRN47rnn+OSTT7jvvvuYM2cORx11FKFQKNmliciPsCyLP/7xjxx66KEMHToU0Hu1SEe2vdc07Bvv1c5kF9CRGIaxzdeWZX3vPhHpGCZMmNBye7/99mPMmDH06dOHp556ij/+8Y9JrExEWovet0X2HmeccUbL7aFDhzJq1Ch69uzJf//7X0477bQkViYiP+byyy9n0aJFfPHFF997TO/VIh3Pjl7T+8J7tTpRd0JOTg4Oh+N7PxErKyv73k/ORKRjCgQC7LfffqxcuTLZpYjIHurUqROA3rdF9mKdO3emZ8+eet8WaeeuuOIK3nrrLT799FO6devWcr/eq0U6ph29prdnb3yvVoi6E9xuNyNHjuTDDz/c5v4PP/yQQw45JElViUhrCoVCLF++nM6dOye7FBHZQwUFBXTq1Gmb9+1wOMxnn32m922RvURlZSUbNmzQ+7ZIO2VZFpdffjmvv/46n3zyCQUFBds8rvdqkY7lx17T27M3vlfrcv6d9Mc//pFzzjmHUaNGMWbMGB5//HEKCwu55JJLkl2aiOyGq666ipNOOokePXpQVlbG7bffTm1tLeedd16ySxORnVBfX8+qVatavl67di0LFiwgKyuLHj16cOWVV3LnnXfSr18/+vXrx5133onf7+ess85KYtUisiM/9JrOysrilltu4fTTT6dz586sW7eO6667jpycHH76058msWoR2ZHLLruM559/njfffJPU1NSWjtP09HR8Ph+GYei9WqQD+bHXdH19/T7xXm1YlmUlu4iO4p///Cf33HMPxcXFDB06lPvvv5/DDz882WWJyG4488wzmT59OhUVFeTm5nLwwQdz2223MXjw4GSXJiI7Ydq0aRx55JHfu/+8885j8uTJWJbFrbfeymOPPUZVVRUHHXQQjzzyyDbD70Wk/fih1/Sjjz7Kqaeeyvz586murqZz584ceeSR3HbbbXTv3j0J1YrIj9nRXNNJkyYxceJEAL1Xi3QgP/aabmpq2ifeqxWiioiIiIiIiIiIiPwAzUQVERERERERERER+QEKUUVERERERERERER+gEJUERERERERERERkR+gEFVERERERERERETkByhEFREREREREREREfkBClFFREREREREREREfoBCVBEREREREREREZEfoBBVREREZB9lGAZTpkzZ4/NMnjyZjIyMPT6PbN+0adMwDIPq6uo2Of+NN97Ib37zm1av6eGHH+bkk0/ew+pERERE2geFqCIiIiJ7kYkTJ2IYBoZh4HK5yM/PZ/z48Tz55JPE4/Ftji0uLmbChAlJqjT5SkpKuOKKK+jduzcej4fu3btz0kkn8fHHHye7tG0ccsghFBcXk56eDrRuaF1aWsqDDz7Idddd973HZs6cicPh4Pjjj9+tc1900UXMmTOHL774Yk/LFBEREUk6hagiIiIie5njjz+e4uJi1q1bx3vvvceRRx7J73//e0488USi0WjLcZ06dcLj8SSx0h8WiUTa7Nzr1q1j5MiRfPLJJ9xzzz0sXryYqVOncuSRR3LZZZe12bq7w+1206lTJwzDaPVz/+c//2HMmDH06tXre489+eSTXHHFFXzxxRcUFhbu8rk9Hg9nnXUW//jHP1qhUhEREZHkUogqIiIispfxeDx06tSJrl27MmLECK677jrefPNN3nvvPSZPntxy3Hcv5w+Hw1x++eV07twZr9dLr169uOuuu1qOra6u5je/+Q35+fl4vV6GDh3KO++8s82677//PoMGDSIlJaUlyN1izpw5jB8/npycHNLT0xk3bhzz5s3b5vmGYfCvf/2LU045hUAgwO233w7A7bffTl5eHqmpqVx44YX83//9H/vvv/82z500aRKDBg3C6/UycOBA/vnPf/7gr9Fvf/tbDMNg9uzZ/OxnP6N///4MGTKEP/7xj8yaNavluL///e/st99+BAIBunfvzm9/+1vq6+tbHt/SFTplyhT69++P1+tl/PjxbNiwoeWY1atXc8opp5Cfn09KSgoHHnggH3300Tb1hEIhrr76arp3747H46Ffv3785z//Aba9dH7atGn8+te/pqampqXj+JZbbuEvf/kL++233/e+z5EjR3LTTTft8NfhxRdf3O4l9w0NDbz88stceumlnHjiidv8ufmur7/+mlGjRuH3+znkkENYsWLFNo+ffPLJTJkyhaamph3WICIiItIRKEQVERER2QccddRRDB8+nNdff327jz/00EO89dZbvPzyy6xYsYJnn322pTsxHo8zYcIEZs6cybPPPsuyZcu4++67cTgcLc9vbGzkb3/7G8888wzTp0+nsLCQq666quXxuro6zjvvPD7//HNmzZpFv379OOGEE6irq9umjptvvplTTjmFxYsXc/755/Pcc89xxx138Ne//pWvv/6aHj168Oijj27znCeeeILrr7+eO+64g+XLl3PnnXdy44038tRTT233e928eTNTp07lsssuIxAIfO/x714qb5omDz30EEuWLOGpp57ik08+4eqrr97m+MbGRu644w6eeuopZsyYQW1tLWeeeWbL4/X19Zxwwgl89NFHzJ8/n+OOO46TTjppm+7Oc889lxdffJGHHnqI5cuX869//YuUlJTv1XbIIYfwwAMPkJaWRnFxMcXFxVx11VWcf/75LFu2jDlz5rQcu2jRIubPn8/EiRO3++tQVVXFkiVLGDVq1Pcee+mllxgwYAADBgzgV7/6FZMmTcKyrO8dd/3113Pfffcxd+5cnE4n559//jaPjxo1ikgkwuzZs7dbg4iIiEiHYYmIiIjIXuO8886zTjnllO0+dsYZZ1iDBg1q+Rqw3njjDcuyLOuKK66wjjrqKCsej3/vee+//75lmqa1YsWK7Z530qRJFmCtWrWq5b5HHnnEys/P32Gd0WjUSk1Ntd5+++1t6rnyyiu3Oe6ggw6yLrvssm3uGzt2rDV8+PCWr7t37249//zz2xxz2223WWPGjNnu2l999ZUFWK+//voO69uRl19+2crOzm75esv3PmvWrJb7li9fbgHWV199tcPzDB482PrHP/5hWZZlrVixwgKsDz/8cLvHfvrppxZgVVVVtayZnp7+veMmTJhgXXrppS1fX3nlldYRRxyxwxrmz59vNZCnXwABAABJREFUAVZhYeH3HjvkkEOsBx54wLIsy4pEIlZOTs429W2p6aOPPmq577///a8FWE1NTducKzMz05o8efIO6xARERHpCNSJKiIiIrKPsCxrh3M1J06cyIIFCxgwYAC/+93v+OCDD1oeW7BgAd26daN///47PLff76dPnz4tX3fu3JmysrKWr8vKyrjkkkvo378/6enppKenU19f/71Zm//bFblixQpGjx69zX3f/bq8vJwNGzZwwQUXkJKS0vJx++23s3r16h3+OgA7NWP0008/Zfz48XTt2pXU1FTOPfdcKisraWhoaDnG6XRuU/fAgQPJyMhg+fLlgH1p/NVXX83gwYPJyMggJSWFb775puV7X7BgAQ6Hg3Hjxv1oPT/koosu4oUXXiAYDBKJRHjuuee+1xn6XVsusfd6vdvcv2LFCmbPnt3STet0OjnjjDN48sknv3eOYcOGtdzu3LkzwDa/7wA+n4/Gxsbd+6ZERERE2glnsgsQERERkcRYvnw5BQUF231sxIgRrF27lvfee4+PPvqIX/ziFxxzzDG8+uqr+Hy+Hz23y+Xa5mvDMLa5/HvixImUl5fzwAMP0LNnTzweD2PGjCEcDm/zvO1dXv+/Yed3zxuPxwH7kv6DDjpom+O+O27gu/r164dhGCxfvpxTTz11h9/T+vXrOeGEE7jkkku47bbbyMrK4osvvuCCCy743qZX2wtkt9z35z//mffff5+//e1v9O3bF5/Px8/+n737Do+i3B44/p2t2XSSQEjovRdBFLAgdhAVRUWxYUG9YMXuz+69195vsCuKBUQUGxZsiGBDeu81lPS+fX5/vDub3fSEQArn8zzvM7Ozs7Ozye7OzpnznveCC4KvvSZ/35o4++yzsdvtfPbZZ9jtdlwuF+PGjat0/aSkJEB162/ZsmVw+VtvvYXX66VNmzbBZbquY7VaycnJoUWLFsHlof934/Ua/xNDdnZ22PaFEEIIIZoiyUQVQgghhDgC/PTTT6xatarKoFpsbCzjx4/njTfeYNasWcyZM4fs7Gz69+/P7t272bhxY52ff+HChdx8882MHj2aPn36YLfbyczMrPZxPXr0KFdPc8mSJcH55ORk2rRpw9atW+natWtYqyxgnJCQwBlnnEFaWlpYRqkhNzc3+Dxer5dnn32WoUOH0r17d9LT08ut7/V6w/Zpw4YN5Obm0rNnz+BrnzhxIueddx79+vWjdevWbN++Pbh+v3798Pv9LFiwoNq/B4DNZsPn85VbbrFYuPLKK3nnnXd45513uPjii4mMjKx0O126dCE2Npa1a9eGvZb33nuPZ599luXLlwfbihUr6NChAx988EGN9tGwZcsWnE4nRx11VK0eJ4QQQgjR2EgmqhBCCCFEM+Nyudi3bx8+n4/9+/fz7bff8vjjjzNmzBiuuOKKCh/z/PPPk5KSwsCBAzGZTMyePZvWrVsTHx/PiBEjOPHEExk3bhzPPfccXbt2Zf369WiaxplnnlmjferatSszZszg6KOPJj8/nzvvvLNGGZg33XQTkyZN4uijj2b48OHMmjWLlStX0rlz5+A6Dz/8MDfffDOxsbGMGjUKl8vFkiVLyMnJYerUqRVud9q0aQwfPpxjjjmGRx99lP79++P1epk/fz6vvPIK69ato0uXLni9Xl5++WXOPvtsFi1axKuvvlpuW1arlZtuuomXXnoJq9XKjTfeyNChQ4NlB7p27cqnn37K2WefjaZpPPDAA2HZmh07duTKK6/k6quv5qWXXmLAgAHs2LGDAwcOcNFFF5V7vo4dO1JYWMiPP/7IgAEDiIyMDAZLr732Wnr16gXAokWLqvzbmkwmTj31VH777bdgRu5XX31FTk4O11xzDXFxcWHrX3DBBbz11lvceOONVW431MKFC+ncuXNYqQchhBBCiKZIMlGFEEIIIZqZb7/9lpSUFDp27MiZZ57Jzz//zEsvvcTnn39eaRf36OhonnzySY4++miGDBnC9u3bmTdvHiaT+rk4Z84chgwZwiWXXELv3r256667KsyGrMzbb79NTk4ORx11FJdffjk333wzrVq1qvZxl156Kffeey933HFHsOTAxIkTw+p4Xnvttbz55ptMnz6dfv36MWLECKZPn15pJipAp06dWLp0KSNHjuT222+nb9++nHbaafz444+88sorAAwcOJDnnnuOJ598kr59+/LBBx/w+OOPl9tWZGQkd999NxMmTGDYsGE4HA5mzpwZvP/555+nRYsWDB8+nLPPPpszzjiDQYMGhW3jlVde4YILLmDy5Mn07NmTSZMmVZglCzB8+HBuuOEGxo8fT8uWLXnqqaeC93Xr1o3hw4fTo0ePcuUNKnLdddcxc+bMYFD3rbfe4tRTTy0XQAUYN24cy5cvZ+nSpdVu1/DRRx8xadKkGq8vhBBCCNFYaXpoUSkhhBBCCCEaudNOO43WrVszY8aMht4Vpk+fzq233hosAdDQdF2nZ8+eXH/99ZVm4ZZdf+jQodx6661ccskl9bovq1ev5pRTTmHjxo0VBmWFEEIIIZoS6c4vhBBCCCEareLiYl599VXOOOMMzGYzH330ET/88APz589v6F1rdA4cOMCMGTPYs2cPV111VY0eo2kar7/+OitXrqz3/UlPT+e9996TAKoQQgghmgUJogohhBBCiEZL0zTmzZvHv//9b1wuFz169GDOnDmceuqpDb1rjU5ycjJJSUm8/vrrtGjRosaPGzBgAAMGDKj3/Tn99NPrfZtCCCGEEA1FuvMLIYQQQgghhBBCCCFEFWRgKSGEEEIIIYQQQgghhKiCBFGFEEIIIYQQQgghhBCiChJEFUIIIYQQQgghhBBCiCpIEFUIIYQQQgghhBBCCCGqIEFUIYQQQgghhBBCCCGEqIIEUYUQQgghhBBCCCGEEKIKEkQVQgghhBBCCCGEEEKIKkgQVQghhBBCCCGEEEIIIaogQVQhhBBCCCGEEEIIIYSoggRRhRBCCCGEEEIIIYQQogoSRBVCCCGEEEIIIYQQQogqSBBVCCGEEEIIIYQQQgghqiBBVCGEEEIIIYQQQgghhKiCBFGFEEIIIYQQQgghhBCiChJEFUIIIYQQQgghhBBCiCpIEFUIIYQQQgghhBBCCCGqIEFUIYQQQgghhBBCCCGEqIIEUYUQQgghhBBCCCGEEKIKEkQVQgghhBBCCCGEEEKIKkgQVQghhBBCCCGEEEIIIaogQVQhhBBCCCGEEEIIIYSoggRRhRBCCCGEEEIIIYQQogoSRBVCCCGEEEIIIYQQQogqSBBVCCGEEEIIIYQQQgghqiBBVCGEEEIIIYQQQgghhKjCERlEPe+882jRogUXXHBBQ++KEEIIIYQQQgghhBCikTsig6g333wz7733XkPvhhBCCCGEEEIIIYQQogk4IoOoI0eOJCYmpqF3QwghhBBCCCGEEEII0QQ0uiDqr7/+ytlnn01qaiqapjF37txy60ybNo1OnToRERHB4MGDWbhw4eHfUSGEEEIIIYQQQgghxBHB0tA7UFZRUREDBgzgqquuYty4ceXunzVrFrfeeivTpk3juOOO47XXXmPUqFGsXbuW9u3bAzB48GBcLle5x37//fekpqbWan9cLlfYtvx+P9nZ2SQmJqJpWi1fnRBCCCGEEEIIIYQQorHQdZ2CggJSU1MxmSrPN9V0XdcP437ViqZpfPbZZ4wdOza47Nhjj2XQoEG88sorwWW9evVi7NixPP744zXe9i+//ML//vc/PvnkkyrXe/jhh3nkkUdqve9CCCGEEEIIIYQQQoimYdeuXbRt27bS+xtdJmpV3G43//zzD/fcc0/Y8tNPP53Fixcfkue89957mTp1avB2Xl4e7du3Z+PGjSQkJByS5xRCHD4ej4eff/6ZkSNHYrVaG3p3hBAHST7TQjQv8pkWovmRz7UQzUtz+EwXFBTQqVOnasdPalJB1MzMTHw+H8nJyWHLk5OT2bdvX423c8YZZ7B06VKKiopo27Ytn332GUOGDKlwXbvdjt1uL7c8ISGBxMTE2r0AIUSj4/F4iIyMJDExscl+4QshSslnWojmRT7TQjQ/8rkWonlpDp9pY7+rK9vZpIKohrIvStf1WtUn/e6772r9nGlpaaSlpeHz+Wr9WCGEEEIIIYQQQgghRNNVebXURigpKQmz2Vwu6/TAgQPlslPr25QpU1i7di1///33IX0eIYQQQgghhBBCCCFE49Kkgqg2m43Bgwczf/78sOXz589n+PDhh/S509LS6N27d6Xd/oUQQgghhBBCCCGEEM1To+vOX1hYyObNm4O3t23bxvLly0lISKB9+/ZMnTqVyy+/nKOPPpphw4bx+uuvs3PnTm644YZDul9TpkxhypQp5OfnExcXd0ifSwghhBBCCCGEEEII0Xg0uiDqkiVLGDlyZPD21KlTAbjyyiuZPn0648ePJysri0cffZS9e/fSt29f5s2bR4cOHRpql4UQQgghhBBCCCGEEM1YowuinnTSSei6XuU6kydPZvLkyYdpjxQZWEoIIYQQQgghhBBCiCNTk6qJ2pBkYCkhhBBCCCGEEEIIIY5MEkQVQgghhBBCCCGEEEKIKkgQVQghhBBCCCGEEEIIIaogQdQaSktLo3fv3gwZMqShd0UIIYQQQgghhBBCHAa/5uYybc8e/s7Pb+hdEQ1Mgqg1JDVRhRBCCCGEEEIIIY4sHx84wJRNm/giK6uhd0U0MAmiCiGEEEIIIYQQQghRAbeuA2DTtAbeE9HQJIgqhBBCCCGEEEIIIUQFXH4/AHaThNCOdPIOqCGpiSqEEEIIIYQQQghxZJFMVGGQIGoNSU1UIYQQQgghhBBCiCOLWzJRRYC8A4QQQgghhBBCCCGEqIDRnd8mQdQjnrwDhBBCCCGEEEIIIYSogNGd3y7d+Y94EkQVQgghhBBCCCGEEKICkokqDPIOqCEZWEoIIYQQQgghhBDiyCIDSwmDBFFrSAaWEkIIIYQQQgghhGhYW+7ewpa7tuBKdx2W55OBpYTB0tA7IIQQQgghhBBCCCFETaS/mo4v30fKtSmH5fmkO78wyDtACCGEEEIIIYQQQjR6uk/Hl+8DwNLi8OQFysBSwiBBVCGEEEIIIYQQQgjR6HnzvcF5S9zhCaJKJqowyDtACCGEEEIIIYQQQjR63lwVRDVFmjDZDk9IK5iJKkHUI568A2ooLS2N3r17M2TIkIbeFSGEEEIIIYQQQogjjhFEtcQfviF+jIGlbNKd/4gnQdQamjJlCmvXruXvv/9u6F0RQgghhBBCCCGEOOI0RBBVuvMLg7wDhBBCCCGEEEIIIUSj1yCZqDKwlAiQIKoQQgghhBBCCCGEaPS8OYc3iOrXdTyBIKpkogp5BwghhBBCCCGEEEKIRu9wZ6IaAVSQgaWEBFGFEEIIIYQQQgghRBNwuIOoxqBSIANLCQmiCiGEEEIIIYQQQogmIBhEbXF4gqiu0CCqZKIe8eQdIIQQQgghhBBCCCEavcOeiRrozm8GzJKJesSTIKoQQgghhBBCCCGEaPQOdxDVyESVeqgCJIhaY2lpafTu3ZshQ4Y09K4IIYQQQgghhBBCHHEaKhNVuvILkCBqjU2ZMoW1a9fy999/N/SuCCGEEEIIIYQQQhxxGmpgKRlUSoAEUYUQQgghhBBCCCFEEyDd+UVDkneBEEIIIYQQQgghhGj0vDkN1J1fMlEFEkQVQgghhBBCCCGEEI2c3+vHV+gDJBNVNAx5FwghhBBCCCGEEEKIRs2X5wvOW+JkYClx+Mm7QAghhBBCCCGEEEI0akY9VFOUCZP18ISzjIGl7NKdXyBBVCGEEEIIIYQQQgjRyBlBVGsL62F7TqM7v2SiCpAgqhBCCCGEEEIIIYRo5Iwg6uGqhwoysJQIJ0FUIYQQQgghhBBCCNGoNUQQVQaWEqGOuHfBrl27OOmkk+jduzf9+/dn9uzZDb1LQgghhBBCCCGEEKIKDZqJKkFUARy+d14jYbFYeOGFFxg4cCAHDhxg0KBBjB49mqioqIbeNSGEEEIIIYQQQghRAU+OB2igTFTpzi84AoOoKSkppKSkANCqVSsSEhLIzs6WIKoQQgghhBBCCCFEI9UgmagysJQI0ejeBb/++itnn302qampaJrG3Llzy60zbdo0OnXqREREBIMHD2bhwoV1eq4lS5bg9/tp167dQe61EEIIIYQQQgghhDhUGrI7v9REFdAIM1GLiooYMGAAV111FePGjSt3/6xZs7j11luZNm0axx13HK+99hqjRo1i7dq1tG/fHoDBgwfjcrnKPfb7778nNTUVgKysLK644grefPPNKvfH5XKFbSs/Px8Aj8eDx+Op8+sUQjQOxudYPs9CNA/ymRaieZHPtBDNj3yuRV15stV7RovRDtv7p9gbCNzqurxnK9EcPtM13XdN1wNh9UZI0zQ+++wzxo4dG1x27LHHMmjQIF555ZXgsl69ejF27Fgef/zxGm3X5XJx2mmnMWnSJC6//PIq13344Yd55JFHyi3/8MMPiYyMrNkLEUIIIYQQQgghhBB1FvnvSKxLrBRPKcZz2uEJ2M2w25kTEcHZLhfXOJ2H5TnF4VdcXMyECRPIy8sjNja20vUaXSZqVdxuN//88w/33HNP2PLTTz+dxYsX12gbuq4zceJETj755GoDqAD33nsvU6dODd7Oz8+nXbt2jBw5ksTExNq9ACFEo+PxeJg/fz6nnXYaVqu1oXdHCHGQ5DMtRPMin2khmh/5XIu6WvnUSgooYNCJg0gcfXjiMT9v2wbp6fTo3JnRHTseludsaprDZ9rodV6dJhVEzczMxOfzkZycHLY8OTmZffv21WgbixYtYtasWfTv3z9Yb3XGjBn069evwvXtdjt2u73ccqvV2mTfHEKI8uQzLUTzIp9pIZoX+UwL0fzI51rUli/PB4A9yX7Y3jvewNRhscj7tRpN+TNd0/1uUkFUg6ZpYbd1XS+3rDLHH388/sDoarWRlpZGWloaPp+v1o8VQgghhBBCCCGEEHUnA0uJhtak3gVJSUmYzeZyWacHDhwol51a36ZMmcLatWv5+++/D+nzCCGEEEIIIYQQQohwDRFEdQWS8Gw1TNwTzVuTCqLabDYGDx7M/Pnzw5bPnz+f4cOHH9LnTktLo3fv3gwZMuSQPo8QQgghhBBCCCGEKOX3+PEXqYCmZKKKhtLouvMXFhayefPm4O1t27axfPlyEhISaN++PVOnTuXyyy/n6KOPZtiwYbz++uvs3LmTG2644ZDu15QpU5gyZQr5+fnExcUd0ucSQgghhBBCCCGEEIqRhQpgjjUftueVTFQRqtEFUZcsWcLIkSODt6dOnQrAlVdeyfTp0xk/fjxZWVk8+uij7N27l759+zJv3jw6dOjQULsshBBCCCGEEEIIIQ4RI4hqjjFjshy+rFB3IIgqmagCGmEQ9aSTTkIPpEtXZvLkyUyePPkw7ZEiA0sJIYQQQgghhBBCHH4NUQ8VSrvz2ySIKmhiNVEbkgwsJYQQQgghhBBCCHH4NVQQVbrzi1ASRBVCCCGEEEIIIYQQjVYwiNqiYTJRpTu/AAmiCiGEEEIIIYQQQohGTDJRRWMgQdQaSktLo3fv3gwZMqShd0UIIYQQQgghhBDiiNFgNVFlYCkRQt4FNSQ1UYUQQgghhBBCCCEOv5LNJYAMLCUalrwLhBBCCCGEEEIIIUSjlDEng72v7wUgfkT8YX1uozu/XbrzCySIKoQQQgghhBBCCCEaoYJ/Clh3+ToA2tzUhpbntzyszy+ZqCKUvAtqSGqiCiGEEEIIIYQQQtSOJ8eDc7cTv8dfq8e59rhYdc4q/CV+WpzRgi7PdTlEe1jFPsjAUiLE4S0m0YRNmTKFKVOmkJ+fT1xcXEPvjhBCCCGEEEIIIUSjtu/9fWy4egO6R2V0WpOs2FJs2FrbsKXaSByVSNL5SZis4Tl+viIfq85ZhTvdTWTvSPrM6oPJcnB5gH5d5/YtW/g+O5trU1KYlJJCtKXysFiux0PJoRpYyueDhQthzhzo2hVuuaV+ty8OCQmiCiGEEEIIIYQQQoggb4GX/e/vxxxjJvnSZLQ6ZGLu/3A/669cD35UP2g/eDI9eDI9FK0qUuu8ux9bGxttprQh9bpUrIlWdL/OuivWUbi0EGuSlX5f9sMSd3DhK13XuXnTJtLS0wGYumUL/96xg5vbtuWmNm1IsFqD6y4rKOCV9HQ+2L8fZyCIGltFsLXGPB745Rf45BOYOxcOHFDLe/eWIGoTIUFUIYQQQgghhBBCCIFrj4vdL+0m/bV0fHk+AEo2ldDx4Y61CqTun7lf1TL1Q8p1KXSf1h1Ptgf3XjfufW7ce90Ury9m79t7ce9xs+2+bex4dAfJlyWjWTUyP81Es2n0+awPjs6Og3pNuq5zz9atpKWnowE3t2nD19nZbC4p4eHt23l6506uT02lX1QUr+3dyx/5+cHH9o2K4p727UkMCbLWmscD99wD06dDdnbp8oQEOPdcuOAC0HWQkgGNngRRhRBCCCGEEEIIIY5ghSsL2fXsLg58eADdq7re29vbce10sePRHQA1DqQe+PgA6y4NBFCvTaH7K93RTBq2ljZsLW3Qv3Tdjg935MDMA+x+cTeFywrZ++be4H093uhB/PHxB/3aHtuxg6d27QLg1e7duS41lWd1nU8yMnh8xw5WFBXx3O7dwfWtmsa4li2ZnJrK8Q4HBx3afPddeO45Nd+yJZx/PowbByedBAcTnBWHnQRRaygtLY20tDR8Pl9D74oQQgghhBBCCCHEQdN1nQ3XbmDf2/uCy+JOjKPdHe1IPCuR3S/sZsvtW2ocSD3wyQHWTlgLfmh9VWu6v6YCqJUx2U20vrI1yVckk/dbHrtf3E3Wl1kk3dOWxMtaHfTre2bnTh7avh2A57t04brUVADMmsb4Vq24qGVLvs3O5pldu9jndjMhOZlrWremtd0O+/fD0KGwezfcdBPcfjskJdVuB/z+0gDqgw+qZjYf9OsSDUOCqDUkA0sJIYQQQgghhBCiOTnw4QEVQDVBywtb0u72dsQOiQ3e325qO4BqA6m6rpMxJ4N1l6wDHyRfkUyPN3pUGUANpWka8SfE816nQm6ZkgnaLvh1F9FmMwkWCy0sFlrbbDzdpQv9oqNrtM1pe/Zw59atAPynUydubdeuwucdlZjIqMTE8DsKC+Gss2DDBnX7iSfg5ZdrH0z97jtYtw5iYmDqVAmgNnH1PLyYEEIIIYQQQgghhGjsPNkeNt+2GYBOj3Wiz8w+YQFUQ7up7ejybBcAdjy6g+0Pb0fXdVzpLva9v4/1V63njw5/sPbCteheneTLkun5dk80c+06wn+Xnc1tmzcT2n++0Odjp8vFiqIivsvJ4f5t22q0rZn79zNl0yYA7mvfnvs6dKj5jni9MH48/POPCpa++SYMGgRFRSqY2qkT3HcfZGVVv61nn1XTSZNAEvKaPMlEFUIIIYQQQgghhDjCbLlzC54MD5F9Iml3R/kszVBlM1L3vbsP1w5X2DqaVSPlmhS6/a9brQOoG4uLGb9mDX7gqtateb17d3K9XnICbUtJCRPWrePrrCzSXS5S7fZKt+X1+4MZqDe3acO/O3Wq+Y7oOkyeDPPmgcMBX36puvRffbWaf/hhWLYMHn8cZsxQ85Vlpa5YAT/+qLJPb7655vsgGi3JRBVCCCGEEEIIIYQ4guQuyA3WQe3xeg9MturDQ6EZqa4dLtAgenA07e5sR/9v+3N8zvFqEKlaBlBzPR7OWbWKPJ+PYbGxvNK9OxaTiSSbjW6RkRwTG8slyckcHxeHD3hn374qt/dFVha7XS5aWq081aVLjQbDCvrPf+CNN8Bkgo8+UgFUAE2Dc85R2amff66yUXfvhhtvrHxbzz+vphdcALXJhBWNlmSiCiGEEEIIIYQQQhwhfE4fG65XtT5Tb0glbnjNu5m3m9qOqH5R+Ap9xI+Ix5pwcKPL+3SdS9atY0NJCW3tdj7t0we7qeKA7qSUFH7Ly+OtvXu5t317TJUER/+3Zw8A16WkVLqtCk2fDg88oOZfegnOPbf8OkYwNTVVBVhnzYLzz4eLLgpfLz0dPvxQzU+dWvN9EI2aZKLWUFpaGr1792bIkCENvStCCCGEEEIIIYQQdbLz8Z2UbCjB1tpGp8dr0dU9IOG0BFqe1/KgA6gA92zdyrfZ2ThMJj7v25fWVXTTv6BlS+LMZrY5nfyYk1PhOqsLC/k5NxczcH1qas13ZP58VbcU4O67YcqUqtc/+mhVFxVU9/+y2bFpaeDxwHHHwTHH1Hw/RKMmmag1NGXKFKZMmUJ+fj5xUgxYCCGEEEIIIYQQTUzRuiJ2Pr4TgK4vdcUaX/tA6LdZWfyen0++z0e+10tBYFro83FBy5bc2q7q+qqG9/bt45lduwB4p2dPBsXEVLl+pNnMZcnJpKWn88bevZyWkKDu8PtV93sgLT0dgLFJSbSLiKjZC9J1uOYaNaDUhAnw3//W7HH336/qpC5fDtdfD3PnqkzVoiJ45RW1zu2312xbokmQTNR6ovv1ht4FIYQQQgghhBBCiArpfp2N129E9+gknJVAywta1nobr6WnM2rVKh7dsYMXdu/m7X37mJ2RwXc5OSzKz+f2LVvYVFxc7XZWFBYyaYMqKfB/7dszvlWrGj3/pEB26dzMTDJKSuDWWyEmBm67jdysLN4LZITe2KZNzV/UihWwaxdERsKbbwYDstWy2eC998BqhS++UANNAbz7LuTkQJcuquu/aDYkiFoPitYUsTBmIX/3+5vMzzPRdQmoCiGEEEIIIYQQovHY+/Ze8hbmYYo00T2te+0GXAK+ycpiysaNAJyXlMQ97dvzn06deLlrV97t2ZOT4uPxA4/t2FHldnRdZ+rmzbh1nbMSEni0U81LCgyIjmZITAweXefd55+HF1+E4mJ44QXeveMOiv1++kRGMiI+vuYv7Ntv1XTkSHA4av44gH794JFHANBvvpmrXz6VXY+o7NN1l55Boa+kdtsTjZoEUevBvvf24S/2U7S6iNVjV7N06FJyfqy4PocQQgghhBBCCCHE4eTc4WTL7VsA6PRYJyI61LCre8DyggIuWrsWH3BlcjJz+vTh8c6dua9DB25s25YrWrfmmS5dAPhg/37WFxVVuq3vsrP5KTcXm6bxv27dKh0gqjKTAt3432zbFt1qhUcewd+jB2knnwzAjTNnoq1eXfMNfvONmo4aVav9CLrzTjj2WLS8PB584EfaHXCSEwFDPNOIfyKeY988lrvm38W6jHV1275oNCSIWg+yv8kGIGFUAqZIEwV/FbDi1BUsP2U5eX/kNfDeCSGEEEIIIYQQ4kil+3TWXbkOX76P2KGxtLm5Fl3dgd1OJ2etWkWhz8fJ8fG83qNHhVmsg2NiODcxET/waCXZqD5d566tWwG4qU0bOtY28zMzk4uvuIKokhI2tG/Pwnnz4MEHmb9gAZvatSO2qIjLXnkFjjpK1SP1eqveXl4eLFqk5usaRLVY8Lz9Jk6rRsdACGjR6L60TO6IT/fx156/eHrx04ydNVZ6LjdxEkQ9SM7dTopWFYEJes3oxdCtQ2lzcxs0m0buT7ksG7aM1eNWU7JVUriFEEIIIYQQQghxeO16bhd5C/IwRZno9X4vTJaah4LyvV7OWrWKdLeb3pGRzOnTB1sVNUMf7tgRgJkHDrC2gmzUGfv2saqoiHiLhfs6dKjdC9m5E044gZjffuOSQODzjUDt0/8dOADAVSkpRJ91Fvh88NxzqsZpVX74Qa3bvTt07ly7/QnxsXcF95ysAqS6xcKYl75l2y3b2HHrDt4b+x4Rlgg2Zm1kTcaaOj+HaHgSRD1I2d+qLNTYY2KxJlqxJdvo9mI3jt10LK2vaQ0myPw0k796/cWWu7fgza/mKogQQgghhBBCCCFEPShcUci2/9sGQNcXuuLoUvPMT4/fz0Vr1rCyqIjWNhvz+vcn3mqt8jEDY2I4PykJHXhk+/aw+0p8Pu7fpvbl/9q3J6GabYXZuhWOOw7Wr4e2bZl00UUAfJKRwT8FBXydlQXA5J494ZNP4N//Vo97552qt3uwXflRNV6fWPQELx0LP11/Otr770MguNs+rj2XD7ic0zqfBsDc9XPr/Dyi4UkQ9SAFu/KfmRC2PKJ9BD3f7MnRK46mxWkt0N06u57axZ/d/iT9jXR0n6RwCyGEEEIIIYQQom4KVxeS8VkGviJfhff7nD7WXroW3aOTeE4iKdek1Gr7N2/ezHc5OUSaTHzZty8dImpWR9XIRv04I4NVhYXB5S/u3s0et5v2djs3tqldSQEefBB274aePWHxYob060f/qCicfj/nrV6NDpyZkED3yEi1/qRJYLHAX3/B2rUVb1PXSweVOogg6rxN81h9YDVREdEc9fxMGD++3Dpje44FJIja1EkQtYbS0tLo3bs3Q4YMCS7ze/zk/KAGkEoYlVDh46L7RtP/u/70+6ofju4OPAc8bLxuI0sGLSH99XRc6a7Dsv9CCCGEEEIIIYRo2nxFPva+s5elw5aypN8S1py/hj97/Mm+9/eh+8OTtbbdt43iNcVYW1np8UbFdUwrs66oiFfT09GAmb17c3RsbI0f2y86mgtbtgRKs1Ez3W4e37kTgP906kSE2Vzj7VFYCJ99puanT4d27dA0jUkpKii8y6XiKmGB2VatYPRoNf/uuxVvd9Uq2LMHHA7W905m8a7FNd+nEE8segKAGwbfQAtHiwrXGdN9DBoa/+z9h115u+r0PKLhSRC1hqZMmcLatWv5+++/AfgpN5f83/Px5fuwJlmJOTqm0sdqmkbiWYkMWT2Eri90xRJvoWhlERuv38jvbX7nn2P+Yfu/t1O4olCKDAshhBBCCCGEECJMwfICNk7eyOLUxWy4egP5f+SjWTSsyVbce9ysv3w9S4cvDQ5unfNjDruf3w1Az7d7Ymtlq9XzvbV3LwBnJyZydlJSrff3oY4d0YA5mZksLyjg3zt2kO/zMTA6mgnJybXb2GefQXExdOsGxxwTXHxpcjIRgfqsnSMiODOhTHLbxIlq+v77qu5pWYGu/Gv7tqbPO4M57u3j+G3nb7Xatd92/sZvO3/DZrZx27DbKl2vVVQrjmt/HABfbPiiVs8hGg8JotbRpE2b2PLFfgBanNECzVT9FR2T1UTbW9py7OZj6fSfTsQcqwKvBX8XsP2B7SwZuIQ/Ov7BusvXsWfaHgqWFeD3+g/p6xBCCCGEEEIIIUTjpPt1Nt28iX+O+of0V9Lx5fuI6BxBp8c7MXTXUIZuH0qn/3bCHG2m4M8Clg1bxtpL17LuynUApN6QSuJZibV6Tpffz7v7VbzDyPasrT5RUVzcqhUAUzZtYlp6OgBPd+6MqRYZsYAKggJcdhmEPLaF1crlgYDsrW3bYi673bPOgsRESE+H+fPLbTbr0w8AmJa0Db+uYi//XfjfWu3ak4ueBOCK/leQGpNa5bpje4wFYO6GubV6DtF4SBC1jvJ8PtZ9sQ+AxFG1+0KyJlrpcF8HBv8xmGF7h9H9je4knpOIyWHCtdPF/vf3s2nKJv4Z9A+/xf/G8pOXs/X/tpLxaQbOHU7JVhVCCCGEEEIIIZo53aez8fqN7Hl5D2jQ8sKWDPhhAMduOpYO93TA3tqOOcJMh3s7cMzGY2h9VWvQ4MCHB3DvcePo5qDLM11q/bxfZGaS6fGQarOVz+6shQc7dMAELM7Px6PrnNGiBafWdnt798IPP6j5Sy8td/eLXbvy68CBFddYtdlgwgQ1P316cPG+wn1c9d44YpesAmDloFReG/MaJs3EN5u/Yfm+5TXatVX7V/HVxq/Q0LjzuDurXf/cnucC8Mv2X8gpyanRc4jGxdLQO9BUdc+30HaTjq5B/OkV17yoCXtrO6nXppJ6bSq+Yh95C/PI+z2P/N/zyf9DlQvI/TmX3J9zg4+xJFqIGRRDzOAYogdFEzM4hohOEbWqbyKEEEIIIYQQQojGye/1s+HqDeyfsR9M0HN6T1pf3rrS9e0pdnq+3ZM2U9qw+fbNFK8tptcHvTBH1aL2aMAbga78V7VujcVU99y7nlFRTEhO5v39+9GAJ7vUPqDLzJng98Pw4VDB4x1mMyfEx1f++IkT4eWXYe5cyMnh64zFXPbZZYxcmovVDxltWvDNgxuJskXx07afmLVmFk8uepKPxn1U7a49tfgpAC7ofQHdE7tXu37XhK70admHNRlrmLdpHpf2Lx8UFo2bBFHr6MVdrYA81veAhUXpPNiy40Fv0xxpJuGMBBLOUFdmdJ9O0bqiYEC1cGkhRauL8GZ5yZmfQ8780isXlniLCqgOiglOHV0daGYJrAohhBBCCCGEEE2F3+Nn3WXryPg4A8zQ+4PetBrfqkaPjRkcw1G/HIWu63VKtNpWUsL8HBVruKaOXflDPdqxI0sKCjgvKYkB0dG138CMGWp62WV124GjjoJ+/WDVKvyzZnJd8b/JdeZyWXoikEXLcZeDLQqAe46/h1lrZvHxmo95bORjdE3oWulmt+du56NVKtB693F313h3xvYcy5qMNczdMFeCqE2QBFHrKO43Jy7gr2Ng+vbtDIiO5tw6FFuuimbWiO4bTXTfaFInqdoafpefwlWFFC4tpOCfAgqXFlK4shBvrpfcn3LJ/Sm39PF2jaheUUT1DW/29nbJWhVCCCGEEEIIIRoZv8vP2ovXkjk3E82q0XtWb1qe17LW26nrOf87+1TZwlNbtKCTw1GnbYTq5HCwLmQwqFpZswaWLQOrFS66qG7b0DS48kq44w4KX08j/dx0Ym0xnLc9Qt0/alRw1YGtBzKq6yi+2fwNTy96mtfOfq3SzT67+Fl8uo/TOp/G4NTBNd6dsT3H8p+F/+Hbzd/i9DqJsETU7XWJBiFB1DrKW5BHBBG0H9MSyOCydev4rn9/hsXGHtIApcluIvboWGKPjg0u87v9FK0pCgZWC5YWULSyCH+Jn8LlhRQuLwzbhjnGTFQfFVCN7BOpgqu9o7Cl2CS4KoQQQgghhBBCNABfiY81F6whe142ml2j75y+tR4U6mB4/X7eDnTlv7YeslCDduyA1q3Bbq/d4z5QAz8xerQaIKquLr0U7r6b2GVr6DEczus6Am33VxARASNGhK167/H38s3mb5i+YjoPnfRQhYNFLd61mDeWvgGo7NXaGJwymDYxbdhTsIeftv3E6G6j6/66xGEnQdQ68uX7sCRa+L+xPfl1jYdfcnM5btkyujocjEtKYlzLlhwdE3NYgpImm4mYo2KIOSqGlGvUF53u03Fud1K0uki1NWpavL4YX4GP/D9UiYCw7USZcHR14OjqILJbJI5ujmCzJUuAVQghhBBCCCGEOBRKtpSw5sI1FC4rxOQw0ffzviScVvdBneriu5wc9rjdJFosjD3Ynra6Dt99B089BT//DEOHqmlEDTMv/f7SIGpdu/IbWrdGH3Um2ldfc+UKODcykNk7ciSUybY9ocMJHNfuOBbtWsTzvz/P06c/HXb/yv0rOevDs3D5XJzd/WxGdhxZq13RNI2xPceS9ncac9fPlSBqE3PEBVELCgo4+eST8Xg8+Hw+br75ZiZNmlSnbSWcnoDNamZ2795M3rSJLzIz2VxSwpO7dvHkrl20t9s5v2VLzkxI4LjYWKIth+/PrZk1HF0cOLo4SDq39MvP7/FTsqkkGFQ1WsmWEvxFfopWFFG0oqjc9swxZhVgNQKrnR1EdIwgokME9nZ2TLa6F5sWQgghhBBCCCGOVBlzM1g/cT2+PB/WJCt95vQh/sT4w74fbwayUK9o3Rp7XQeU8njg449V8HTlytLlf/wBt9wCr1XeRT7MwoWwcyfExsKYMXXblxDrRx9Lr6++5oqVGinaJrUwpCt/qHuPv5cxH43h1X9e5b4T7qOFQw0mviV7C2e8fwa5zlyOa3ccMy+YWadks3N7nEva32l8vuFzXjnrFcym2g/+JRrGERdEjYyMZMGCBURGRlJcXEzfvn05//zzSaxDanjCKHVVKMlm4+M+fSjwepmXnc2cjAzmZWWx0+Xihd27eWH3biyaxtExMZwUH89J8fGHPahqMFlNRPVW3fe5sHS53+PHuc1JyaYSijcVU7KpJNicO5z4CnwULiukcFlh+Y1qYEu1EdExAltLG+ZYM5Y4C5Y4C+Y4M5bYkHljeWAdzaqhmQPNJJmuQgghhBBCCCGaPt2v49rlwrnDSUSnCCLalc/A9Hv8bL13K7uf3Q1A7PBYes/qTUTbutfJ1HWdL7OyWJSXR1eHg35RUfSNiqo2/rDX5eLLzEygjl35dR3efBP+/W8V/ASIioLrroMBA+Cqq+D111VG6lVXVb+9999X0wsvrHn2ahXeaLOP+yOgTb4OC39TCysJoo7uNpr+yf1ZuX8laX+ncf+J95NekM5pM05jX+E++if356sJXxFpjazTvozoOII4exwHig7w554/Gd5ueF1fljjMjrggqtlsJjJSvdGdTic+nw9d1+u0rYQzwlPrYywWxrdqxfhWrSjx+fg+J4fPMzP5OTeX7U4nf+Tn80d+Pk/s3IlF0zghLo4xiYmcnZhIt8i6ffjqi8lqIrJ7JJHdI0kkPKDsd/kp2VoaVC3eVIxzuxPndieuHS78Tj/uPW7ce9wHtxOayqDVLBrmaDPmGLMKtsZY1Hy0Gc2sgQkVcDWmZjA7zJgiTZgjzZgcJkyRJkwRptIAbWC7mNVrLbuuOTLweIdaJgFdIYQQQgghhBA14c5wk/VllurlublEta0l6K7SWENEpwjiTowjfkQ88SfGo9k11l68lvxFqsxe26lt6fxEZ0zWuvfyXF1YyC2bN/NTbm65+zpFRNAvKophsbFcl5pKgtUadv+7+/bhA4bHxtI7Kqr2T/7JJypgCtCqlco6/de/oIXK4mTHDnjoIZg8GQYOhKOOqnxbTifMnq3mL7+89vtShl/3M2vzXDr3gxv/Dizs2lW1Cmiaxj3H3cOETyfw4p8vMnHgREZ9MIptudvo0qIL3132HfER8XXeH5vZxlndz+LDVR/y+frPJYjahDS6IOqvv/7K008/zT///MPevXv57LPPGDt2bNg606ZN4+mnn2bv3r306dOHF154gRNOOKHGz5Gbm8uIESPYtGkTTz/9NEl1qPURNTAKWytbpfc7zGbOTUri3MC2t5eUsCAvj19yc/klEFT9OTeXn3NzuX3LFro7HIxJTGRMYiLD4+Lqnjp/CJjsJqJ6RRHVq/wXqa7reA54cO5w4tzhxJvtxZtX2nz5vtL5vMB8vprXvWWC1zroXh3dq+N3+vFkeg7TKyzPFGEqDbBGBzJoY0OyaWMrzqwtO29ymKSWrBBCCCGEEEI0M55cD5mfZXJg1gFyfsgBX/l1NKuGvY0d5y4nzm2q7X93v7rTDPjAHGum5zs9aXl+yzrvS7bHw4PbtvFKejp+wK5pjG/Vin1uN6uKitjrdrPN6WSb08kXWVk8vnMnt7Rty21t29LCakXX9WBX/jploZaUwB13qPkpU+Dpp8vVGuX+++HPP2HePBg3DpYsgYRKar5+/TXk5UG7dhCI9Xh8HtZmrKV/cv9an2Mv3rWY9IJ05gyJ4sa/A+ULK8lCNVzY50Lu//l+tuZsZcCrA8guySYlOoX5l8+ndXTrWj1/Rcb2GMuHqz7ks/Wf8cSpT0jcoIlodEHUoqIiBgwYwFVXXcW4cePK3T9r1ixuvfVWpk2bxnHHHcdrr73GqFGjWLt2Le3btwdg8ODBuFyuco/9/vvvSU1NJT4+nhUrVrB//37OP/98LrjgApKTk2u1n3GnxNVq/Y4OBx0dDq5srT5sW0pK+Dori6+ysvglN5eNJSU8t3s3z+3eTYTJxNDYWEbExTEiPp6hsbE4zI2zRoamadiSbdiSbcQeE1vjx+m6CpTqHh3dF2heHXyqS4O/yK+CrQW+4NRX6AO/eix+1T0Cvwq8+kv8+Ip9pdNiv9p+YNv4AgFan47f7cdf4g9ft0Stb/A7A7dzDvLvY9EqDbBWWfYgdD7GojJwhRBCCCGEEEI0GFe6i5wfc8j4JIPsb7PR3aWJQdGDookfEa/GEAmMJxLRLgLNrOEt8JK/OJ/cBbnk/ppLwV8F6B6d6IHR9J7dm8iudeuZ6vX7eW3vXh7cto1srxeA85OSeKZLFzqFBDEzA8HUlUVFvL13LyuLinhsxw5e2r2bW9u2ZWB0NFucTmLMZi5q1ar2O/Lss6oLf9u2qhZq2QAqgMmkuugPHgzbtqkM0y+/VMvLmjFDTS+9FEwmtmRv4eI5F7MkfQl3H3c3T5z6RK12b/YaldXa9pSxsGg1rFgBZZL1yrKYLNw1/C5u+PoGskuyaRHRgu8v/55OLTrV6rkrc2bXM7GZbWzK3sT6zPX0atmrXrYrDi1Nr2tf9sNA07RymajHHnssgwYN4pVXXgku69WrF2PHjuXxxx+v9XP861//4uSTT+bCCy+s8H6XyxUWkM3Pz6ddu3Zs+mITHc7sUOvnq0i+18sPubnMy8nhu5wc9nvCMzBtmsYxMTGcEBvLiXFxDI2JIaqRBlWbMt2vB4Or/uKQoGyhT2XR5qvMWiOj1lfgC2bbht5vLMNf/XPWlCnapIKqMWbMUar0QLD8QKQJU1TF5QlMDpVJazRTVPhtza4d8Ve8PB4P8+fP57TTTsNapkuLEKLpkc+0EM2LfKaFaH4a+nOt+3S8uV7VizJHTXVdx5pgxdLCgiXRgiVeJbJ4Mj3kLcgj7xfVSjaUhG0rsnckSRclkXRhEo5uFQQOK+Er9uHa7iKiW0Sdu+97dZ2L1q/nq+xsAPpERvJsp06cHB9f5eP8us7crCwe27WLNcXFYfdNSk4mrZIu7pXaswdLnz5oxcV433sP/eKLq15/2TIsI0agOZ34HnwQ//33h7woL2zbhmXgQDSPB8+yZcxkFVO+mUKBuwBQwc0l1yyhd8veNdo9v+6n88udSS9M59MLP2WMYyDa+vXop55a7WOdXicDXx/IgeIDzLt4HkPbDq3Rc9bUObPO4dst3/LYSY9x9/C763Xbh1NDf6brQ35+PklJSeTl5REbW3mCYJMKorrdbiIjI5k9ezbnnXdecL1bbrmF5cuXs2DBgmq3uX//fhwOB7GxseTn5zNs2DA++ugj+vfvX+H6Dz/8MI888ki55R/O+JDImPqvY6oD6SYTq81mVlssrLFYyC5zZcas63T1+ejr9dLH56O710t0ve+JOCg64AStWFOtSEMrUVOKQ5ZXd5/n0AY4dZMOEaA7dPQI1UJvE4Fa7giZr+A2jpB5O9B4qlEIIYQQQgghjiQ6aAUapnQTpj0mTOkmzOlmTOkmtKzA+Zde9XmWrukQiTpHK7Pc38mPZ7AHz/Ee/B3qMXOmFnRgmsPBfJsNm65zpdPJmW43tUm18gO/WyzMiohgZyBJ65nCQrr6KqhLUIVBzz9PuwULyOrZk98efxxqkKTT7scfGfTyy+iaRkb//tjz8rDn5GDPz0cLhKhyOnXkwtu68GP2jwD0iuqFzWRjRcEK+kf355Euj9QoIWhd4Tru3XwvkaZI3u37LlZT7YJ8xb5ivLqXWEvNe97W1HeZ3/HK7lfoFtmNp7s/Xe/bFzVXXFzMhAkTqg2iNrru/FXJzMzE5/OV63qfnJzMvn37arSN3bt3c80116DrOrquc+ONN1YaQAW49957mTp1avC2kYk68tSRJCYmVvq4+qLrOlucThbm57MgL4+FeXnscrvZYLGwwWJhTmC9Xg4HQ2NiODYmhmNjY+nlcGA6wjMMmwO/y1+a7Zqvsl39xf5g85X4SucDmbPBeWN5kSqF4C8KZNUWqvsANH9p4LY+hWW8RpkxRZuC8+bowO2o0oxYc0z5LFkjk9bkMAVr1GqW+s+cbQ5XzcSRyyhRorsCU7eO36WmujtkmbGOUcbE6Q+WMgneLild5i/2q+14w8ut6F517NQsGiabCc2qqWbRMEWYggMCmmNUs8Ra1Gc6ZJmxjslmqrDkSvB26Lxfx+QwqeyQFhZMtsqv1DTGz7Tf48dfGPgOLvCVfi8H/s5+Z8j/zlX6Nw5rgQESjb93aPO7VRkc47vfV6Smulsv/bt69GDdcc2shf3vjPlgL4bQng4OE5qt/HNWuC8h25EyNKK+NMbPtBDi4FT3udZ1HV+BD0+GB2+mF0+mB2+u6qpuDDCMpub9Lj+uXS5cu1y4d7lx7VTzvoLqA4HmGDOWBAuWBBUWMbJSffk+FWQNlM6M7BNJ3Mg44kbEEXdiHJYWDR9GeWTnTubv2oUJ+KBXL86tY2xiDPCYrvNVdjYacHYtt6P9+SeWQDJb3NtvM/roo2v2wNGj8TmdmN94g1YrVoTdpZvNuFu35P9OcfNj9o9oaNx3/H383/H/x678XQx4fQArC1fi7OxkXK/yJSDL+nG+CsKO7T2Wc8ecW6vXd6gNKhzEmrlrOLf7uYwaMqrJ9hJtDsfq/Pz8Gq3X8J/+Oij7xtJ1vcZvtsGDB7N8+fIaP5fdbsdut5OWlkZaWhq+wFUZq9V62N4cvWw2esXGcl3btui6znankwW5uSqompvLFqeTdSUlrCsp4Z0DBwCINpvpFRlJr8hIekdFBec7RURgaUSDVolqWMEebYc29btZ3acHT+LrsxHIa/cXqRN6z/56HhzMRDCoanaYVXA1IjzQGjoNrlP2fqPZTPg1P5YVFgothVgdVjRrSHDIpmGyVjNvapoHOlG/gsFMT5nApadMMNPjD7tddn1/sR9vQaAOdKAWtK/AV7rMCMIF5ssN0HeEMEWZsLawYkmwqMBfhAnNrmGym8AGjgwHW2duRfNppX9jT+Dv7SmdD952V3yfETQGgt9vQdXdPsKZIgKlZqLMwVbd7WDZmShz8Ds67DvXpoK0YfMhwXyTzSTfyc3Y4fztLYQ4tHRdR8vXcC5zUrCjgJItgdHst5Tg3O7Ek+EJqzVaV/b2diK7R+Lo7lDTbg4iOkZgTVS/ISrrRu/3+PHmePFkebAmWqscULohvJaezn927QIgrVs3Lmh98IMcjavLNvz+0sGkJk7EMmxY7R7/v//BMceomqgpKcH2e8lGTn7/NFw+F6kxqXxw/gec1PEkALq37M7dx93NIwse4a4f7+KcXucQaa28h7Bf9zNnvUo9G993fKM7jrRr0Y4FV1Xfo7qpaMrH6prud5MKoiYlJWE2m8tlnR44cKDWA0PV1pQpU5gyZQr5+fnExdVuUKn6pGkanRwOOjkcTAyMmnfA7eaP/Hx+z8/n97w8/i4ooNDn4++CAv4uKAh/PJBktdLKaqWVzRacJlqtxJrNxFksxJrNxFosxFkstLRaaWO3Y5fAa7OimTU1eFVs/X0F6LpeWkP2YJsRLCrxobtCfkD5SwO0Xrz1tu9RRLGWtXV7sJmKT+6NzDGzBmZKs8jKLjOapfyyujwODXVlXiudJxBTKLus0tvUYJ3Q2xAeaDKasdz4F9ZxebnB5Pyl2Ynlllc09eno/tIsvNCMvOpu+z3+Gq3bWAJomlUFEjVbyNRmKp13hNRPDpkPq6lsZCBGmMIzII33G5T+bYwgsUdlU/oKAlnzBYEM+oKQetEhy3yFZbJDTFT6HsesMk18xar+NKjvAVeRC9fu8oNIAtiwkUnmIf1b14Vm18Iy7s2RZkx2U1gQ2GQ3gYkav0d1j45m08IDk5FqXrOHZ4qarKbgSMDlgsnuwP8wkMUazGot9tVoH8oG9I0BGr1Z9fddXSMmqr4QVk0gtlzmb9nv2hreF/o5rHY+IvzCn2TxCiGaCt2v494fyP7c41K9Hcr0ogDUyPRbnCpYGmixebGsZGWV2zdFmrC2tGJraVPZnxrhv/ECPTfsbe1EdIggon0E9vZq3t7OjtlRt3FETFYTtla2Rhc8BZibkcHkjRsBeLBDB25oU8/ZNrXxwQfw558QHQ3//W/tH2+zwbXXllv8/OwbcflcnNzpZGZdMIukyKSw++8+7m6mL5/OjrwdPL7wcR47+bFKn+L3Xb+TXpBOjC2G07ucXvt9FKKMJhVEtdlsDB48mPnz54fVRJ0/fz7nntu40rIPp1Y2G+ckJXFOkvpy8fr9bCwpYV1xMeuKilhXXMza4mI2FBdT4veT4fGQ4fGUKyJd5XNYrbS122lnt6tpRETYbQm0Ck1TXTjNkWaow4COldH9gZP7En9pl+OQqa/EFzxZr+06ukfH5/aRk5FDXGRcaTDAXT5AZGSqleMDv88Pzvp7zaIZMAcCObbSAE3Z28H5kEBPsMxFaNf3aDOWGEvY7eDUYS4NmFqbzkBxRld9zay65NV0v3WfjjfPiyfbo7rc5XhVkM+lusL7XX68xV7WLF9Drz69sERYwjMVrSHBsrKBtIrus2jhNZ7L7Ga5/dYqntcs6n9bVRmCps642OF3BcrIFAXKyATma3vb+I4ulykcmsHtqeAChl8FcJvyd7JmVRc8TDYVUNdMgYtXxnzIsrDbId1bw9bVtAofW+k6UD4Du8w0dEiFyi7soQcCHSEX10JvG+8Z9MB+V1AmwmQ3QQTY99rZtXIX1hhr6WepNl93pgoueFpDLixFmoIDd5ojzU3q+1SIw8Hn9FG0ooj8v/Mp/KeQki0lqgv9HlfFv49ryJZqU6PYd1EtoksEjs4ObMk2rC2t6rxCBC3Ky+OSdevwA9empPBwx44NtzOFhXDPPWr+vvtUFmk9KHAV8PXGrwF4+rSnywVQARxWB8+f8Tznf3w+Ty1+iokDJ9IloUuF25u9djYA5/Q4hwhLRL3soziyNbogamFhIZs3bw7e3rZtG8uXLychIYH27dszdepULr/8co4++miGDRvG66+/zs6dO7nhhhsO6X6V7c7fmFlMJnpHRdE7Kgpatgwu9+s6GR4PB9xuDoRM97vdZHs85Pt85Hu95BlTr5f9Hg9Ov1+t7/GwtLCw0uc1Aq2pdjttbDbaBIKrqSHzLSwW+VEqakUzaZgjzJgjDs2PKI/Hw7x58xgxekS1Kfy6HqgtWNEJfdmTe2/52o5htSVDlgVvV1ITslaPCz1Z1Su4DdWvU9PblC6rNIs15LYxX+vlZQMCZq38spD7KlxuqqR+Y0iGXrW1Hqt7bGiAVLoUVymYZVqHx1kTrFgTKv+sejwels1bRpvRbZpsd6KmSNNU8Cx4Ma1l9Y85WMHvZE94YLWqC2EVBWJDy2qEfueWqwdcZnml93tD6hC7/GF1i426t8F5t65q4oYEIXSPjs/jw0fj/815uEQQwc5Pdh7eJzVT8THCWv5YUGkpoYrKDFVQgqjC8kMhj5HsZHE4+Yp9FK0uonBFIQX/FFDwdwFFK4sqLyFkAnuqHXtbO5pdC/9e9KreQLaU8GCptb2VXzb+wujzRsuxugZ0XWd+Tg4Xr12L0+/n7MREXunWrWHPq598EtLToVMnuO22etvslxu/pMRbQteErhzV+qhK1xvbcyyndT6N+Vvnc9t3t/HFJV+UW8ev+/lk7ScAXNTnonrbR3Fka3RB1CVLljBy5MjgbWNQpyuvvJLp06czfvx4srKyePTRR9m7dy99+/Zl3rx5dOjQ4ZDuV2Ppzn8wTJpGss1Gsq3m3RJ0XSfL42G3y8UulytsGjpf00BrhMkUFlRNsdlItdlICZlvbbMRa7HIwFii0dG0QJZNo/vmFEKII0/Yd7Kjoffm4Og+PbznREkgqFumnEkwm9NYVvZ2Rev4KymLolNhCZSwC2Ih07ALXcY08FwVBZODGa7GhTVT6Xy52zphQWijRITf5ceT72Hr2q20a9UOSlCZyu5ajoZdRQkLo2yFr8hHWNzauFDp0vHTMKNvGzSLdvBBWbspbAC4CrPvQ24Hg8dVrGOymmrVm0Acerqu4zngwbXbhSfLgyczvPnd/gprU3sOeChcUUjhikJKNpVUWKbImmQlZkgMMUNiiOwVSUQ71WXelmrDZKldTwuPxwM76ulFNyFFPh/rA71F1xYXs93ppG9UFKMSEhgQHV3u/LfY5+P9/ft5affuYC/SYbGxzOzdu2HHOUlPh6cDI8k/8wxE1F+G58zVMwG4uM/FVX63aJrGS6Neot8r/fhy45fM2zSP0d1Gh63zx+4/2FOwp9F05d+/H+LjwW5v6D0RB6PRhQJOOumksC5CFZk8eTKTJ08+THt0ZNM0jSSbjSSbjYExMRWuYwRad7lcpLvd7HG5SpvbTXpgPsvrxen3s9XpZKuz+n52USYTMRYLMWYzMWYz0WYzESYTESYT9sDUaNEh6xjTSLMZs6ZhBjXVNExVzEeYTMFasFKaQAghhBCHi2YurWsrwnk8HtbOW0u30d0Oecaa36NKSoQNLhca1A2tk23c7w5kHJctIVRSRXmhGtwXlp3s1YODCjZG1QVag9m7IYPAGSUUzJEhA8o5TOHrh2b+VtQDpJL1THZTaXmcaLXdxhLo1f166YWSsnXgAUxgibVUWv5F13U8mSpI6trtwrnDiXOrk5KtJcGpv+jgg/7WllaiB0QTfVR0MHAa0SGi0fwdmwqfrvNVVhbv7N3L8sJCdrgqruX+f9u2kWy1ckZCAqMSEugbFcX7+/fzxt69ZHtVbfEok4mrUlJ4tGNHIs0NfKx45hlwuWD4cAgps3iwckpy+Hbzt4AaBKo6PZN6ctvQ23h68dPc8u0tbM/dTnpBOnsL9rK3cC9rMtYAjaMr//bt0K0btGsHn38O/fo16O6Ig9DogqiNVVPqzn+4hQZaK0+4B6fPFwyyGtO9gSDrXrdbNZeLvMDfuMjvp8jtZl8V2zxUbJpGXCCg6jCZygVjQ29byiyLMJmIMpuJMpuJDJmPMpuJCtyODJmPDmlRZrNk4AohmiWP0WMhUEom3+vFo+uq+f14dB23rmPTNGICAxzGms3EBKapdjtRDX3SIIRo1kxWE6b4xnEh3chOrlHwtaqa8MZjQspXGEHgctm5Fd326mHLKtzXkPsaZRkKDTXYnk0Ly8wOrdMbVq83MF+uFJCRoeswlQ4QGFU6UKDfozKb/SXhg/MFp4H/RU2YIkxY4i2Y48xY4tUo8q50FTitdtR6DWytVU1Ra1J4M9lMFdaitsRZiOofRfSAaKL6R2FvLalyByPH4+GtvXtJS09ne5nkoZZWK70iI+kdFUU7u50/8/P5MSeH/R4P7+3fz3v794et3ykigpvatOHqlBTiLI0gfJOZCa+9puYfeADq8dx17vq5ePwe+rTsQ99WfWv0mAdOfID3V77P5uzNTJk3pcJ1rhp4Vb3tY1399Rd4vbBtGwwbBjNm1Gv8WRxGjeBT2DQ0h+78DS3CbKazw0FnR9V97pw+H/k+HwU+HwVer5r6fBT6fLj8fpx+f3Dq9Psp8fspDNxfEDIt9vnwo64A+nQ9bL7sbT8EtwPgDtSPzfB4DvWfpZzIQGZt2QCr0WJDggvVTe2mxnPlXQjRvLn9frY5nWwqLmZTSQmbS0rYVFLCLpeL/W43Od6DH6W9rd1Od4eD7pGRwemAqCja1mM3ssZK13UKfT6yPB4yPR6yvF419Xgo8fvx6nq5ZvTsMY4DRs/p0It9oRf0WlqttLbZaGWzYZMeGUI0qNDsZCuNo2Zk2TrEYYFXbzXB2JAArpG5GwzkFfuD02Bd4YqyfmuYHex3+oMBQrXj4CusfXA3WKqiAfidftz73FSYTaKBtZVVjUjfLoKIzmowJmNQpogOEWpQNnHYrS4s5OU9e5ixfz8lfvX+S7BYuDYlhTGJifSKjCSpgtJ6br+f3/Ly+DY7m2+zs1lVVMTI+HhuaduWMYmJmA/H+VxREZjN1XfNf+EFKC6GQYPgjDPqdRdmrZkFwMV9L67xY2LsMbw79l3++9t/iY+IJzU6lZSYFFKiU0iNSaVbYje6JnSt1/2sC2PYH4tF/anPPx8eeQTuvx/kJ1fTUqsgaqdOneoUkLn11lu5+eaba/04cWSKMJuJMJvrc4D3GvMFTlLzAgNr5QVKEPgID8Aat71llnl1HaffT7HPR5HPp7JpjXmfj+LQ2yHzhYGAL0Cx30+x3w/1EMC1alq54GpMLYKwxlQyZIUQBr+us93pZGVhIauKilhZVMTKwkI2l5RUWzXQDLSy2WhltRJnsWDVNKwmk5oGmlvXKQgMcGhM8wLfk0Y97p9yc8O2m2qzcUxsLMfExDAoMpKiQ/C6S3w+/szPZ2FeHludTrpERNAnMIhjl4iIeq1N5vb7WVtUxPLCQpYVFrK8sJAVhYXBnhqHQ6LFQmubjZY2G5aQIKyhXNnMwDpGeRxHSMkdRyBYm2i1khRoxnxLqxWHZBgL0SQ0tTrEul9XGaBFfrwFXnRvYCBME2F1eUPr84bV6vVTPqjr0YNBX19hoAWCwSZboCZtpFmVK4gMlCiIrGBZhEkNGFam5rDu0/EWePHmevHl+fDmevHmefG7/MHBm2wptkq7+4ua03Wd9cXFLMrLY3F+PukuF37U75zQaaeICM5LSuKMhIQKj1clPh+zMzJ4LT2dxfn5weUDoqK4qW1bJrRqVe1xzmYycXKLFpzcogVPdemCT9cPXeB01y748kvVv9xo27apDNOWLeHPP9VgURXJy4P//U/N33dfvWahZhRl8MPWHwAY36f6rvyhTutyGqd1Oa3e9uVQ2LJFTe+9F/Lz4cUX4aGHYOVKmD4doqMbdPdELdQqiDp9+vQ6PUnHjh3r9LjGRLrzHxnMId34Dyc9EHw1MmorakVGdm4gqJBfxbQg8D716DpZXi9Z9ZABZtW0YC1ae2A+MlCDNrRubWgd24qWGXVrjWWS7STEoaHrOiV+PzleL7mBi0IlZTL5nX4/br8fS0gw0xaY9+t6sORKaCmW7U5nMGu/rCiTia4OB90iI+nmcNDV4aBTRERwUMMWBzFoYLbHw8biYjaWlASn64uLWVtURLrbzdzMTOZmZqqV4+J46J9/OComhqOiozkqOpqB0dG0rmElf5+us8vpZG1xMQvz8vg1N5e/CwrwVFKz3aZp9AhkxybbbLS0WoPB4pY2G7Fmc9gFOKMHRJ7Xy55AYNioI77b5WJLSUmlz2XXtGAg0ghGRprN6n8YKDFjlJkxEeydCqj3hB9whlzEMy7uFfh8HHC72e/x4A09dgQGsjiU4sxmUux2WttspARalNkc9j6tqJWEzPt1HZOmoRGIjwRef6TZTLzFQpzZTJzFouaNZtwXaDFmM0U+H9leLzleL9keD9mBz0+Rz0dJ4CKpMXXpevD5TIHnMwX+D8ZzGduPL9NCn9sqx0EhDgnNpGGJtkA02JJrPrBuQ9LMGtZ4K9b4xpF93NysLCxkXlYWi/LzWZyXF6w3WpWFeXm8t38/USYToxMTuaBlS0YnJLDd6eT1vXuZsX8/uYHtmIGxSUnc3LYtJ8TF1blH4CELoP71l8oeLXMxOigjAy67DBYsUCmTZU2bpgKpvXpV2Bfd5XXx3O/P0T2xO+N6j6vVrn267lN8uo9BKYPoltitVo9tCowgas+eMGECDBgAN9wAc+bApk0wd27lsWvRuNQqUjRixIhDtR+NXr1259d19QWVlCS52wJQJ3sOsxmH2UzLetieP5BRGxpcLQiUSaguAFt26g2cyHt0HU8goFufrIH6h0ZgNTokABthMmELCdoa87bA4GKh87bAOqHztgoeV3aZVs1AdkI0FnogQ3N/oKbofre7wvkDga7zuYGao4eCTdPoExVFv6go+kdH0y8qij5RUaTabIeshEiC1crQuDiGljkGF/t8LC0o4K+CAv7Kz+ev/Hy2uVxsdjrZ7HQyOyMjuG6y1Uobu50Eq5VEi4XEQBAyymxml9PJFqeTLSUlbHc6K/zbpdpsnBgfT8/ISLaWlLCmqIh1xcUU+/2sKipiVVH95cDGmc0cFRPDwJAgcBeHg8hDXKbFr+tkezzsCwRUM9xuo3RgkFEmoOx4KKCCxBUFOgtCShEYZQgyPR7cuk6ez0decTHrD0PAtjGyBYK/mjENNHMgIGscu6yBadlyDEYJoNgKgrXxFgtRxjGzzOCcNk2Tkj9CiGbP5ffzSUYG0/bsCcsUBXCYTBwTE8PwuDh6REZiJvyimA78kZ/PpxkZ7HS5mJ2RweyMDKyaFvY7oWNEBJNSUriqdWtSGuvQ6wsXwllnQUGBGtXolFOgY8fSZjLB8cfD4sXw73/Dww+HP764GJ5/Xs3fe2+5OEaRu4jzPz6f77d8D8ANg2/gxVEvYjPX7ALGzDUzgdpnoTYUvx9uvhliYuDxx6tf3wiidumiplddpQKq552nslGPP14FUyMjD90+i/px0Ol2U6dOpX///vTv358+ffpgb6xfGg0pP19d9fnjD/j9d5Uin5UFcXFw7LEwdKhqxxwDiYkNvbeiGTBpmuqKf5AZtUaGbFEg46ZsPdrikOzYYD3aMnVsQ2vbFoas6wzUCfLoOtler7oSXMmIlYeaKTaWiN9/Dw+ylgnQlg3gll0WGpy1BU58TWUGISs7KJmRKVbZfeXur2Dd6p7DVM19uq6HZ6pB2DLjNqG3Q9YxlN1XY74+TtD9gdIZHmMaqP9YmYqeU4Ow/2llV/iN53IHgj/Ffj8lgcyz0Cy0svOuwD4Fy3xA+O2QOpU+XXUnDO3CbmSBugPBprKfnwyPhwMeT/BzUxtmCGa8RZrN2ANBGKNZTSZ8IQM8uQPzACk2G6k2G6l2O23sdlJtNtrZ7XR1OOq1+/rBiDSbOT4+nuPj4wE1kvfMb74hadgwVpWUBLvDbyguZr/Hw/4alkqxahpdHA6GxcZyYlwcJ8TH0zmi/MjEfl1np9PJmuJitpaUqP+V2x38n2W43RT4fBV+/qLNZtra7bSx2WgT+Bu3sdvpHBFBxwqe63AwaaWDRdZsSIe603WdfJ+PvYEBJvcZg0y63ZT4fDgCF9Mqa8Z72fhM66j/hzH1A0WBEj25gbIQoeV68ny+YJZ2XuA4FWU2k2Cx0MJiIcFqpUVg3hgUMjJQqiAyUHeckOfy6Tr+wABp+YHnzA157twyy0LrsAf+IIf4L16eLeRvaARXQzOay2Y4V3jbZAq7XZPH1GQ7xv34fKw3m2lZUECE1VpuO9W1I60ckR441rgC3+fGtLJsbbvJRGTg/19fx2zjeOIDLJrq4WCRoL04zLaXlPDa3r28tXdvcJwLi6ZxVkICI+LjOS4ujoHR0dX2ihvfqhXPdenCkoIC5mRkMCczk80lJVg0jXMTE7kuNZVTW7Ro3N81P/wA556rAqEjR8IXX1Tcf/zVV1Wa5GOPwamnqsie4Y03VCJYp05wySVhD8t15jLmwzEs2rWICEsELq+LV/95leX7l/PJhZ/QJrZNlbuXXpDOgu0LALioz0UH/XIPh3nzIC1NzU+dqiohVKakBHbvVvNGEBXUAFNLlqhA6r/+JQHUpuKgg6gjRoxg5cqVfP3116xZswaz2UyfPn2CgdUxY8bUx342PboOM2fCU0/BihUV/zDOy4Pvv1fN0KMHXHghTJwY/gkTogGEZsjWN09IF9KCkGBRaKA19AQg7GTA78dVZt5dZp2yJw+h95fNMPNrWmktWlHvygZ0QwO/xrwJNVBuaJDUCJoeiv+KGVV/yqppYQPxNIV3QLTZTCurleRAd3Gjq3xwmc0WDALFB4I/R9qJa6yuc2p8PKNCftEW+XysLSoiI5AFmRUYnCnb4yHf56ONzUYXhyPY2trtNepOZ9I0OjocdKxm0ERRnqaVltDpGRXV0Ltz2Hn9fvIDZRUqukBlfA+6/X41DRzTQssxFAVKARUFepCUDdTmer0Uh1wAdZc5/rl1HbfPB429XFV0tErVqQMjaAil2b7GciMDOPQ2IcvLrhu6jbLrhm3zMDyfP+Q94S7zm6cujPIXkYGLBBYtPDPaCMAa70sjUOoJue32+6s8jholYyJMJpIDF+hSQ6YtA0HyYLA38PsgbL6KZcbj7CZT8AJIrMVyeAblEQctx+Ph59xc/srPJyvw/ZXj8QS/yzy6zsDoaIbGxjI0NpYhMTFEBxJGdF1np8vFH/n5/Jmfz++BqfFpaGu3c31KCtempNS4tE8oTdMYEhvLkNhYHu/cmc0lJcRbLLSsYJCoRufrr2HcOJWscuaZ8OmnUNlvlksugW+/hffeg0svVXGM+Hj12KefVuvcfXdYV/8DRQc44/0zWL5vOfER8cybMI8cZw6Xfnopf+z+g0GvD2L2hbM5scOJle7iJ2s/QUdnWNthdIzvWH+v/RB69tnS+Q0bqg6ibtumprGx5XPm2rZVyb9WqeDRZBx0EPXcc8/l3HPPDd4uKSlh9erVrFy5kh9//LHZBFFrVRP199/htttUxqmhY0eVbTpsmJr27QsbN6rsVKNt2KDav/+t2kknqTzvcePgCDy5EM2b1WQi3mQivgGOGHrgxMPt91PodvPtDz9w/MiR+M3m8BORKgKxFS0LDe4aGYdGdlLZQcnK3vZXcZ+vom1Vsa6/zHxDM/atvrOsanNKVPaZfaCySKt5nF3TiDSbcQSyzxwhmWih8/aQDCpz2SmE3WdkzIWefBpBEpvJVGFN4SSrlVaBOptRMghPnUSZzQyJjW3o3RAiyGIykWAykXAYj4PG8c/oWWIEV12B45czcPwKvaAVvB0yX9mycrfLbKMmj6mo50F+YSH2yEi8UG5dY73KfqHrUHpfRcehBsgAPpyMoKJRIzmYrU1pFjWB20Yd/voY3LQixjGvyO8ny+tl7WEo4aEBsWYzLQLH0Y4REXQIZPsb0xYWS9hxO/TYXV+9akR5LuCH3Fx+yc/nx5wclhYWlvu9VtZOl4svsrIAFfjvFxVFW7udfwoL2ed2l1v/1BYtmJyaytmJifXWg0bTNLo1lZTBOXNUYNTjgbFjVZJXdUHk//0PfvsNtm5VRTs/+ghmzIA9eyAlBa68Mrjq7vzdnPreqWzI2kCrqFZ8f9n3DGg9AIAlk5Zw3qzzWHVgFae8dwrPnv4sNx1zU4Wfp5mrm1ZX/qVL4ZdfSm+vWxeetFuW0ZW/a9eKx+KSAGrTUm+j53i9XmbOnElGRga9e/fm6quvblYHnBrVRN2+He65B2bNUrejotTta65RXzhlDRyo2g03qNvZ2TB/PrzzjspO/eUX1W68EcaPV0WeTzhB6qgKcZA0TQvWWY3QdRJ0nY4REVib4RHMGEimssBt2Rp8lWW8VLaOBsGTsbJBXL9ePkjsD9kHf5n1jQFZynblDFsWCFbWNqtEDwlWhmYue3S9wuewBjJlGnXXLCGEqKXQ419T4fF4mDdvHqNPPLHK47Suh5dOCQ3IVlaeBspnAJcdjK2q5WW3cTi3bQRHy5YTKluSqLrjpTfQEyd0oLniQE38isr4GMdM41hpNFvo7ZCyEEaJHONis0fXKfL5guU70kMGMAytwVy2NEfYvF46errxGyR0mTMwqGKx348OqpSHz8d2p5O/Cgqq/HtUxARhJSLK1iWOClz0TAy54GkMLNjKaqWd3U6i1dqszo3ryuv3831ODm+np/NFbCyeNWvC7u8ZGcmIuDja2u3EWyy0sFrV1GLBr+v8XVDAH4FM010uFyuKilgRqEdu0TQGREUFM1WPj4s7snuJzJ6tAqg+H1x8scourcm5TkyMCpwed5yKa5x2GjzxhLrvjjsgIgKAzdmbOfW9U9mRt4N2se344Yof6J7YPbiZLgld+P2a35n05SQ+Wv0Rt3x7Cz9s/YFnTn8mbL0duTv4fffvaGhc2OfCev0THCrPPaemmqauw61fX/X6mzerqXQ0bh7qLYh6ySWXkJiYSM+ePfnkk0+4++67mT17Nt26Nb+R1cpxu1Xh5eeeU6numgZXX61qiVQUPK1MQoIKlo4fD7t2qS+6d95Rly7efFO1Nm3Ul+CECXDUURVfyhBCiABNK63BeCTTAl0IbSYTFVSAEkII0cRpRpCroXekibGYTMSaTAddR78yNlSZgLIOdc1lUAMKGV3Cc7xe9rrd7HA62e50ssPpZIfLxQ6nk3yvt9JMZlBBWncgixsgvw7ZupEmE+0jImhvt9MhIoI2djvWQM+UmgTaTZpGZAXB2ziLJVgSobranjXhCQSgcwJ/N2cgy7tsz6gkq5VuDgdJNQwOry0qYvq+fczYv780Y1TTaGuzcUqLFpzSogUnt2hBm2qyJI365wB7XC7+zM9nj8vFUdHRDIqJqfC9dkTKzobrrlMB1IkTVRyhNn+bY46BRx+F++6DSZNUpDAxEa6/HoACVwEnTT+JPQV76JbQjR+u+IH2ce3LbSbKFsUH53/AMW2O4Y7v7+DLjV/yzeZvuGHwDTw44kFaRrXk4zUfA3BihxNJjUmtj1d/SO3eXZozd+21qlRsdUHUsoNKiaat3o6WGzZsYGVIraKlS5cyadIkfgnNc26OfD644orST9LJJ6tg6oABB7fddu3g//5PfXEtXKgCqnPmqDT6Z59VrUcPFXAdOVJ90TWVbgVCCCGEEEIIcQjZA7VXk2tQt9LIZK1oMMjQeY+uU1KmLnFRoAxCVmBAwQNud3C6LzBf7PezvriY9YewhEErq5U2djtt7XZSAjVmkwKtpc1GktWqBkN0udgZCCQb8wc8HrI9HopqOT5ArNlMV4eDboF64iZNCxtktsDnY4/LxapAtiioAOwlSUl02riRKWecga2OdUXb2O2cX1UhyiPZv/8NubnQr1/tA6iGu+4q7R0LcOutwRKDc9bNYU/BHjrEdWDhVQtJjk6udDOapnHr0Fs5vcvp3DX/Lr7e9DX/+/t/vLfyPe49/l5mrVFxlIv7Xlz7fWwAL70EXi+MGKHKxr7xhurOX5XQ7vyi6au3IGp0dDRbtmyhSyC8PmjQILKzs+tr842TrsPNN6sAqtUK77+vBoWqz4wvTYMTT1QtLU0Vev7wQzWi3oYN6grRo4+q4s6DB6u0++OPh2OPVVmwR3j2mRBCiCOMrhO5dy/aggUqE+PAgdKWmwvduqlj5LHHVj0KgBBCiCPGoey54/T52O1ysTOQ+brT5SLd5cJPmfJJIftSdrkPKK4gcJvj9ZLucuHWdRW49XhYVlh40PscazbTwmIh0mwODgZq1HU3AeluN7tcLvJ9PpYWFrK0mue0aBpnJSQwsXVrRicmovl8zFu/XkocVETX1UhEKSmVDwBVla1bVV1TUINB1TU712xWtVAHD1YxhRtvDN717op3Abhu8HVVBlBD9W7Zm68mfMVP237iju/vYNm+Zdz7473qqTQz43qNq9t+HkYFBfD662r+9tuhVy81v307lJRU/u+S7vzNS70FUV977TXGjh3LqFGj6NWrF+vWraN9+/Ip3U1VhQNLPfIITJumvlRmzICLLjq0O2G3w7nnqlZQAJ99pkbb++03SE9XA1n9+WdpkY7ISOjUCTp3Lt86dpTMVSGEEM2D0wkLFsBXX2H56itO2769Zo/r1En15Dj6aDX6rN0ONlvpFFR5ne3bYceO0umBA+ripc2mLqIaU4dDdXdLTISkpNJpVJTq+unxqBJAxrSoSAV6y7ajjoLp01UJHyGEEE1ahNlM18hIuh6icy9d18n0eNjjcrHb5WKP281el4tMjyfYMgLNBMGyAqHT1jYbCYEapHFmc40GYSrx+djmdLKppITNJSVsLSlBA2IslrBBMmMtFo6Pi6NVSMappyaDNR9piotVTOHFF1Vqo9kMPXvCoEHqd8GgQWo8lcrGZzHce6/6nXH66XDGGQe3T23bqsQtXVe/k1A1TH/Z/gsAl/W/rNabPLnTySy5bgkfrPyA+366j935uxndbTQtoxr/he2334a8POjeHc46S4WBWrSAnBzYtAn69y//GK9X/XwECaI2F5puVCqvBy6Xi7lz57Ju3TpSU1O57LLLiGxmgTpjYKnsJ56gxT33qIVpaTB5csPtlK6rk7rfflNt4UL1xVvdvzYlpTTImpqqikjHxEB0dOl8RIQ6UTSbw6dRUeoLPC6u9ERTiCYoOGDF6NHNcmApIZqt4mL4+GP4/HM1KGNIV0Gf1YqpUye05GRo1aq0RUfD6tXw11/V971qaG3awFdfqRMmIY5gcpwWovmRz3WIPXtUPOG119SFVFADSVdUWsFqVf3JjYGpy/r9dxg+XEX3li+vOKp3kP7z63+4/+f7GdlxJD9d+dNBbavEU8IPW3/guPbHkeBIqKc9PDS8XtWZaft2eOWV0n/B8OHqzz5zpqq0WNa2bSrcYrern65NaFzHWmkOn2kj1peXl0dsbGyl69VbJupll13GtGnTGD9+PF9//TVut7vZBVBDmYwA6sMPw+TJ+HU/Jq2BPhGapjJLO3aEywJXg9xu2LlTpfNX1PLyYO9e1RYvPrjndzjUlam4OJXdareXNptNBWJbtFAnsC1bqhY6n5RUs5EChRBCiP371cnGtGmQlVW6PDUVxozBe8YZfOvxcMb551f9Iy4vD/7+W/XgWLlS/bJ1u9UAkcZU11Uws2NH6NChdNq6tTq5KZtZWlys9ikzM3xaVFQ+a9VmU8fMhITwZjKpQRzWrVPleT76CM4++9D+Tf/4Q/3679ZNpVZ07Hhon08IIYQ40u3fr/qEz5qlInSgEpxuvhmuukr9dli6FJYtU9N//lG9Y/71L5XYNGlS+PZ0He64Q81fddUhCaDqus57K98D4IoBVxz09hxWB2f3OMS/cerJ3LkqgJqYqIbEMfTqpYKolQ0uZdRD7dy5+QZQjzT1FkRduXIlsbGxrF27ljvvvJMTTjiBBQsW8MILL9TXUzQqGqi6IA8+yK87fuWCjy9gRMcRvH3O28TYYxp699TJWdeulVcvzskpDahu2QIZGapEQNnmcqnBs7ze0qnXq77UCwrUtkpKVNu7t+7726JFeFDV4SjfrbIu07InrBXNW61SO1YIIRq7NWvg+edV/XGXSy3r2FGdKJx9tsrY1DR0jwffvHnVby8uDk49VbXGZvFiVWP9hx9UCZ/nnoNbbqn/Y9WmTWoAy08+KV12443Qp48Kpo4ZA8OGqR4o9cHng8LC8OZyqdelaerswpiPjYX27dWFWCGEEKIhlZSoY+a6dSpatmmTuvA4eXLd6qvv2KF+fxjFMk88UQ3cdM45pTVM4+KCF4gBFSS9/Xb1W+j669U57MSJpdv87DP1+yEyUo2ZUgmn10muM5fW0a1rvdt/7fmLjVkbibRGNokappX55x81ZtbZZ0PfvjV7zLPPqunkyeFVEXv2VNPKgqhSD7X5qbcgqtVqRdd1pk+fzn333cdll13G4MGD62vzjY7//PPhxRfZlb+bCz6+gIziDD5Z+wnrM9fzxcVf0KlFp4bexaq1aKGKRB/M/8jrhfx8lc2Tm6umJSXqhCi0OZ2lg3tkZKhmzGdlqWyenBzVNm6st5dYK0YwtbqAa9n52qwbGam6khotKkpNQ4O5Fkvp1O8vDVqHBrBD543bPl/4Y415m630+ez2hvnbCiHEwVi6FB54AEIDo0OHqhOJsWPrL8DXmMTHq9d7441qBIPbblMnbC++WD+vNyMDHntM9UfzelXQ8sILYd8+WLRIBazXrIGnnlIncX37qgJgoa1jR3VCF5qJ6/Go3wWhPV+2bFHT9HT1G6G2WrcOzwLu2lUFefv0qb4uHKh9DG1G90gpRSSEEKIqO3fCQw/Br7+qPtkVlcp78km49lr1m6RDh5ptd+NGFUDdtUs9ZvZsGDKk+sdpmorkeTxq4Kirr1bne5deqo7Bd9+t1rvjjkprqi/bu4xxH49jW+42zuhyBpOHTOasbmdhNtVs8CljQKnze53fOBLH6uj661Ug9b771E/Ka65RXfFjKnlJixerTjs2G0yZEn6fEUStrEqUkYkqQdTmo97OPK677jqGDBlCdnY2Dz30EABFIfXJmhvf//6H0+9m3MfjyCjOoHfL3uSU5LD6wGqOefMY5lw0hxM7nNjQu3loWSyl3Q/ryudTAVYjuJqRobo/GgHYsl0razst29XSmC/LGPCjuLjur6Wxs1pLa97Gx6srm6mp6iDbpo2aj48vDdJ6PKWBWl0vDfSGNoejtH5ubKwK1EpWrxCiPmzeDPffr7q5gfpuOe88daIyfHjD7tvhYLXCq6+qgOWdd6ryBRs2wHvvqe/runC74Zln4IknSnuTjBqlTgL79VO3s7Phu+/UwJXffKNuL1qkWn0xm0uPHTZb+SCn368uzhYWqsDuvn2q7EJZbdqUBlStVtU18sABNTXmKzrmgzredeyouk5WNI2Orr/XK4QQoulwuVSw8j//CT83bNFC9d3u2VP1zZ47F5YsgZdfVsfoCRPgrruqTm1csUIN+HTggNrO/Plq8Kaa0jRVE9XjUTVUr7hCHf/27VO/m5KT1W+GCry97G0mfz0Zl0/15vluy3d8t+U72se157pB13HtoGtJjk6u/M/idTFz9UwAruh/8F35G4qulwY8NU0FR//4QyUCX3yx+llUXByeJzZ/vlr/ssvUnzhUr15qumGD+vlStsu+BFGbn3odWCo3NxeLxUJ0dDSbN2/mscce4913362vzTcKRrHZjIwM7l50N28vf5sERwJLJi3BZrZx7sxz+WfvP1hNVl456xWuGXRNQ++yKEvXVWCwouDqoZp3uVQGTmGhKoVgdGMsKipdz2hli4iHDugV2kKXmUzh2alGANTIBD5cLBZ1UtyiRfjI1EZLTVXdM9u3Vz8YGkE3zeZQBFuIBud2q4ERyvY2yMhQ30MREao5HKXThAR1EtK5s/rOMC7A7NunuqG98UZpjbAJE+CRRyovUROiWX6m585VmSbFxep79Y03VEC5NjZvhksuUSd8oEb5feopOOWUyh/j88GqVerMYOPG0rZhgzqrMGhaeK8LY9DKLl1U69wZ2rVTF9uMHhjVXXDTdRXA3bFDFSHbsUNlAm3YoLJk9+yp3euvraSk0qBq27bquFpQoI7dxtQYIaLscdluV4N3GhcpjZaSorJnHQ654FgLNfpM67r6rjGbpc6+EE1Aoz1Wz5unyueEdrN/4AFVX7Rly/Dvbl2Hn3+Gxx9X5XcMI0bAuHHqOB0aIP3jDxWhy81VJYi++06NE1IXfr+qifr22+p7LzJSHZteew2uuy5s1RJPCTd9cxNvLXsLgDHdx/DoSY8yc/VM3lr2Flklqr681WTligFXkDY6DbulfA/GT9d9yriPx5Eak8rOW3fWOHu1sdm7V52Smkzqp8VHH8Gbb1bfIVbT1E+iPn3Cl3u9qoOp261+ppQtK9+/v3rcvHnq399cNdrPdC0c9oGl3nzzTd555x3i4uLo27cv/fr147bbbquvzTe4tLQ00tLS8Pl8AExfOZ23l7+NSTMxc9zMYPf9X6/6lYlzJzJ77Wyu/fJa1mSs4anTnsJiaobdDZsq42SvsX64jW78ZnNpfbiD4fWWBm2NWrfZ2aprZXq6OhE1pvn55csKGF1HQwO9RispUY8xss693tLSDFu3Vr9vyckqoJqcXFoPNymp4vm4ODnpFKKh5eSo0e3Xr1fBLKNt3aoCbnUVF6cCbW3bwo8/lmZ+jBoF//2vjFA/dqwKfl56qRpg4vzzVd+zF16oWcbkRx+pvmsFBSp4/eKLKjBd3QgHZrP625f9++u6+t43m1VA1HwITqQ0TQWMExNVwLes3FxYu1YFVNeuVcuSk1Vr1ap0agQsQ2uu6ro67m3frs54yk5zclSvmMzM0qBzfbJY1HveaA5HxcdYXS9/AdViUSfLxkVK42+UmKiC1MYFC6PZ7eoxxvHT+FtU1kwmtT9RUerxDXHcLSlRv0l27YL0dEzp6fRevBjzJ5+oCzP796v/v9MZ3gyRkSrTOLS1aqW+X8o2kyk8MG5M/f7yfzOTqfRCsdGiouS3iRDNwdatKhXxyy/V7ZQU1XPjkksq/4xrGpx8smpLlqheHXPmwIIFqt18Mxx7rAqotmunuv0XFaneNF9/rb6b6spkUuV+PB6YMUN9d/Xurbr4h76snK1c8PEFLNu3DJNm4rGRj3HP8fdg0kwclXIUj4x8hNlrZjNtyTT+2P0Hby17ixJvCTPOm1Fu0Oz3VqgBpS7rd1mTDaBCaWaokdNz552qAsJvv6mY9Lp16nAaF1c6dnZ8vKq4UDaACuoQ262b+jmybl14EFXXS0+JJRO1+ai3TNROnToxd+5c7HY7q1atYvXq1axZs4ZPQgcraAaM6LTlPgtem5cnT32Su467K2wdXdd57NfHeOgXVdagR2IPbh92O5cPuJwIS8Nn3glR73y+0sHG8vPDT0CNEaozMtRJ0c6dqtW2dILFUhpYDT2ihU4rWxYTo050KggYNIerZkIEg1pGAMDnK63dZXST1jQVcIuNVZ+JygJfuq6CGBkZsHy5asuWqemOHZXvg92uAhXGIIHGvMNRGuQoKSmd7t+vflnu21d+W8ceq05GRoyo9Z+iWX+m3W548EGVQarr6hf5Bx+ov1dFiorUSdzbb6vbJ5wAH35Yu66DR6K8PBVQNYKq6ekqoBha1zwmRr23jd4toTXLi4tVqsuePeFt//6Ka+o1ViZTaQ13I1jo94eXXahovqr7je8ho5yD0QB271YtM7NhX3dtWCwqmNq2rTojb9eutMeN0Vq3PjQXGoRowup8rHY61fep8X2xe7c6No4YoQZCrMtxf/FiddE2P199pm+7TWWfVlYgsyrbt8Onn6pg6uLF5e8/7TQ1AFRUVO23XRGfT10knTNHPe/IkcG7ftr2E+M+HkeuM5ekyCQ+GvcRp3aufDDNrzd+zdhZY/H6vdx7/L3895T/Bu/LKMog9blUvH4vq/+1mj6tKogmNjCvt2Zl4999V43HdfLJ6rp9fbjwQjVG53PPqbePYd8+FY83mdRP3+Zcjr05/P4+7Jmo/fv3p3v37jgcDnr27MmFF15YX5tulLx+Lxf2vpA7h5evOaJpGg+OeJBeSb2Y9OUkNmRt4LqvruP+n+9nypApTB4ymaTIpAbYayEOEbNZBWZiYystZB7G6KZpBFQPHCgNuhp1cUPnCwvVkdGojVcXmqZ+sBgBpEAzR0UxqKAA07x5KuAaHa2yWByOmrfIyJp1TxVNm9erglJGSY7Q0hxOZ3hJDSOgUlUmWWg2U1yc+uGv62p7xmcgtIV+NoyWnx+eOVUbRi3jqCjVDbaoSAV/qrvA0aGDquPVo0fptEcP1TeqLp+B4mJ10rF1qwpYde0KZ54pn6eK2GyqnumZZ6o6aFu2wHHHqdF8O3YsDeK0a6feg9deq9IiNE2dED7wQPMciKu+xcXBgAGq1Se/X33O8vLCm9MZ3gvEaJpWfjBJj0dtIyurtBkXLI3votBWUlIawKyoQfmatG536f7m56tWn4xat1WJjFTv49RU/K1asa24mI7HHos5NVVlGSckhJcHMTJvvV6VpRracnJUADs06LJ7t/pOhdJBOI268dHRpUHPsn8b40JxTk5p6SSjdMmyZRW/FoslPMjatm1paYvqWlSUBGBF0+D3q892dHT1vRxqw+dTka733lPDqRuf24rExqoBm0aNUsfJmlww/PlnNUR7UZEaYejtt0uLXNZFx44wdapq6enw+ecqwPnLL6oXyYwZ9TvYr9ms+qK/+mrY8b3AVcAlcy4h15nL0LZD+fiCj2kX167KTZ3V/SzeOPsNrvr8Kh7/7XE6xHXg+qOvB2Dm6pl4/V4GpwxulAHUZ59V5Wh//BFOOqnqdQ9FjVJjcKn168OXG1Uh2rdv3gHUI029/ZJ+4IEHOPvss7nllls49thjaVXX+h5NRI/EHrx97ttoVZzkXdjnQs7seiZvLXuL5/94np15O3nol4d44rcnmDhwIrcNvY1uid0O414L0UiEdtM86qjq13c6wwNHRpXvstPKlhknkEbAK4QJaAeq283BvqbQwKrdXvFgXGWbzaamlf3grKoLUUWMMhBVTUPnjaBeaPkGTVMnh8YgbWVb2eVG3UpDaKZVRVlXFkv438o4CYaKawsbgT0jgGkE+4xApd+vpqHzZZfpemmtvIpaRcGL0IBpYaF63YdSdHTpa64rI8vL+CFtdEMF9TcoKCgdaMco71EZi0X1Wxo4UH1OBw5UQaWD6X5WkchI1QWtd+/63W5zdtJJanCKyZNh5kyV1VKZlBSVrRqSnSIaiNEdPCamcWcD+3zqOza0frtRtsfo1m6URqhqvqJlRqDF+P4xmt+vLsK2basCjfHxwe8un8fD6nnzaD96NOaaZLfUdMBTl0s9R13ObHVd/Y1yclQAe/duVX7AuDhstN271bHKyGyuC4ejfJD3YFsTzRISIfx+FaTbtav0YkHo1OMpTXCIiyudb9tWHW9rG5wvLlY9Uv75R10w2LtXJURkZ5deWPD71W+6bt1KL7AaF1yPOqp2F/FWr1aB0/ffV88VyuEIL8vh8aiapJmZKhvz00/VeoMGqRrro0dX/Lv5229V3VKns/4zREFdXP7Xv1TzeGr0uXP73Dy64FFeXfIqiZGJ9G7Zmz4t+6jWqg/dE7tX3LO1zN/2yUVPcqDoAN0SuvHLlb9UWOO0IhMHTmRH7g4eXvAwk+dNpl1cO0Z3G817K1VX/isGNL4BpUpKVOUnv19VY6guiHooutcbQVRjwCqDDCrVPNVbEPWKK65gyJAhfPXVVzz++OPs37+fTp068UNokeVmZMbYGUTbqq9DFmOP4daht3LjMTfyydpPeGbxM/yz9x9eWfIKry55lXN7nssdw+5geLvhVQZkhTiiRUSU/lCqLeNEp+wJW6B5c3NZ/9df9GrbFrNx0lhSUr4VF1e83Mj+M56ntmUKxOFjBFUPdrA1s7k0Q8g4IY2IKA3Ghganjec1MpZCM8mMkx0jkBka4I+ICK8NXFFLTFSBBiMoExurApLVHUucTnVxIT9fTYuKSjOqo6JKpw6HZEAdJF3XWXVgFVuyt+CwOnBYHERaI4m0RuKwOkiOSibKVscTthYtVK3TG25QAdWdO0uDOLt2qQz/0aPVIFQtW9bvCxPNm9kc3s2+uTqYbDCjd0tUlPptUlnWss+nAkChgdX09NIAdWXNCCxD6e+NqjLwastuLz1+2e2lF3TLTg9mmTENvZgXWn+3otuhA7WFXtyt7DaUXth1uaqed7nUMTg0s9iYN5vV36G6ZrOpaUFBxT1G8vLK/9Y0ju1lLyyYzeq7uXXr8GYMXmSUwQhNBNiyBTZtUm3LFvW+qIvYWNX1/bjjVDv2WPVeLiwsHTPBGC9h9WoVOF23rmY9XpxONYrOqlXhy3v2VKPdn3de5b9TnE510S8tLTyzOyFB1Sa95BKVJRo6GKXB51P7+c03qv31FyxdCmPGqH7bzz4bXt/7s89g/Hj1m2zMGJg9+9AOeFuDAOqaA2u4/LPLWbZPvfaskiw2Zm1k7vq5wXWirFF8cP4HnNvz3Eq3szt/N8/+/iwAT532VI0DqIYHRzzI9rztTF8+nYtmX8SrY15lSfoSLCYLF/e9uFbbOhxmz1axfFBl+qtzKAKbRvJy2UxUCaI2T/UWRI2Li+Pdd98NW7a9rldcm4DOLTrXan3jS2d8n/H8uuNXnvn9Gb7a+BVz189l7vq5HNvmWO4Yfgfn9TyvSRdqFqLRCT3Rad263N26x8OW1FR61DTDJezBeukAW2Wby1XxQCGhzci4NAYQqWj7lT1vZcvLZmJWl6UZGtgz5v1+daJgNOPEoWwzlpvN4T9mQ0+Oyi6D8n8zo8upkRFU9sTMCOqFBvgiI9V9ZTNrK8q2NfbPeJ2hraJlxv/DCJKWndZ36Qaj+2lOjtp2UlLNgqF1ZXR7TU4+NNs/whW5i/hx2498vfFr5m2ex+783ZWuazPbOLXzqZzf83zO6XEOLaPqEOwcMaLi2rFG/UkhRMMxm0svAg8fXvPH6br6HREaVK0u8FqTZvR0MIKKWVmH5nWLmtm27eAeb7y/EhJUYDE+vnRqtZaOVRB64XTTJjX/3XeqGduJiqq+dEfr1jB4sGqdOqnnNZpRmig9PXzgyY0bVUB0/Xo1wNIxx6jR7E84oXS7OTnwyivw0kuq9Aao/R8zRpWuGT26+oxxs1lt+5hj4KGH1EWHZ55RAzD+9JPKSr3iCvj3v2HhQrj8cvU7+MILVbZrA/a19ut+nv/9ef7vp//D5XOR6Ejk5VEv0yqqFasPrGZNxhrVDqwhz5XHFXOvYPn1y4MDW5d1/0/34/Q6OaH9CZzbo/Jga2U0TeP1Ma+zJ38P87fO5/LPLgdgVNdRtIpqfL2Np00rnS8bxKzIoQhsdu+uphkZ6ms1MVHdNrrzSxC1eam3gaVuv/12Bg4cyOWXX14fm2u0jGKzmZmZJBqfjjpal7GO535/jvdWvofbp37UdG7RmZuOuYmrj7qaWHvlxWyFEPWjORTBFkKUaqjP9OfrP+eVJa/wy/ZfcPlKSz84LA76JffD4/NQ7CmmxFtCsac42AwmzcSJHU7k/J7nc0HvC0iJSTls+y5EYybH6XrkdoeXqSkoKM3YLHtxt76WVVR7t7Lbfn/5GsCV3TYueFaUKVrZbeMCa2gGrFF7ODRjtbJmZLbGxFTcO8ToNh86aJpRI7TsYGtut4q4GPX+jZaZWXEpjIgI6NxZ1Q3v1k1NO3SofWkGr1dlif72GyxapNrukIt9UVGqtEZqqmrdupUGTlNT6/a+y89XAc3nnguWBvGfdhp/DB/OsdnZmN9+u7RkSNu2cMstauSfpHoYQ2T7drjvPtVzA9Tf0eVS/4fLL1c1UBuwVvj23O1MnDuRBTtUWbHR3Ubz5tlvVvgbwOPzcNK7J7F412KOaXMMv131G1Zz+P9/2d5lDH59MDo6f177J8e0OabO+5bvyueEd05g5f6VAHxy4SeM6z2uzts7FP75B44+uvQjZjKpt1JlScUFBeojCuqaQhVjB9Va+/aqI9Bvv6kEb1BJ3n/9pcrinn9+/T1XY9QcjtU1HViq3oKoo0ePZvXq1djtdoYMGUK/fv3o168fY8aMqY/NNxr1GUQ17C/cT9rfaaT9nUZ2icpFj7ZFc9XAq7jpmJukbqqolNfvZWfeTvJd+fRP7o9Jq8dC7keI5vCFL4QodbCfaV3XcfvcFLoL0dGrHQgyvSCdG+fdyGfrS+uSdorvxFndzmJ0t9Gc1PEkHFZHhY9dl7GOOevm8Om6T4Pd90BlqE4ZMoX7TrhPBqIURzw5TgtxiO3apcpRpaYe2jIe+/erTNDXXiutz27o1w/uvFN1sT8UWaF//gl33KEiXKBGtJ827aAHwdJ1nXxXPpnFmWQUZ5DnzOO49sfVqOzfrzt+ZcyHYyhwFxBljeK5M55j0qBJVZb425G7g4GvDSTXmctdw+/iydOeDNuXU2ecyk/bfuKSvpfw4bgPD+q1AezJ38OI6SMwaSZW/WtVrUsDHGrXXgtvvQUXX6xK3ObmqmsEfftWvP7y5ao8b1JS/VZIATjjDDX22ZtvwjXXqGVJSSozdfny+h+rsrFpDsfqwx5EDX3i1atXs3r1atauXcsLL7xQn5tvcIciiGoo9hTz3or3eOnPl1iXqaoSa2iM7jaaKUOmMLzdcOIi4ur1OUXTkVmcyQcrP2BD1ga25GxhS/YWduTtwOtXg/p0iOvANUddw9VHXU2b2DYNvLdNR3P4whdClKrNZ9rldfHqkld5Z/k7ZJdkU+AuoNBdGPxeBRjWdhjXHHUN4/uODzsp8ut+3lz6JnfOv5N8Vz4Wk4WpQ6cyceBEeib1rHWd82052/hs/WfMWjOLv/b8BUCMLYY7h9/JbcNuq9EJWXXWZ67n8d8e59J+l3J6l9MPentCHA5ynBaimdm6Ff/99+P/9FNMxx2H6a674PTTD30JGl2HefNUVOvyy+v8fDvzdvKvr//Fsr3LyCzOxOMPDwh3iOvA79f8XmWPkp15Oxn8+mAyizMZ1nYYM86bQZeEmvX5/nTdp4z7WGWEfnvpt5zR9QwA5m2ax1kfnoXNbGPDjRvoGN+xTq+vLI/Pg0kzNbqSg7m5Ku5fUgK//qpi8H/+qWqkXnBBxY+ZM0fdd8wxat36dMstqiLFHXfA00+r/WvRQt2Xn9/8y4w3h2N1TYOo9Za77vV6mTlzJhkZGfTu3ZtJk6q+itLUpKWlkZaWhs/nO2TPEWmN5Iajb+D6wdczf+t8XvzzReZtmsfXm77m601fA9Ampg19WvWhb8u+9GnVh15JvegY35Hk6GTJQmzGftj6A1d8dgV7C/eWu89utmMxWdiRt4MHf3mQhxc8zOhuo5k0aBKju43GYmq4LipCCNEY+XU/H636iPt/vp/tudurXPf33b/z++7fufW7WxnfZzzXDrqWFhEtuO6r6/h1x68AHNPmGN48+036Jfer8z51atGJqcOmctvQ2/huy3fc++O9LN+3nAd/eZCX/3qZB058gOsGX1fnLJAftv7ABR9fQJ4rj1mrZ/HLxF8Y2nZonfdXCCGEqJPOnfG9+y7zxo9n9OjRmA5XwEXT4KyzDmoTi3ct5rxZ53Gg6EDY8ihrFC2jWlLgKmBH3g7GfDSGBRMXVHgBtNhTzNiZY8kszuSo1kfxwxU/EGmNrPE+nN/rfCYfPZlpS6ZxxdwrWHHDCpIik7hz/p0A3HLsLfUWQAXKlQxoLN59VwVQ+/aF449XY5f9+WfVdVEP5UBPPXuq6bp14c+VnNz8A6hHmnqLrlxyySUkJibSs2dPPvnkE+6++25mz55Nt27Noyv6lClTmDJlSjA6fShpmsbpXU7n9C6nsylrEy//9TKfrvuUPQV7gu37Ld+HPcZmttE+rj0d4jqoFh8+bRvbttF+AR4J8vPVAJd5eaUtN1eNp3PmmaXFqMty+9z834//xzO/PwNAz6SejOs1js4tOtOlRRe6JHQhNSYVl9fFnHVzeGPpG/y641e+2vgVX238ivZx7Zk7fi5HpRxV633WdVWH/cknYccOVT++a1d10OnSpbQkUxO90CSEOALpus78rfO5+4e7Wb5vOQAp0Sk8OOJBjk49mmhbNDG2GKJt0UTZosgszuTd5e/y1rK32JS9ibeWvcVby95CQ0NHJ8oaxX9O/g83HnMjzhIzq1dX3oWspjRN48yuZ3J6l9P5eM3H3P/T/WzJ2cLN397Mc388x6MnPcqEfhNqlRHyyt+vcNM3N+HTfUTboil0F3LOR+fw57V/VjowhRBCCCFKTV8+neu/uh63z82A5AFMO2sabWPb0jKyZbBsz5bsLQx7axhL9y5l/Cfj+fziz8MSWnRd57ovr2PZvmUkRSbx2fjPahVANTx7xrP8tus3Vu5fyeWfXc64XuNYm7GWREci951wX7295sZK19VYZACTJ6v4uBHErCqIunWrmh6KIGqvXuHPfygDtqJh1VsQdcOGDaxcuTJ4e+nSpUyaNIlffvmlvp7iiNQtsRsvjXqJl0a9RK4zl7UZa1lzQI3Qt/rAajZmbWRPwR7cPjebszezOXtzhdvR0EiNSSUlJoUYWwxRtiiibdFEW6ODJ4vRtuhgi7KWuR1yf5Q1qtGl8zdWfj88/7yqZ24MiFqWxQK33goPPhh+lWp95nomzJkQrJP3r6P/xTOnP1PhgdZhdXBZ/8u4rP9lrM9cz5tL32T68unszNvJqA9GsejqRTXuIqLrqp7Lo4/C4sWlyzduLB3E09C5M3z++cEHDYQQ4lDbmbeTqz+/mh+3/QhArD2Wu4+7m1uH3lrpCUzr6Nbcffzd3HXcXSzcuZC3lr3F7DWzKfGWMKrrKF456xU6xHcgM1NlQWzYAGefrQYD7tz54PbXpJm4uO/FjOs1jreWvcUjCx5he+52rph7BU8tfor/nvxfxnQfU2WvH6/fy9TvpvLyXy8DcMWAK3j+jOc59b1TWbZvGWd9eBaLr1lMfET8we1swBcbvmD22tncf8L99EjqUS/bbGjFnmKW7l1KTkkOhe5CCtwFFLhU2Qef7uPkTidzQvsT5HeREEI0Uz6/j7vm38VzfzwHqEzQd8e+W2GWaZeELnx5yZeMfHck8zbNY8rXU3h1zKvBY/XzfzzPB6s+wKyZmX3hbDrEd6jTPkVYIpg5biZHv3E0P2z9gZ+3/QzAQyMeqrdjemP288/qN1d0NFx2mVpWkyDq4chE3bZNJUpJELX5qreaqMOHD2fGjBl0CXmX9O/fPyyw2hwcypqodeXxedhTsIcduTvYkbejdBqY35m3M2yk4PoQaY0kxhZDrD022GLsgdu2MreN+ytY32a2YTFZmmUpgsxMuPJKVXoHID5etbi40paXp2q4AKSkwFNPwYQJOm8te5Nbvr2FEm8JiY5E3jrnLc7teW6tnj/PmcdJ757E8n3L6dyiM4uuXkTr6NaVrm+UCXr0UTWKIKiBTK+7TgUFduxQB4MtW2DzZhVULSpSgd9Zs2DUqFr/iRqF5lC/RQhRqqLP9PrM9Zw24zR25+8+6EGb8px5bM3ZysDWA9E0jcJCOPlk+Pvv0nXsdrj3XrjrLnBUPKZUrRW5i3j5r5d54rcnyHPlATC83XCeOOUJTuhwQoX7efGci/l287cA/Pfk/3LP8fegaRp78vdw7JvHsqdgD6d0OoVvLv3moHur/LH7D05850Q8fg8xthjeOfedeh/FN6Mog135u7CZbdjNduwWO3azPfhbAlQmr4YWnEZYImpVXsqv+1m5fyXfb/me77d8z8KdC3H7KrkKGtAqqhXn9zyfC3pfwIiOI2pVRierOIvtudvR0TF+kuuoaevo1rSPa1/jbTVXcpwWovlpKp/rssfSB098kIdOeqjac9fP13/OebPOQ0fnvyf/l3tPuJcftv7AGe+fgV/389KZL3HTsTcd9P69vextrvlCjWLULaEbqyevxmY+BANzNTIXXKDqm/7rX2p8MFDB0169ICoKCgoqLnnbubMKcv76K5xQ/qfTQdF1VQM1Lw9WrlQX1N9+Gx5+GB56qH6fqzFqKp/pqhz2gaVWrVrFhAkTGDVqFL169WLdunWsXbuWr776qj4232g0xiBqdfy6nwNFB9iRu4MDRQco8hRR6C6kyK2mhe7C4LKKboeu59MPTU1Yk2bCYrJgNVmxmq1hmbAx9phgBqzdYsdmsqlp4CTKaraioWHSTGEnTxaThUhrJJHWSKKsUWpqi6p0mdVkrfZES9d1PH4PTq+TaFt0pQfQBQtgwgRIT4eICPUlet11FX+Zf/21KkRtXK3qPH4aW3tNAeCUTqfw3nnvkRqTWqe/677CfQx/azjbcrcxsPVAFkxcQKy9/BeC3w/nnQdffKFuOxxwww2qQHdKJTXRs7Jg3Dj1Wk0mlXF7002HviZ8fWsOX/hCiFJlP9NL0pcw6oNRZBZn0iupF19e8mWNM/Or43bDmDEwfz4kJsI778CLL8KPKtmVTp3UIANjxtTL0wGQXZLNU4ue4sU/X8TpdQLQMrIlEZaIYFAxwhLB/qL97M7fjcPiYMZ5M8oFNJfvW87xbx9PkaeIa466hjfOfqPOtez3F+5n8OuD2VOwhzh7XDDIe/uw23ni1CcOuja30+vkid+e4Infnqj1RWGLyUKiI5GkyCQSIwNTRyJmzYxf9+PX/fh0H37dT6G7kIU7F5ardZcak0qbmDbE2GOC5R5ibDEUeYr4etPXZJdkB9dNikxiTPcx9E7qTacWnegU34lOLTrRIkKNLrE5ezOLdi1i0c5F/LbrN9ZnVpEyAwxtO5QJfScwvu94WkW1qtVrby7kOC1E89NQn2uf34emaTVK4NmUtYmzPzqbDVkbcFgcvDv2XS7sc2GNn+t/f/2Pm75RgdLHT3mcpxc/TXZJNhMHTuTtc96ul/FjdF3nmi+u4d0V7/LlJV8yutvog95mY7dnD3ToAD6fClb2C5Sj93ggMhK8Xti1C9q2DX+cx6POcX0+tY3Uup1eV2nYMPjjD/j4Y0hLU+fJ778Pl15a/8/V2DSHY/VhD6ICuFwu5s6dy7p160hJSeHyyy8nMrL2NT4as6YYRK0vuq7j9rmDoxfnu/KDrcBVEHY735VPgbvqZX7d39AvKYyGhtVsDQZyrSYrNrMNv+7H6XUGm5EhMjhlMAsmLiDKFhXchs8H//kPPPKICkz27Km+RPtVM9aI0wnPPQf/fjqPkuu6QGQWZ8Xexxe3PnbQWbqbszdz3NvHcaDoACM7jmTepfOIsESErfPCC3DbbSp76uab4fbbVRHs6rjd6grg22+r2//6lwogNNT3ps8HmzbB8uWwbJmaZmfDxIlw7bXq9ZXVHL7whRClQj/Ti/Ys4uyPzqbQXciQ1CHMu3RenbJPK+L3qy5kH32ksh5++kmN9qrramTYqVPVj3SACy9U65nrscf3nvw9PPbrY7y59M1KL3CmxqTyxcVfMDh1cIX3f73xa86ZeQ5+3c8TpzzB3cffXev98Pg8nPLeKSzcuZBeSb1YdPUi/rvwv8Fa3id2OJGZ42ZWOUpxVb7f8j1T5k0JlitqFdUKv+7H5XXh8rmqzRKtiyhrFCM7jeT0zqo+fffE7pWe7Hp8Hn7e/jOfrP2Ez9Z/RmZxZoXrxdpjsZltFd6fGpMaFmg2au7uzt8d/K1k1syc2vlULu13Kad0PoUER0K5Yzmo32o5zhx25u1kV94uduXvwuf3EWGJwGF1qKnFgcPqoHfL3lX2UGks5DgtRPNzqD/XTq+TJelL2Ji1kQ2ZG9iYvZGNWRvZnL2Z+Ih4njv9OSb0m1Dpd/v8LfO56JOLyHXm0ja2LZ9f/DmDUgbVej/u/P7O4PEQYEjqEH696tcKv7/rStd18lx5TbIbf2amqmmakaHO4/z+0mYyqVJJ48fDoEGliToPP6zOtU84obRHp6FnT9XNf/58OPXU8Ps2b1bjeTgcqjfloUj8ueoqmD5d9ex8/XXYvRt+/x2GHgHjeDaHY/VhD6Lu3buX5ORkTKbm1y071JEcRK1Puq5T4i3B7XPj9Xvx+Dx4/V68fi9unzssE7bAVUCBu5CV64tYsdrF2g1uMnNcYHaXNnTQdCKj/HTuotOli06LJC8lnmKKPcUUeYrU1K2mxrIid9FBZdde3PdiPjz/QzRNw+lU3d5/+EHdN3Ei/O9/6uS6pm787D7SVj4OGT2JeX8VG9dbaF0P5zdL9y7lpOknUeAuYFyvccy6YFawftv69XDUUSqQO22aCoTWRJ5TZRrF2uN45hm4+24VPDjtNBU4jo8/+P2uqV9/VXVnly2D4uKK12nXDh54QP1fQr/Xm8MXvhCilPGZ9nX1MeGzCbh8LkZ2HMlDPT7n6f9n77zjmyq/MP7cpOnepZSWURAoUGYplb13EZANIgKiiPJTBBVBRAEVxIEoAqKICCKCInvvIasUyp6lbEppC90j4/7+ONwmbZM0SZPO8+XTz824403Ivfd9n/ec53zuhkaNqEPeqJHlHWhRpAyCBQvI13rrVqBbt9zrpKYCn31GE2QqFdml2ML25HHaY8SmxiJLnYVMVWaOuKjWqNGmWht4OXkZ3V43UmZlv5V4udHLZh1/wvYJ+OHkD3B3cMfJ107meKH+e/lfjNowCinZKajkWglrBq5Bu8B2Ju/3QcoDTNw5EWsvrgVABcDm95iPQcGDcg16pQlejajJlxKvETVIzkpGQnoC4tPjc/4SMhKgETWQC3LIBBnkMloqZAo09W+KllVbWpQOqdKocPDWQey/tR8xT2MQ8yQGMU9jEJsam7OOvdweYQFhaFOtDVpXbY1WVVvBx1l/fzI2NRZrLqzBqvOrEPEgIt/79nJ7eDh4wNPREx6OHkjLTsOdpDtIU6aZ3OZg32B0qt4JnWp0Qvvq7eHt5G3W581QZsBebg97ub1Voqr0wfdphil72PK83nJtC8ZvG487SXeMrtevbj8s7rUYfq7ayBFRFPHjyR8xcedEqEU1WlRpgfVD1ls84aQRNRi2bhjWXlwLPxc/nBp7ClXcqxS8YTnhu+9o0rkgatYEBg+mNP7evSnb888/gWHDcq/34otUr2PBAuB//8v93s6dVNC5fn3gwgWrfYRczJ0LTJlCGZ7r19NrcXGAr69tjleSKAv36iIXURs2bIjDhw/D85ly8uTJE0RHR6NZs2bW2H2JgUXUokejIW/RP/7QvmZnB7RrB/TqRTNKGzeSL8rTp9p16tQBtmyhKvLGyFZnI12ZjkxVJpRqJbLV2VBqlFCqlVBqlBAg5ERvSBEcZ2LPoOvKrlBpVJjXbR4mtpyI77+nAlEuLlQtcMQI8z7nveR7qL2gNjJVmagVsRE3tvbBK68Av/9u3n4MsS9mH3qu6olsdTbGhY7Dol6LoFYLaN2aPFC7dQN27DBNVEhXpqPWD7Ugl8lxdtxZeDt5Y8MGSlVIT6fZtqNHiya1/9AhuiFmZNBzZ2cSR5o00YrDc+fSzRYgL5xPPqG22tkV/wU/K4sKebm7A82bk/0DwzCWo1Qq8cEfH+DHuz9CLarRt05fDHf4CyOHO+ZcJwAgKIjE1MGDzS+O98UXwMcf0+NVq8i+xRBjxlC0/vvvA19/XfC+r1wBLl+ma4KbGy2lPxcX21xX393xLr4/8T0ECPgx/Ee8FfaWSdv9ce4PjFhPN7sNQzbk8+6+Gn8VA9YOwMXHFwEAXZ/rinHNxqF3UG+9HqyiKOJqwlX8ffFvfH30a6Rkp0AmyPD2829jVsdZeu1oSgPpynTcenoL6cp0NKzYEA52etIiCuB6wnX8ef5PrL6wGtcSruVkxRiioktFVHWviqoeVeEgd0CGKgMZygxkqjKRocpAclYyridcz7UfAQKaVGoCH2cfqDVqqEU1VBoV1BpaShPQ0iS3bhSw5D/rpHCCk50TXO1dUd2zOmp518r5q+lVE1U9qkIjanJNoCs1SoPPRYiABjhx7AQ6tOsAZ3tn2Mns4GDnABeFC1zsXeAgd7CZgFuUaEQNYlNjc+oZ3Em6g9tJtxGbGpuTySVlfqVkp0AURVRwrpDz5+viiwpOFeDu4J4vs0ohVyAtOw2xqbGITYvFo9RHiE2NxaO0R1Br1Dn/b1J/11nhjJpeNREWEIbnKz+PYN9gLp7GWBVb9L/vJ9/HhB0TsO7yOgBkdRPiH4Ig7yAE+QShToU6qOVdC6vOrcKsQ7Og0qjg4+SDRb0WYXD9wchWZ+N/2/6HX07/AoCKMS55YUmho0azVFlYdX4V2ge2t5qdUFnhpZcoU2fECKBPH8rYkcnoLzmZxvhbtiBX/w0AKlYE7tzJn2U4ZQqN+/73PxJSdVm0CBg/nkRYycLO2mzaBPTtS/23lBTquz19Wvrs7iyhuMfU1qDIRdSQkBCcOXMm57lGo0FYWBgiIyOtsfsSA4uoRYsokjD5ww8keA0bRhe+bt2oMJMu2dkkRv31F7BhA4XpBweTL4lu1XtrseDEAryz4x3IBTm2DN6N0R07IjaWQvdff938/Y3ZOAbLopahTbU2+Cb4EFq2FCCKwJEjQOvW1mnz3xf/xpB/hkCEiD0j9uDYn50xfTp9lxcu5PeOMcTh24fRbjlFFI1tOhZLei8BQJGgbdvSd793LxVbsSXHjtFvITWVhNTvviNRPW/KbEYGsGQJMGcOzQYCZDy+axfg51c8F/z4eOCnnyha+dEjes3BgYTU9u3pr2VLEoUZhjGORtQg4n4ENl3dhI1XN+aIdiMbj0SjW0vx/iQ7iCLQuTN1aLdtowkMiQYN6N5Rv37Bx1q5EnjlFXo8fz5FpBpj1SpK+2/aFCioS5SURFHzKSn63+/ThwYU1kYjavDO9newMGIhAGBWh1n4uN3HRoWpqNgotPq1FTJUGfi47cf4rNNnetdLy07D+G3jseLsihzBzt/VH2NCxuD10NdR2a0yjt49mvN/dz3xes62zSs3x+JeixHiH2LFT1v60YgapGSlICkrCUmZSXia+RRJWUlwsnNCNY9qqOJeBU6KgiuaJaQn4ODtg9gXsw/7YvbhcvzlImi99ZEJshxBVfK3l/zxAeh9LODZ8wIeG9uHpfuT7Ch0raIyVZlIyU6BSqOy+fdlCc4KZ4T6hyIsIAz1fOuhumd1VPesjmoe1cpFERvG+lhTcFFr1FgUsQjT9k1DSnYK5IIc77d6H5+0/wTOCv0d6ajYKIzaMApnH50FAAwKHoRHaY9w6PYhCBDwVdev8F7L98rEBE1JpnZtSrPfuTN/Ro9EaioJqWvWANu3U/9t5kwKisnL8uWUUt+lC6X06/L++8C335K28N131v4kxLVrFMglERICnD5tm2OVNFhEtYDevXtjypQpaK2j9jRs2BDnz5+3xu6tTnp6OurVq4dBgwbhm2++KXiDZ7CIWrTMng1Mm0aPC4r20eXhQ6BZM4o+7NsX+PdfmtGyJqIo4pUNr+CPc3/AVfBF6reRCPSqimvXAHsz+5MX4i6g8U+NoRE1OPrqUbSs2hKvvw4sXQo0bgycOkUisjUYu3ksfjn9C/pWexVbx/4KlYpEgZfNyOCcd2we3tv1HgAaQBwdcxQtqpDZy/jxNNNni1k+URRx+uFpNKnUBFFn5OjUiWYpO3Wim2tBVbDT0qhtc+dSYawXXgDWrVNi+/aiu+BfuULCy++/U5QsQMW7RBGIjc29rkJB0W76OgkMU15Qa9Q4du8Y4tLi8lUvz1Jl4cCtA9h8bTMepT3K2UYGGd5tPhHK7V9hwQ908R83Tpt+n5ICbN5MHfIdO2gSTl+HOy8qFRWLunePLEy+/LLg9j94AFSuTFEICQlUudUQ//xD/qlublQ0ITlZ+6d5ZiOur1iCNRBFETMOzMCsQ7MAABOaT8C87vP0+nI/Sn2EFr+2wK2nt9CzVk9sHra5wCi1mCcx+OX0L/j1zK85hZtkggweDh54kvkkZz2FTIFONTrhpYYv4eVGLxfaF5wxnYcpD/Hf3f+QpcqCXCaHXJBDLpPDTmYHuSCHs8I5p+iniz0VAHW0c4RSrcwX6ZqUmYSbT27iRuINRD+Jxo3EG7iReAMp2blnCBQyBexkdlRcVK7IKTIqvSYIAlRqFVLSU2Bnb5cTpZqpyrSJH25xIxfkqOxeGdU8qiHQIxDVPKohwC0AHg4ecHNwg7uDO9zsaSlCzLGqeJz+mJZpj5GanUoZVTpZVUq1Ek4KJ1RyqYRKrvTn5+oHPxc/KOQKZCgzcv4P05XpSM1OxcXHFxHxIAKnHpxCanaq3vYKEFDZvTICPQLh4+wDDwcPuDu4w8PBAx6OZDXh5+KHALcABLgFwM/Vr9CF5piygVKpxOatm9GsfTPEZcThXvI93Eu+h/vJ95GUlYSO1TuiV1AvgyIoQH2AvTF78emBT3HqwSkAVIxvyQtL0MivUYFtyFZn4/NDn2P24dk59m7uDu5YPWB1uSjQVNw8eQJ4P3OQiY+nAp0FkZwMXLxIHvT6fOaPHQNataJ+0t27ud/r148CrfSl+lsLlYoCYJRKej5wIPnklwdYRDVCQkKCXvHwzp076NWrF1q2bImwsDCcP38e0dHR2Lp1q/mtLwKmTZuG69evo1q1aiyillCWLtVGdJoS7ZOXEyco5T87G/j0UzKhtjbpynS0WtoaZ+OigPth+DH0EMa/YX7Kxwt/voCt17eif73+WDeYUlDi4ynd9MkT617sD9w6gI6/d4Qs2xOauY/Qv689/vnHvDSDYeuG4a8Lf8HdwR3JWcloUqkJIl6PgJ3MDlevkqm3INBsXEF2CuYwbe80zD4yG90rD8HJD1fjSaKANm1IBDHHe/bSJUr3VyqBv/5SwdFxq80v+BkZFL32zz/a15o2pSJegwaRsHP9OlVxPHCAllJRmq+/ptlThikviKKIk/dPYvWF1Vh7cS0epj4scBs3ezf0rN0TvWr1gvKSPTb+NRibN5MA99VXdA7pu85FR1MkhCjSJIduBEFe/v0XGDCAvK3u3tVfrE4f9erRvtevJ78uQ0ip/xMnkpeqhCjSgOHUKWDFCvPtYszh++Pf492d7wIARjQagV/7/AqFXIHHaY+x4coGrLu8Dntj9kKlUeE5r+dw6vVTBfqu6pKtzsaGKxuwJHIJ9sXsAwB4OXqhV1Av9Anqg+61upfatH3GOKIoIl2ZDrlMDoVMAZkgMynKy9DALMdiIDstx+deqVFCFMWciRZ9j3UnY4w9NraPwuwPQI5FlO6fi8IF/m7+JU5kVGvUuJpwFRH3IxD5MBLRT6IR8yQGt57eQoYqo+Ad6CBAgJ+rHyq7VUYt71qo41MHdSrUoVRrnzpwc7BB6hhToshUZWLrta1YeXYltl/fjmzR8GSIi8IFfev2xZD6Q9C9Znc42DkgNTsVO27swL+X/8XW61uRnJUMAPBw8MCXXb7E2NCxZk++RT6IxBtb3kC2Oht/DfwLwb7BhfqM5Z0nT0hILKiPtHs3RZ8+9xz1xaxBYqJWjE1Ozp2N2qgRcP687TzqJerXp7EmYPqEe1mgPImoZt+la9eujc8++wxvvvlmriJS1apVw+nTp7F+/XqcP38eQUFBmD17tmWttzHXr1/HlStX0Lt3b1ywlaswUyjWrwfeeIMef/SR+QIqQGnRS5ZQSP/MmRTR2a+fddvprHDGi1n/4mxGKFA5AqcrvQPgZ7P2cfDWQWy9vhVyQY45nefkvF6hAvnuvfUWRSMOHkz+L4WlbbW2cBErIc0+Fu4hu/HTT73M9mmJuE8FLhb3Woz/bfsfomKjsPDkQkxoMQF16gDh4XSDWrAA+P77wrcZoOJYc/+bCwDYeX8NUL8hmmdPw9at5gmoANk8fPgh8PnnwMSJcnzzje0HLNOnI0es7tOHTNTbts0t6gQF0d/rr5No8s03wOTJwAcfUIdg9GibN5NhipWr8Vex4uwK/HXxL9x8cjPndS9HLwT7BudKoQUoRbZhxYboW6cv2ldvD3u5PRISlGg5OBXXr8vg4ECR9oMGGT5mzZrayPlFi4xfsxZStjtee810ARWgaPkrV4B9+wyLqKJIaWpA/s69IJAVwalTZJViSxF1QosJ8HbyxuiNo7Hy3ErcT7kPjajBoduHcirFA0CTSk3wR78/zBJQASqGNLj+YAyuPxjRidGIS4tDs4Bmej1SmbKFIAhwsTfzhm0EO5kd3B3cWXS3MXKZHMG+wQj2DcbIJiNzXhdFEY/THyPmSQxuJ90mW4nMJCRlJSE5KxlJWUl4kvEEsamxeJDyALGpsVCLavJlTY1F5MP8/iZ+Ln7wc/VDRZeK8HX2zb10yf3c3cGdU61tjFqjRmJGYk5BPqk4X2JGIjwdPRHkE4Ta3rUR4BZg9P9CrVHjwK0DWHV+FdZdXpcjfAKUkVDJtRKquFdBZbfKqOJeBXJBjg1XN+DW01v48/yf+PP8n/Bw8EBT/6Y4du8YMlWZOdv7u/pjQL0B+KjtR/B387foc4YGhOLU2FMWbcvk5uZNSmF//vmCs3tOPfvKw8Ksd3xvbxovx8VRME9oKL0uitQ2gPp9tqRuXa2Ias1gIqbkYHYk6uzZs/Hll1+ievXqWLBgAdq3b2/VBh06dAhff/01IiMj8fDhQ6xfvx4v5hlxLFq0CF9//TUePnyI+vXrY/78+Wjbtq3Jx+jbty++/vprHD16FBcuXOBI1BLGwYNA9+7kd/Laa+QxWpg+0oQJ5Knq6kr+qKZ43plKZiZdiB847YQwoidEiFjaeynGNB1j0vaiKKLFry1w8v5JvNnsTSzqtSjX+2o13YROnyYBbdmywrf56FGg9efvAM0XoIPXCOx/Z4VZ2ydmJMLnK/rtJ05OxN+X/sYbW96Am70brvzvCgLcArBrF/0furpS2mte/1pzUaqVeH7p84iKjYL8SR2ova4CAFb13oiXmvaxaJ+ZmUDDhuTDEx5+Exs2VLXZrNl//5FgKorkZ9jHjCZPnkyRqDIZRcH17VvwNgxT2kjMSMT0fdPxU+RPOUKdFIEyrMEwdKvZzWTfvblz1ZgyRQ4fHxGbNglo1argbaRrlrs7RYC7uuZf59Ilun/IZEBMDFCtmumfb906SukyVhE2KooGHs7OFEmRV6SV2li1KnD7tu2LFGy+uhmD/h6ELLXWPDbUPxQD6g3AgOABCPIJsm0DGOYZZSG6hSEhLT49Hg9SHuBu8l1cS7iGq/FXcTWB/iSbD1NRyBQ5FgIejh45grqupUDOa8/ed7V3hYPcAQ52DnC0c4SD/Nny2XN7uX2pshBJy05DfHp8TrE33cJvGlGT7zuRvgN7uX0+C5YMZQbOx53HmYdncCaW/s49OpdLsDSEi8IFtbxrobZPbcgFeU4bpDbFpcUhMSMxZ/2q7lUxpP4QBCQEYFz/cXByyO/HJWWk/HXhL6y9tBYPUh7kvFfTqyb61+uPfnX7oXmV5qXq/6ysM3WqNvLy0SPjAUD9+1Pg1DffUGaetWjfngoP//EHFRIGyDLN35/6cBkZ5lvvmcO0aWRJCNDkeceOtjtWSaIs3KttFon60UcfYcyYMZg6dSo6d+6MAQMG4Ntvv0UVKxl0paWloXHjxhg9ejQGDBiQ7/01a9bg3XffxaJFi9C6dWssWbIEPXv2xKVLl1Dt2YgmNDQUWboVI56xa9cuREREICgoCEFBQTh69KhV2sxYj0uXSGDKyqJoncWLCz9Q/OYbCt3fv5/2efKkcU86c1i6lPzuqlbtjjHtZmHGoemYc2SOySLqP5f+wcn7J+GicMGn7T/N975cToWHWrUCfvuNIhRbtixcmydPBnB3MNB8ASLTNiBTlWlW1UnJc6iWdy14OXnhtaavYdmZZThx/wQm7ZyEvwb+ha5dKX318mVq97vvFq7N3xz9BlGxUXDQeCNr6SF495uFxFoLMW7ny2hS9bhFaTeOjlTYqUsXYPv2Gjh5Um21Al66pKcDo0aRgDpqlHkCKkD+rfHx9D0OGULG61aeu2KYYkOtUWPZmWWYuncqEjISAADhtcPxSqNX8ELQCxZFra1fTzeNTz/VoFUr06pJd+lCKf3Xr1One9y4/OssejbH1aePeQIqAHToQMuLF2lQ4eeXf51t27Rt0Rfl2ro1+STfvUtpb8aiG54+pWyOypWBt98mH1dz6V2nN/a8sgfzj89Hyyot0b9ef9TwsmBHDMMwoIhWP1eKNNVXLO5p5lPEPIlBXFocHqc/pmXa49zPny0l31cpqtWa2MvtjQqtDnIH2Mvt9fr4qkV1jg+tSqPK5Umb9zWVRgW5IM/x/9X9c1Y4w1nhDBd7Fzjb0WOZIENsGkX1Pkx5iAcpD/J5DJuDXJDDXm5Pn9fOAQnpCTm+oHnxdPREBecKqOBcAT5OPvB28kZ8ejyuJ15HzJMYpCnTcPbR2ZwiTfrwcvTC4PqD8VLDl9CmWhuoVWps27bNoH2FIAhoXqU5mldpjm+7f4sjd47g/KPzaBfYDg0qNuAo5BKISkU1HyQOHKBMSkNEUGIjmjWzbjvq1iUR9coV7WuSXUDVqrYVUAEaA0vYOuqVKR4symH18/PDsmXL8Pbbb+Pdd99F3bp18eGHH2Ly5MlwMCe/TQ89e/ZETyMmFfPmzcOYMWPw2muvAQDmz5+PnTt3YvHixZgzh1KhI42Uvz1+/Dj++usv/P3330hNTYVSqYS7uzs+MVC5JSsrK5cgm5xM6QdKpRJKyTGYsRpffCFHcrIMbdposGKFGqKoNWYuDKtWAa1a2eHGDQFDh2qwaZO60IWmMjOBOXPsAAj48EM1ejQchhmHpuNO0h1kZWcVOCuarc7G1L1TAQATm0+Et4O33t9Us2bAK6/IsWKFDOPHizh6VKXXSNsUlEogIsIOULaCn1NlPMq4jy1XtqBvHdPDG4/fPQ4ACK0UmtPeH7r/gJa/tcSai2swstFIdKnRBW+/LeCtt+zwww8ixo2zvM1X4q9g5sGZAADHA98hK60ilg76Gt8nXMDBOwfRZ3Uf/DfqP3g7eZu973btgJdeEvDnn3YYN06GEyeUsPbE2ZQpMty4IUflyiK++kpl0e954UIgPl6OzZtl6N1bxJ49KoQUcbFqUaTJDUfzLX8ZRi8n7p/AhJ0TcDqWypYGVwjG/G7z0aF6h5x1zL3P3rsHnDihgCCICA/PglJp+gk9bpwM770nx48/inj1VVWuCbyUFGDFCrrev/GGCkqleTU53d2Bxo3tcPasgN27VRgyJP/227bJAcjQrZsaSqUm3/v29kDz5nIcOSLD7t0qBAYabsOSJTKsXUsX3e+/F9Gnj4gJEzRo1Uo0a2KyuX9zrO63Ouc593uY4kD63fHvr2zjIndBgwoNgAoFr5uhzMDj9MdIyEhASlYKkrPJPiAlKyXHSiAlK4WsBbKTkZxJr6Wr0pGtykamKhNZ6ixkqbPyRVpmq7ORrc4ulEBZlDjIHeBm7wZXe9dcxd8ECEjJTsn1XaQp03K2U4tqKiamygCeDXUrOFVAk0pN0NivMUIqhaCJXxPU8Kxh1G4lW52NW09v4Xriddx8chOCIFDxOYVLztLNwQ31fevnZJSoVWqzz+uWAS3RMoAiSVQqlSVfFWNjtm0T8PChVl7au1eNfv3y92cAigy9d4/6aw0bWjY+MkTt2jIAcly6pIFSSRMDV68KAOxQo4b2NVtRqxYdy8FBRMWK1v1sJZmycK82te2FMgIMCQnBwYMH8c8//+DDDz/EsmXLMG/ePPSztvHkM7KzsxEZGYkpU6bker1bt24mR5XOmTMnR2xdvnw5Lly4YFBAldafOXNmvtf3798PZ2fD1QIZ81EqBWzY0BOADOHh/2HfvsQCtzGHCRPc8eGHbbFrlx2++eYoGjRIKNT+tm2rgQcPGsHHJwN+fntw5jD1QJQaJf7a9Bc8FZ5Gt//v6X+IfhINTztP1E+qj21SGJIeOnWyxz//dMGZMwpMmXIeHTveNbiuMWJi3JGd3RHOzio87xKKzRn38cPeH6CINl1o2HqTisW5PHXJ1eZwn3Bsid+CMevG4Pu638PHxwlubt0QE2OPWbNOo3lz8yMFNKIG025MQ5Y6C0Gy53Ht0Ag4OSmhzt6DMe5jcNn+MqKfRKP7L93xSc1PIBfMV2q7d7fH5s2dceGCPcaPv4QXX7SSszmAixd98OOPFN766qvHcfSoealqurz8sgw3b7bExYsV0K2bGl9+eQT+/mkFb1hIRBE4ccIfy5cH49EjF9Ss+RSNGz9Go0bxqFs3AQ4O+jtHDGOI2KxYrIldg/1P9gMAnGXOGFppKMJ9w5F+KR3bLhm+FhbE1q01ADRCnTqJuHDhiMHUeX34+dnBwaE7Ll60w9dfn8h1j9i2rTpSUhqjcuUUZGbug5HLtUECA+vj7NlaWLHiHtzcckfrpKYqcOwYTSDb2+/Ftm36i7VUqVIHQF2sWvUIAQGG/dt+/bUdAC8EBKTiwQNXbNggYMMGGWrVeoI+faLRuvUDyOXmCcFlhawsOVavroOgoCdo2fKhzW0RGOuxuyCDPabcIoMMXs/+5ULx7M9IUoMoilCJKihFJZSiEtmabHquUSJbpMfZmmx6X0PrqEQV1KJa+wdayiCj6FLBDjJBBjvBDnJBTn+Q534uyKERNdBAk7MfDTQ5x8vSZOX6U0MNTztPeCu84WXnBW+FN7wV3nCS50+FN4RaVOd8FukzSp/dVe4KH4UPRXhmArgF3Lh1Azdww6R9CxBQE7nD7kSISH327yH0F4jk87rsMHduGIAAVKmSgnv33LBlSwbCw/fqXTciwg9AC1SpkoLDh/dbtR3JyRUBtMSpU6nYto32vWsX9Z8UijvYts1wxLQ10GiArl0bo0qVVOzcab1xZWmhNJ/T6enpJq1nlWoqAwcORJ8+fTBv3jyMHj0aixYtssmXFx8fD7VaDb88eXB+fn6IjbVuKofE1KlTMWnSpJznycnJqFq1Kjp27MieqFZmxw4B6el2qFRJxKRJLQodKaqP48dlWLMGyMxsifBwy8WfrCxg/Hg6fWbMsEffvj0AABVvVERcehyCWwSjiV8To/uIOhIF3AL6BvfFgBfyW1fk5eJFGb7+GkhNbYLw8IYWtXvFChotNmsmx4e9JmPz75twOu00OnTtAGeFaZMCb/3wFgBgROcRaF1Vm//eJqsNGi5piIepD3He4zymt52OU6eozUePhmHmTPNn/RafWozLZy/D1d4V7RJW4xoE9O4tz/m+g+OC0f739jibehYH7Q/im66m+xtLKJVKnDp1EQsWhGDt2vr46KM6qF7d7N3kIy0NmDTJDqIoYPRoDaZPL3yuSqdOQJcuIs6edcSePZ2werVtZ1LPnQPef1+OAwe0J+ONG164ccML69YFwcFBRKtWIoYN02DkSPMi3JjyR8zTGMz5bw5WXlmZkzI4stFIfN7hc/i56slvt4DvvqOJlJYtH6Jr165mezIdOCBg6VLgzJlWmDyZ2iiKwJQpdL1//31n9OoVbmHrBGzaBNy8GYjw8Mq53vn7bwEajYB69USMGmXYPMvdXcBffwHXrgWgR49wvffJmBjg+nUFZDIRJ0864PFjJRYskGPVKgE3bnhh3rxmyMhQ4/vvy+cEyKpVAjZsoP/Prl01+P57NRd+KOEolUrs3r3bonOaYZiSCZ/XZYvHj4FTp+jeumKFE7p0EfHggSuaNAlHQED+9SMiqAPToYMrwsMt7Vfpp1494LPPgNhYN3TvHg65HDnZOe3bV83XB7MFL7wgPapj82OVFMrCOS1lnRdEoUTUrKwsXL58GefPn8eFCxdw4cIF2NvbY9++fYXZbYHk9UARRdEiX5RRo0YVuI6DgwMcHBywcOFCLFy4EGo1DaoUCkWp/XGUVDZtomW/fgIcHGzz3XbqBKxZAxw+LIdCYWF+OYBffqHiI1WqAK+/rt1XgHsA4tLjEJceV+DvIzaNhP9qntVM+i1JBbFu3ZJBobBMYT53jpahoTK0CmyF6p7VcevpLey+tRsDgwcWuP395Pt4kPoAMkGGsCphudrto/DBd92/w9B1QzHnvznoWrMr3n67LebNAw4elOHiRRmaNDG9rXeS7mDagWkAgNmd5uCHl58DAAwYoP38oZVDsaLfCgxYOwA/RPyA1oGtMbi+EfMdA3TqdAdnzzbGoUMyvPuuAlu2FN6Ld/p0qgJZtSrw3XeW/5/pUqEC/faefx7YsUMGtVpmk/T6x4+BTz6hom4aDfkzvv8+eboeO0bVwffsAe7fF7B/v4D9+2UQRWDsWOu3hSn93H56G18c/gK/Rf0GlYZS8HrU6oFZHWYhrLL1SrI+fgwcPkyPW7R4CIWijtn36bffJq/rDRtkiIuToXJl8tO+cgVwcQFGj7b83tGxI/lcR0cLePBAgcBA7Xu7dtGyVy/BaJtbt6bCU48fC7h2TYGGeubTNmyQjiegcmUFKlcGfv2VCj0sWEADi6VL5Zg2TY7Kth9HlDiuXdM+3r1bhpAQGaZOBT78kO1KSjrc92aYsgef12WDtWvJNi40FOjY0Q4hIUBkJHDkiCKnuJMup8nJCc2bW2eMpEvNmnQ/z8wUcP++AjVr0gQzAAQFFU4DYAqmNJ/Tprbb7F/szJkzMXDgQNStWxeurq5o2rQpJkyYgOPHj6NGjRr47LPPcFgaxViZChUqQC6X54s6jYuLyxedam3Gjx+PS5cuIUJyQGasikqlHfj172+740jFPY4fJ09TS1AqgWeOEJg6NXcBkMpuNCLVrSBpiHsp9wAAVdxNK8r2HGmIuHnT9Lbm5cwZWoaE0GTE4GASHNdcXGPS9hEP6Pdf37e+3oIvg+sPxtAGQ6HSqDDo70GQez7AwGfa7A8/mN5OURQxbss4pGanonXV1ujg8hZu3KDvOq9lcv96/fFRm48AAO/veh8ZSv1psMYQBODHH9Wwt6fiLkZslU3iwAEqCAaQIOPhUbj96RIaCgQEUKTrfutmvwCgKuJBQVR0S6OhiuKXLwOff06FbEaMAJYvp+I2ly8DEybQdm+/XfjvjSmd3Eu+hyWnluDtbW9jzMYxeGndS+i3ph96/NED7X5rh9oLauOX079ApVGhW81uOPrqUWwfvt2qAioAbNxIv9mQEBF+fqal4+SlUSOgbVtAraZJBIA8iQH67RfmXHZ3B8KefWTdc1ejAXbsoMdGLOEBkC9q27b0eK/+DDmsXUvLvMUcfH2BWbPIC1qpNO+aXJaQCk288w7QtStllsyYQf/3e/YUa9MYhmEYptQhisCyZfT41VdpKVWk1xdbJ4q2KyoF0IR1UBA9lu75UmEpLvTEWAOzRdR///0XTk5OePXVV7Fp0ybcuXMHiYmJOHjwIH788Ue88cYbaNWqlS3aCnt7e4SGhuazCti9e7fNjskUDYcPUwVyb2/bVh6vXRvw96dB04kTlu3j+nUqXuLqCowZk/s9SUS9n3K/wP3cT76fa5uCkC76d+5YVmxLo8ktogLAkAZDAABbr21FanZqgfuIuE93vLAA/eKHIAhY2nspGlZsiEdpjzBw7UCMfycbABX3ijPREnTesXnYfmM77OX2WNpnKTZuoEtVly6Am1v+9T9u9zGqeVTD3eS7+O74d6YdJA9162rFCXN8FPOiVGo7EGPHAt26Wb4vfchkVB0cINHImjx9Sr/pp0+BJk1IDP77b/2VvQWBvrN586g92dkkuD55Yt02MSUPjahBxP0IfLL/E4QsCUHV76pi3NZx+DHiRyyLWobVF1Zjw5UN2Bm9E4fvHIZSo0SX57rgyOgj2PnyTrSs2tIm7Vq3jpaGihiYyvjxtPz5Z4pckCb4pNcLQ6dOtNQdVJw5Azx6RPeUNm0s24dEdDRNZsjlgCF7+g8+oOVPPwEmZi2VKa5epWV4OLBzJ7B6NVCpEt3bu3YFliwp3vYxDMMwTGni9Gng/HkKdhk2jF6T+ir6Aj7u3KFxv50d0LixbdpU51kW/dWrVBxUGoOyiMpYA7NF1LNnz2LlypWYPHkyevbsiSpVTIuiM5XU1FRERUUhKioKABATE4OoqCjcuXMHADBp0iQsXboUy5Ytw+XLlzFx4kTcuXMH48aNs2o78rJw4UIEBwcjLMy6kTMMIQ1++/aF1auj6yIIWpH2wAHL9vHoES2rVMkdhQoAAW5k+mJSJGqyeZGolSpRaoJaTVGA5hIdDaSm0j7q1qXXQiqFoJZ3LWSoMrD56uYC9yFFohqLIHOxd8H6Ievh6eiJY/eOYfWTd/H88ySymTI4XRyxGO/vfh8AMLvTbNStUBfr19N7hkQBJ4UTZneaDQCYc2QOYlMt80iWZi110z3N5eJFEl7c3YGvv7Z8P8bo25eWmzaROG4tFiwAkpKA4GDg1CnTJjRkMopMrVEDuHULeOUV67aJKTnEp8dj6p6pqDyvMp5f+jw+O/QZomKjIEBAyyotMaX1FHzR6QvM6zYPi3stxvK+y7Fm4BpEjo3E7hG70bpa64IPYiFPn2ojM198sXA/wH796HobG0uZEWo1nQsNGhS+nbqRGeKzuk5SkaouXSjStCCkgcnBg5TFocvff2vX8fXVv314ON0DkpMpUr48oVKRWArQAEsQgKFDKVJl5Eh6/Zdfiq99DMMwDFPa+O03WvbrB3g9q+3Wpg1N6MbE0PhAFykKtVEj29noSGPdK1e0WZw+PtbNDmTKLzYo3VM4Tp06hZCQEIQ8C5WbNGkSQkJC8MknnwAAhgwZgvnz52PWrFlo0qQJDh06hG3btiFQ11zMBnA6v+3QaIB//6XHAwqur1RopJR+S0VUaSZLn4NEZXfTIlGzVFl4nP4YgOkiqkymjQi0JKVfikJt1Ihm/gCKHB1Sn6JRC0rpF0URpx5QNWhDkagSNb1rYlX/VRAgYPGpxWgyiu6uf/xhvI3Lo5bjrW1UuOrD1h9iUstJuH2bZjh1IzD1MazhMDQLaIbU7FR8uv9T4wcyQO3atJQG2RLzjs3DS+tewl8X/iowYvfiRVo2akRCqi3o2JEich8+JLHTGiQnA989C+KdPp06Pqbi5UUTIQ4OwJYtwFdfWadNTMkgIT0BU/dMRfX51fHlf18iNjUWbvZuGBg8EMv7Lsej9x/h6JijmNNlDj5q+xEmtpyIcc3GYWSTkRhcfzCa+je1eRu3bKEo8OBgbcfZUuztgTfeoMfP5nOtEoUKAK1a0f7v39deZ7Zvp6WpdRVCQgBPTzpn81poGErl10UmI49jAJg/37LMhtLKrVv0eR0dgWrVtK97eJBlCUD3yvIYocswDMMw5pKZSdmGgDYTD6BxyvPP0+O80aiSnGLL2DRdEZVT+RlrU+JE1A4dOkAUxXx/y5cvz1nnrbfewq1bt5CVlYXIyEi0a9eu+BrMFJrjx0kMcnenSBxbU1hfVCkSVZ+IamokqvS+g9wB3k7eJh+7ML6oeVP5JSQRdfuN7UjKTDK4ffSTaDzJfAJ7uT0a+umpZpKH8NrhmNlhJgDg94Q3gYBTuH6dvDz18deFvzBmE/kjvPP8O5jTeQ4EQchJpW3d2nBkFQDIBBnmdZsHAFh6ZikuxJmfk68vEvXw7cN4b9d7WH1hNYatG4aKX1fEoL8H4Z9L/yBdmd938dIlWgYHm314k3FwAHr0oMfWSun/8UdKxa9bFxg0yPztQ0K0PrDTptnGr5UpWhIzEjFt7zRU/57E0zRlGkIqhWD9kPWInxyPvwf9jZFNRsLXxciJWURIE3HW8tQeO1Y72RQQALz4onX26+wMtHzmZrBvH5CQQPcioGA/VAm5XHsf003pv36drvPGUvklhg+ne9jdu1rhVR8REVRQTrp/FCdqNUW6v/22NorXXCRvtKAgEpN1qVKFJio1GiqgxzAMwzDlGVGkosRz51KByrzZLwBZHj19ShOTUqaMhCFfVFv6oUroi0SVxtEMU1hKnIhaUuF0ftshpfK/8EL+9HhbEBREqZqZmcDJk+ZvL4moFSvmfy/HEzXZeCSqbiq/YEYZ+MKIqFIVxLwiaoOKDVC3Ql1kq7Ox8aphRU7yQw2pFAJ7uQk5pwCmtZuGPnX6IEudBdmw/hCdHudEauqy/vJ6vPzvy9CIGoxtOhbze8zP+V4KSuXXpW1gW/Sv1x8aUYMPdn9gUht1kUTU69dpIK3SqDB+G4WgtazSEjW9aiJDlYF/Lv2DQX8PQsWvK2La3mkQdUb00uerX9/sw5uFlNJvDRE1JQX49lt6/PHH5kWh6jJmDKXEajSUIvugYFcLi9i5E2jalMSo8eOpY3fmDFlGMIVHI2rw3bHvUH1+dcw+Mhup2aloUqkJNgzZgMixkXix7osmXwOKgrQ0bWEma2UzBARoJxPeesu6NjO6nqa7dtEgpWFDEvEs2YeElMrfpQulrBnD0ZHESAD45hv9ouSFC+Tp/PvvNBCyVtS7pezfD6xcSZM1585Ztg/JD9VQtLLki22j+qgMwzAMU6JRKskeacIEGnc2bgxMmQK89hrQvHn++6+Uyj9yZP7xg64vqtTP0Gi0WTS2lFWkMd3jx1rRliNRGWvBIqqJcDq/bRBFrYhaFKn8QOF9UY2l80uRqI/THyNLlWVwH+b6oUpYKqKKouFIVFNT+nP8UAtI5ddFJsiw4sUVCPIJgsbtLvBudQzd0xyvb3odC04swMFbB7Hu0joM+WcI1KIarzR+BYtfWJwjoMbHawezpoioADC3y1woZArsuLEDO2/sNLmtAFC9OkWfZWSQALgoYhHOx52Ht5M3Ng/bjOtvX0fk2EhMbjUZ1T2rI02ZhtlHZufYHADaSFRbi6g9e1Jn5eJFbZqKpSxaBCQmUodj6FDL9yMItK9Gjeg8GT7c8ogxQyxfThMuZ85QBN+iRdSxa9qUCvOEhQH//WfdY5Yn7iTdQZcVXTBp1ySkZKegkV8j/Dv4X0SOjUTfun3NmvQpKrZvp3NW6uxbiyVL6P40ZYr19gnkHlRs3UqPTU3ll+jcmZZHjmgzKkxJ5dflzTcpMjYqSusnK3HnDkW7P31K9gNJSSTOFqeQqmsHI6UOmoskokoFJ/LCIirDMAxTXpk5k7L+unQBfviBLHCcnKiP4uVFATnNmtF62dnUV5DqfY8alX9/+iyMrl8nyxwnJ9uOlVxdgapV6fHOZ8NBFlEZa2EVEfX06dPI5hAgxgLOnAFu36YLaffuRXfcwviiGkvnr+BcAQoZhSwZK24keaZKHqqmYqmI+uABzcTJ5RTxlBdJRN0VvQtxaXF692FKUSl9eDh6YP2Q9XDTVAHs0xGjPImlZ5binR3voMPvHTDw74FQapQYXH8wfu3zK2SC9rK0eTPNWDZpQgKnKdTyroXxYRQ9+v7u96HWqE1uq0Kh9Z09fuERpu+fDoAKXPk4+0AQBDT1b4q5Xefi5js3Mbg+qRUrzq4AQGKGJGjaMp0fALy9AcnJZNMmy/eTlkaRaACl4VsahSrh7Az88w+J0QcOUAfLGogi8MUXwOjRlE700kvAn3+St2PnztS5UypJ5BkwgH7vjOmIoohV51ah0eJG2H9rP5wVzljcazHOvHEG/er1y3VeljR0U/mtqfG6udE+C3tO5OX55+k8iY/XCp+mpvJL1KtH96DMTJpMuHoVOHuWzjtTrQe8vSl6HNBeAwCaUOnRgwY99erRgKdNm+IVUtPTtROuALB6tWUF7KR0/oIiUU+cALIMz4MyDMMwTJkiLo7E0aQkyrYcM4ay3eLjacL34kXqXyiVwIwZFLTw8cfUP+/YUX+qvJOT1sJIsvmS4tFCQrS2SbZCutcnPXOrYxGVsRZWGRWFhYXhVt6ya2UMTue3DdKgqGdPwMWl6I4riajHjpk/UDKWzi8IQk40qrHiUjmRqG5FE4kqRaHWq0c3tLzU862HsIAwqDQqzDgwI9/7Ko0Kpx+SH4A5kagSwb7BWFDzFrDgCuqdX4uP236MPnX6oLpndQDAwOCB+KPfH7CT5b6bmpPKr8v09tPh5eiFC3EXsOzMMrO2ldI/5p2dguSsZIT6h+K1pq/lW08QBLzahBzUV19YjWx1Nq5coYG9lxdZRtgaa6T0L15MHaSaNUmYtAa1a1M0KqDtLBUGlYqi5j7+mJ5PnkxpvcOGAV9/DezZQ96SN2/SrPajR8C4cdaPgi2rJGYkYui6oXh5/ctIykpC88rNEfVGFMY1G1eixVOArt9bttDjospmKCz29lqxTqkkP/BWrczbhyDkTumXUvm7diVx1FQmTiRv0J07KUUvPZ0ivS9fBipXpterVQO2bSteIXXTJiA1FQgMpCJQ9+4Bhw6Zv5+CIlGDgujenpVl+WdUq6mtDMMwDFNa2LKF+s0hIRR8s3QpFfR1dqb3/f1p0vqvv4AKFajPsHIlvTd6tOH95vVFLYqiUhJ5J0xZRGWshVVGR2I5GKlyOr/1KY5Ufok6dbRRPOb6ohpL5we00aXGiktZms4vRUk+eUJ/pmIolV+Xr7t+DQBYErkE5x7lNry5/Pgy0pXpcLN3Q50KBkafBdCksRxIqIOHewdhVsfPsHHoRsRMiEHGtAysHbgWCnlu08HUVPILBMwXUb2dvPFJ+08AANP3T0dKVorJ2wYFAahyDMcylwMAFoYvhFymPxSt83Od4e/qj4SMBOy4sSNXKn9RZD1LIurhwyQimkt6OomQAEWhWnNGWOocFfaSmZ5O14clS+g7XbCADO7zFoURBDo/Vq6kz/Hvv5an/JqKlMp0/DiJOqWJx2mPseXaFny872M0XNwQay+uhVyQY1aHWTjy6hHU9qld3E00iT17yNM3IEBbBbY0oFt8oWtXyzxXpX3s3Wt+Kr9EjRrAwIH0eO5cYMgQmlz09CQBVUqFc3MrXiFVOpdHjNC219zz+8kT7f3bkIgqCPQZAdNFWlGkCNeFC+le5eNDwjhbAjAMwzDFyf37FEVqilQjFfLt189wBo4gUD/h0iVaAiSoGhvH5/VFLYqiUhK6IqqjIwnBDGMNSnaICVOmuXSJokLs7SnypSix1BdVFI2n8wOmFZeyNJ3fxUV7XHOiUQ0VldKlffX2GFBvADSiBhN3Tsw1OXLyPinNoQGhFkem1a1L4tbTp7kFJ0c7R70+izt2UDRQzZpAgwbmH++tsLdQy7sWHqU9wkv/vgSlWmnSdjVrqYFeZAfwapNX0bxKc4Pr2snsMLzhcACU0i8VlbJ1Kr9E9eoU8anRaL0VzeHnn0lUqF4dePll67ZNErQKI6KmpwMdu2Rj0yYRDg5kE/C//xnfJiSE0owAWvfuXcuPn5dt28gXqkkTilZzcKDIuJYtabl6tfWOZW0SMxKxOGIxRqwfgVo/1ELFbyqi9+re+OLwF3iQ8gB1fOrg2JhjmN5+er6I8JKMNBHXv39+Yb0koyuimuuHKiH5oh47Bpw/T0KsNLFiDu+/T8s//6RIFEdHslLJ61WmT0i9fNmytpvD48fawmHDh9MfQNcDczJJpCjUypXJK80Qkk1KQSJoTAxF31StSlke//sfDUKTkqivsMawxTjDMAxTitFogGvXtGniJRG1mqzyXnhBm9lniLQ0rbepKZZAvr4UkXryJPVBpGhVfTz/PGVBPn5MtkNSYE9RR6I+91zp6icyJRv+KTHFhjT47dqVojaKGkt8UdPSqIAJoD+dH9AWl7JFJCpgWUq/dMNq2tT4el93/RoOcgfsi9mHjVe1OeKWFJXKi4OD9mZmSmVl3VR+S6I67eX2+K3vb3C0c8SWa1sweuNoaMSCTfSuui8B/M9Alu2JL7t8WeD6rzR+BQCw+dpmRF1NBGD7olK6WJrSn5FBkWcA8NFH1q0+Dmg7R6dOWeZdCADTftuOkx29IEyuiOfn9cNt/+9w6sEpqDQqo9t9+CHQogV1bkePtvz4upw5Qx3L7dupEyh5rioUdC3QaEiIliICSwqPUh/hw90fInB+IN7a9hb+OPcHop+QcW/dCnUxqsko/NL7F5x+47TZfsfFjUql/d3371+8bTGXkBAS3l1dLRdRa9SgCRBpvqtbN7ISMZewMO2kokxGAyMpGjMvkpDasiWdX198YVHTzWLtWvq/Dg2le0j79iSEPn1KbTEVyQ/VUBSqhGS18N9/NAg1xMSJVOju/n26v3XqBMyerf1ODh40vW0MwzBMySU5mTJfZs0iz3Bvb7qXNGpEtT0K4skT8huVqtIXBWvXIie4Y+lS4+vu2kXZmTVqmBe4EhYG1KplfB0HB22f4scf6Tju7mT9ZWt07/f6PFsZxlJYRDWRvJ6oxjrWjGkUVyq/hCW+qFIUqouLYQ/XnEhUA56oao0aD1MeAigaETUxUXuDb9LE+Lo1vGrgvZbvAQDe3/U+slT0xVhDRAW0PplnzxpfLztbG1lpbiq/Lm2qtcE/g/6BncwOq86vwjvb3zFqP/I47TF+vzuNnuz9HJ72vgUeo6FfQzT2a4xsdTYiMkhBKw4RdedObZVuU1i6FIiNJb/DkSOt36569WhmOiVFGwFmDntv7sUPcf0A+3SIzvE4/HgDJu2ahLBfwuA11wvd/+ie49ObFzs7YMUKOv7evZRmWxjS0sgvVqmkzrOukJqZCTx8qBVrX3qJIuSKmztJd/D2trdR/fvq+OroV0jNTkXDig3xaftPsWP4DiROTsTl8ZfxW9/f8FrT1+CsMBJGUEL5/nu6vlWooBW+SgtyOXD0KBAVVTj/ZN2IVnNT+XWZO5euW8uXFxzN6uZGthoADdJiDddQtAp//EFLKVpeJtP6N0vvmYJ0HTJUVEqicWP6jMnJFOGrj9hYrRfv33/TAHnvXmDqVOD11+n1CxfIb5phGIYpnSiVdG/19KSgn08/pf62FIF65w5lZTx8aHgfcXHkCzpjBq1bFGVkVCptVhZAbb5vOEEyZ0L6xRdtY0cm+aJKHqrNmhVNVGhAgDbzhP1QGWvCIqqJ5PVEvXChmBtUyrlxg6IR5XIyrS4O6talCLKMDNNTjo0VlZIoKBL1UdojqEU15IIcfi4GPAGMYK6IGhWl3c7Do+D1p7adCn9Xf0Q/icb3J75HpiozxyO1sJFqjRvTsqBI1AMHqIPi50cRhYWhV1Av/P7i7xAgYGHEQnyy/xO9652LO4eX/n0JydlPITxqAs3JcSZ3dKRo1Mf+KwAUXTo/QNHFlSuT0CeZtpuCVNF80iSy1LA2dnbayGdzU/oP3T6E3qt7QyPLAq70xZLn/8PcLnPxQtAL8HT0RGp2KnZF70K/Nf2QoczQu4/atbV+r5Mna6PQLGHSJNo+IIA6gD160IRAhQrUCZTJgF9+AV55hSbYhg0rOHXKVsSnx+P1Ta+j1g+18GPEj8hUZaJ55ebYPGwzzo47ixkdZqB7re7wcrIgZLEEsXq1Ng39o49sX+HVFgQEFL5TL6X029sX7l7avDn1a0aMMG390FAqhqVUkl+xrYiOJs9hmQwYOlT7upTSv2ULRaSaQkFFpSTkcm2hL0Mp/StW0LneogV5tOoWbPT11d4D2BeVYRim9LJ6NU2UiSJlfrz0Ek0iRkaSpUv16jSm7dZNf22C+/fJIkYKHnn6lLxEs7Nt3+5r18ijOzSUJvklATMvKhVZ+ACmpfJbgjThK33uovBDBUgQliZOWURlrAmLqBZy+DB/dYXhxx9p2aEDXeCLA0t8UQsqKgVofU4NRaJKqfz+bv4GCxYZw1wR1RQ/VF1c7V0xp/McAMDnhz7HruhdUGlUqOBcAYEegWa2NjdSJGpBIur27bTs3ds6M5UvNXwJC8MpHPHzw59j3rF5AKgo3oFbBzArehaaLW2GPTf3wE5mhxqXFgKiHNevm75/GWRA1WNwr3G9UJFlEjef3ESTn5rgp1M/GV1PELTiiTkp/deu0bJlSwsbaAKSL6o5xduO3zuOXn/2QoYqA7jeE5571mBMt1aY3HoyNg/bjITJCTg77iyquFfBnaQ7+P7E9wb39eab1LHNzCRxSGmaLW4u1q8n71hBIOGkQgX968nlwLJlJO6oVBS5sGmT+ccrDBH3IxD6cyiWnlkKpUaJjtU7Ys+IPTg25hheCHpBr/dwaWT3bm309DvvAO++W6zNKVb69CHPs08/pUiZouTtt2m5eLHtBoRS8aguXXJH7DZqRJGz2dnarJaCkCZSCopEBbSRzfpEUFEEfv2VHo8Zo397qW/BKf1arl6liSY/P7qO5v1r0IDSZRmGYUoCGg3w5TNXr9mzSTRdtYr8r5s2JQF1zx4qVnThAk2wJydrt4+JoXvJ1avknb17N92nT54k2yljpKVRpsX331MbZsygbd55hwrBGssAUanIOgCgIII336THy5frLzB15Ahl9fj4aCcQrU1oKGV4SBSFH6rEm29SJmbv3kV3TKbsw0qghRw5UjYGo8XB6dPaVMDJk4u3Leb6ohZUVArQRqLeT76vN3VcKjglpf2bizSTZqqIKvmhmiqiAsCIxiMQFhCGlOwUjNlEo8SwgLBCizCSiHr1qvHUc2kg1a1boQ6XizfD3sQXncis7r1d7+GDXR+g+dLm6PZnN5xOOQ2ZIMPg+oNx8rWTCKlAvQhJaCyISq6V0NC5OwDAve1Kq6TCzD8+H2cfncW0fdNybBUMIaXfbtpkmv9nairw4FmgtC09iaROkqmRqJEPItHjjx5IzU5FDbEzsGYdund2yFUlVCbI0MivUY7QP/vwbMSlxendnyCQsOnpSd6skvBhKvfuAa+9Ro8/+EAb9WcIuZw6qUOHUid24EBtym9huHtX68GqD1EUseTUErT5rQ3uJN1Bbe/aODL6CPaN3IfOz3UuNeJpUhKJLK++CoMTGJGR5H+qVFI0x3ff2Sb1rLTg6kpFlz76qOiPPWAARdM+ekSROtZGFPOn8ksIgjYaVRJajaFSUbQQUHAkKqAtLnXoUP5B53//0b3B2dmwhQKLqFouXaLorXr1KBIqLo4itvL+XbxI9/ypUy2b8GIYhrEmmzZR8UQPD2D8eP3r1KxJY5YKFaif+cILVBT1yhUSUGNiaJ3Dh2ky8Pffabv586kQoT6uXqUghBEjaJJ46lQSRb/6isbPs2fT5KmuYKvLypWUxeHrS+0ePJjuV1evUmZHXqQAjN69bZfVY2enva8CRSuivvoqjYWrVy+6YzJlH6uIqJ9++ikqGArPKaMcOyZwJ88C1Gpg7FgSeoYNs65IZgmSiHr0qGmRNOak86cp05CSnZLv/cIUlQK0kai3b9PAsCBMLSqli0yQYX6P+QAoPRgovB8qQLO1Pj70/3/pkv51YmNpRlcQcvv9WYOpbabi/ZaUA/zNsW8Q8SACjnaO6FmhJy6Ou4g1A9cgxD8EQUG0vqkiKgDUSKY82KRqK00qYGUMlUaFNReptHNiRiI2XNlgdP0OHWiGNzbWNMFSEqh8fS0rRGMqUicpKqrg8+vco3Po9kc3JGUloW21tvDauRFQOaFHD/3rv9TwJTQLaIaU7BR8uv9Tg/utXJlm7gHzbAXUahL0EhNpBv2zz0zbzs6OOrCDBmmFvidPTD9uXhYvpo5fxYpk3j9iBLBoEU1GqVRAujIdozeOxrit45Ctzka/uv0Q8XoEWldrbflBi4HYWBKeVq4EfvuNBJcxY3J7h0VHUxGm1FQStH//nSutFicKhTbCRZoYtSYREXStcnbW740t+aIeOGDc6w2ggaxSSWn3VasWfOywMLJIePRIK75KLFtGy8GDDRfFlETUs2cLd/6XZs6do++oQQNKLRVFipw+cIDu/7p/Fy8Cb7xB63z5pVZ8YBiGKQ5EEZhDc/UYP954AeTgYPIcdXcnsTQ8nATD+/fpvcOHqZAkQNfA96j0BEaNyn+d27CB7j+XLlH2xZAhtN6bb5K11LRpFMgjXV/zahHZ2VT8CgCmTKH6HW5u2vojv/2W/3NKYm5BfuiFRfJF9fWlegwMU5qxmojq7e1tjV2VWPIWlkpLE4q0wl5ZYeFCiiTy8ADmzSvu1tBA3dfXdF9UU9L5Xe1d4e5Ad1sp6lSXwoqo/v5U6VCtpgg1Y6Sna33gzIlEBYBWVVvhpYYv5Ty3RuVuQSi4uJQUhdq0qfWtHgRBwFddv8LEFhNRzaMaPmn3CaLHR+ONKm+gppfWLEcSUU1N5wcA1cW+QJYbUuxu4cidI4Vq556be3JFV/56xngIpYMD0LMnPZYKchlDEoelz2krnnuOKphmZxu3cHiS8QRdV3ZFYkYiWlRpgd+7bcWZE1S5rXt3/dvIBBm+7fYtAODn0z/jYtxFg/uXPqep0dsA+anu308d0D//NM831s6OouNq16ZzcP9+07eVEEVg+nTgrbe00cXR0RSZN378s9SowGgEzW2F38/+Dpkgw9wuc7Fu8Dp4OJpgflyCiI4GWrema4KfH/2W1WoSq4KC6Ds4fZp+C3FxdC3791/63TPFy9ixdG6cOEF/1kSKMH3xRW1hCF0CA6niryiSSGcM6T4YFGSa8O7oqLUj0U3pT0mhYlqA4VR+gAa/QUHUtvLmiyqKNHhv3FjrJdi/P53DGzeSwFyvXu6/4GDgp59ofU9P+i01aQKsWVPcn4ZhmLJEVhaJku3ba8d0+ti/n9LuHR2BCRMK3m/TpmRF5uxMGQiPH9NrBw/SuE2XOXPITzspSeuPqlZTRkm/fnSfaduWgmD++ouEz0WLgG+/BT7/nDKcnJ1JuB0/Pne2xPLlNPlcqRIwbpz29dGjablmDfVLJc6fp/WdnGwf2DRkCEXljhtXvjOImLIBx3CYSN7CUoBlA+PyzL17NIMGUCVga/hGFhZzfVFNSecHtKn6+opLSV6plqbzy2RAjRr0uCBR6Nw5EmAqVbLs+/6y85dwUbjA0c4RzSs3N38HeiiouJQkonbpYpXD5UMQBMzrPg+3372NmR1nwtfFN986Uoq7OZGoVy84AxcHAQBWnF1RqDauOk/qQa/avQCQqHr76W2j27RpQ0tD4rQuRSWiCoJpKf2SaFzDswa2D9+OYwfdIIr0W8nb+dSlXWA79KvbDxpRgw92f2BwPXN9hE+eJAEToAg7S74nhULbITWn4BdAEaavvUadZYC8sBITKW37009JTHQJikDmiGa4rz4LT4Uvdo/YjcmtJ5ea1H2JM2fIg+vmTfp/+u8/YNs24NgxugYolRSNGxpKYutzz9FAxVhUCFN0VKyoLfhkzWhUpVIrjEpp+/owNaVf8kM1JZVfQp8v6po15FVXpw4J/8Yojyn9KhWJy3Pn0vNBg+hev26daRO5AwdS5kKrVpSqOnQoCfVqtU2bzZRzUlNNy+xiSjdSdtDvv5NVy5Ahhv/fZ8+m5WuvGc8+1KVVK5oo8vCgqMt9+/T76CsUdC/x8qK+8fjxNHksRb6++y6wd6/hcVuzZnR/FAQqavrVV/R6Vpa23zh1KgmtEu3bU1ZTcnLuwqdSFGrXrrnXtwVVqlBmhxQpyzClGbNF1AR9pefKKSyimseECdRRadkSeP314m6NFnN8UU1J5weMF5cqbCQqYLooZG5RqbxU9aiKiNcj8N+r/+kVGy3BWHEpUbS9iGoKkmh25w5FKRdEZiYJPDj7CgBg7cW1BqvGF0RadhrWX6YezrS209C5RmeIEPFb1G9Gt6tfn5aGbBJ0KSoRFTBNRI14QG92r9kdno6e2LGDXjeUyq/L3C5zYSezw/Yb27ErepfedSQf4bt3qZNZEDNnaotDjRpV8PqGkDxU9+41fZv0dIpEWLaMJkyWLCHh1MuLxNMZM4CFf0bD+bVegNNT4F5zuK8+jed9rex9UQQcOKCNBmncmARU6f+qRQsqwnDggHaCwNeXIi8KmsRiihbJLmPtWuPFLsxhzx6K5PH1pcGdIQYNosjvqCjj1z4pEtWUolIS+kRUyVf51VcLjqQpbyJqZiaJoL/9Rv7Qv/1Gv4mGDc3bT2AgfWfTpmlFgp9+KnzMR3Y29ZkOHKAigZ99RhYCX3xBGVKm+IkzZYfkZBLTuncn0cvf33DhHab0o1KRt/bGjZTF4uJC14KpU/OvGxFB/TY7O+D99807Tpcu1KfZt49+V4aoVo2uQwCwdCn1d5ydKfPpu+9IaDVGnz5UdAqgyP81a+j+dPcueZWPHZt7fZlM25/VTemXRNQXXzTxAzIMA8ACEbV27dpYuHAhNNzbwJEjpg3IGTLn/vdfuiEtWVKyfOzM8UU1JZ0f0PqiGotELQoR1RI/1LzU862Hpv6F2EEedNP583ZWr1whDyFHR61wUhxUqKCtdJ3XD08fV6/SAMwzuS0CPQKRkp2CjVc3WnTsjVc3Ik2Zhue8nkOLKi0wJoRyRpedWQa1xnA4jiSiRkcXLPwWpYgqpcSePGl4HUlEbRbQDBoNCWWAaSJqbZ/a+F/Y/wAA7+96X+935OtLHWZRJC/hgrhwgZbvvFO4lKMOHehaJ/2uCyIhgYTXLVvoHFi3Ln9H+HHaY/RY1QOP0x+jkW8IquzbjTsXqpjd0S9u1q+nwWtKColNBw/qj7po354iRiIiaOKlVq2ibytjnNBQisBRKun+bg2kglJDhxofTPr4aK1MjEWjSiKqOZGorVrR+R8dDTx8SCLt8eMkEL7ySsHbSyLqmTOUtlmWSU6m67UkUKxbV7gJKDs7iqiSops/+USGhARHs/ejVJJQ1rAhXVNr1qQIsZEjgU8+AX7+Gfj4Y4rs8ven/9fVq4H4eMvbzpRcMjNpLDJwIAVDjBoF7NpF/bf4eEp5bt+ePHqZsoNGQxNfa9fS/WT9eq2Q+M03wD//5F5figh96SWtl6k5mGr/9MIL2gLLNWvS/WXYMNOP8/bbFLUK0DXt02flAaZNo+tdXqT71r591Be+c4fuTzIZtYVhGNMxW8p6//33MXXqVDRp0gQHy8v0uh58fERkZBgXBhgiNRX4H2kceP9986MSbE1wMM0WpqcXnL5tbjp/Xk9UURRzIlGlaFVLMFdEtTQS1RYEB9MNOyEhf9SSFIXapo3+DkBRIQjalH5TfFGlDnf9YBlebkRlpFeeW2nRsaVU/uENh0MQBPSr1w9ejl64m3wXe27uMbhdxYrkPyqK2tRVfYhi8USiXr5M14K8aEQNIh+QwXRY5TCcOUOTFa6uJGKYwvT20+Hl6IXzcef1RuwKgunnTEaG1mu4sN+Pl5d2AqOglP70dCpEcPw4Cfi7d+ePDEhXpqP36t64kXgDgR6B2DFiK1YsdQNA4tW2bYVrb1Hx9CmlYWdn02fcscN4xIYgkMhREixgGP1I0aiLF5tWpNEQWVnAhx9qU/lffrngbXRT+g3N70vXRHMiUT08yJcToGhUqaBUr16m/RarVKGBsUZDUdZllbg4EiYPHqQCJjt2WK9AyZtvAs2bAykpAn79tYHJ22VlkUBapw4JZRcu0L3P0ZGu6126kKjy8cfUVldX+hwrV5JwUrEipfFyoETZ4cYN6n8OGEAif1YWXQ9mzaL+yVdfUSTg4cN03k+ZQtYdTOlGFOk6snIlTYCtWUMTb4MGaaNMR4+m3wBAy/Xrqd8xZYrt2/fllxTEExVl2fj4m2+oH5WVRRMBVasa9uuuUYOu1aJIUbAbn8V6tG5NwQYMw5iO2SLqRx99hOvXr6NZs2bo3LkzhgwZgnv37tmibSWaNm0ohM7SlP7ExMINNEoTM2aQKFGjhtZnsCShK7DoVoLOS1YWDf6BgtP5cyJRU3NHoiZmJCJTlZlrHUswRRBSKskwHChZIqqTk1acyuvfWRJS+SWkNpriiyqlkdavD4xoNAIAsOPGDr2RyMZ4nPYYO29QGObwhqQMONo55gizxgpMCYI2GtVYFEV8PP2OBUGbOm0p2epsjNowCj3+6IHEjES961SqRGKCRqO1l9DlWsI1pGSnwMnOCcG+wTmp/J07mz6b7+3kjU/afwIAmL5/OlKyUvKtY6qIGh1NHUwPD/1eVuZiakr/xo30O6pYkbIc8kZiqzQqDFs3DCfun4CXoxd2vLwD/m7+6NgRmDiR1hkzpnREUG3eTGJ1nTpUSKY4J0wY69C/P6UQPnpE/6eWcPYsTbp89RWdg2+9pZ2EMUafPnS+3r6tvYfokphI1gCA+RMjUkr/3r3a1EtjBaXyUtZT+u/fp2vV6dM0CD9wQJvdYw0kSxO5XMTRo5Wxfbvx1ICMDODHHyli/Y03qPJ1xYrk0frwobbY5u7dlPr62WeUzpqQQBNdkyeTkCGK9H6nTsaLzzClg0uXaJIyJob6JJMnU5DBpUs0LqlbF/jgA3rety+lfs+dS30qtm4rvYgiRWr+/DNdS/74g+ySJObMIVExNZVeT07W+jm/+CIVvbM1gkA2d/qKJ5qCXE4TiFLW16efGi+6KRWYWr5c643KqfwMYz4WJVX7+flh2bJliIiIQGxsLOrWrYvPPvsMWWV4ynbhwoUIDg5G2LMevSSimlsw5PZtulD7+JCYVKMG+X29+SbNJv31F1WwnzaNLnTduwMNGtANXooqLE1cvgzMn0+PFy60vWm1pVSvTktjIqo0CFMoKMLMGIYiUaVUfl9nXzjaWa4cmCIIXbpEQr2Hh7YQVUlBX3EppVLbWTXmgVdUmCOi5kSi1gfqVKiDVlVbQSNqzC4wtfbiWqhFNUL9Q1GngjbvVErp33BlAx6nPTa4vSm+qNLnqVqVrkGWIooixm8dj9/P/o6d0TsxcO1AKNVKvetKQoi+yP2I+5TK39S/KexkdjkiqpSiaypvhb2FWt61EJsaiwFrB+DW01u53jdVRJUij4OCrFM9VBJR9+0z7rUmVaF+7TXt/6OEKIp4Z/s72HR1ExzkDtg8bDPqVtCG1H3xBXX2Y2PpXlLSPd3WraOl5GfJlH4UCvrtAcAPP5i3rVpN0ThhYTTx5+tLg7uFC007B52ctBGrv/yS/30plb9KFfMHqpKI+ttv1AeoVAkIDzd9+7Iuos6cSdfMwECa/CmMdZAhGjcG3nmHQownTJDnqiyty/nzdO18+20qZOrvT96CMTEkmlWqZPj3ZG9PYsrcudQv2bWL+k5Hj5I4YagQJlPyOXOGzsOHD0kgj4qi/+cmTfL/HgIDSVTftIke375NE0TJycXQcKbQzJypvR8tW6YtgihhZ0fj7sqV6T4xYIDWFkafV2pJxdmZxk9Hj1KEvTH696eMgZs3tWMua2UOMEx5olDOlCEhITh48CCWL1+O5cuXo27dulivW/KtDDF+/HhcunQJEc+qo7RpQx26Y8dMKzyTlUWV/urV05o4azQk2u3ZA/z0E82CDhtGqe+zZ9Ms0a5dJNBcvUp+J6UtenXvXhogde5svihSlEgiozERVbeoVEEDO0OeqNZI5Qe07U1M1EbH5kU3lb+kFezWV1wqIoL8Eb29tSmUxYklkajBwbTU9TEVzVC0dFP5dWlcqTFC/UOh1Cjxx7k/DG5vSiSqtVL5vzv+HZaeWQqZIIOzwhn7b+3H+G3j9X5eaYZcX3EpXT/Up0/pmgrQBJI52MvtsTB8IRQyBXbf3I3ghcGYe2RujrBrrogq2TkUltataYB+965hf92nT6niPJC/kw8AXx75EotPLYYAAX8O+BOtq+UuC+7kRKlqdnbk7fXnn9Zpuy1ITdV63g4cWLxtYazL2LH0Wz95EjhxwrRtbt4kgWPqVJpI69OHUq/NjYyRilVu3Jg/ctASP1QJSURVPpsfGjnSPOFfElFPndJvZ1KaUSrJXxKgwii2tIeZPl2DChXSceuWoLey85YtZP8SE0Ni+aJF9Nt6913LJu+7diVrlVq1SEhr3Zoi6JnSxYkTFE0cH0+WMAcOmFaYsHdv6kfVqUP3559/tnVLGWsTGUmR5gDZzIwcqX+9ihWp36RQ0HhcpaIxqylZECUJZ2eKaC1ovOfiQkVTJRo0KHxWGsOUR6xS3mfgwIG4fPky3njjDYwePRpdS0IYmY2pVYtS17KztYN+Q+zeTaLRtGkkuLZvTzPmDx+S985vv9F7Q4dSh71//9xC6tatlFZ6/jyluVmblBTbzbLGxNBSEs1KKlIkqtRefeiKqAUhiaQPUx9CI2pN2iQRtTBFpQCKppHaYajNJdEPVUKfiCqlYXbuXDIKj5nqiZqZqRXHJBFzUPAguChccD3xOv67a5oZ3s0nN3Hs3jHIBBmGNsivpEnC7K9nfjUozEoirq1F1C3XtuD9XWQm9U3Xb7B24FrIBBl+Of0L5h+fn299qTNqTEQNCwjLmXSpW1d7TppDt5rdcO7Nc2gf2B4ZqgxM2TsFTX9uiv/u/GeyiCp9P9YSUaWOLWA4pX/DBrqXBAdTh1aX3878ho/2fQQA+L7H9+hfr7/efYSGUqEUABg/niKxSiLbttE5U7Nmyb8vMOZRsaK2KIaUgWKM7GyybvnvP4qMWbaMzgVT7rF5adyYrjNKpTbtXkLyQ7VERPXzy30tKCjKJy+BgfSnVlOUUFni4EFKg69Qwbop/PpwdQXGjiV/om+/1VoViSIwbx6J76mpJJidPUtR0YW1CalbVyvCpaZStNbXX5f8SH+GOHiQri9Pn5IIvmcPTdKbiosL+TMD9Bsrw8mWZQ6Viib1NBryOB43zvj6LVrkzqAoTVGoliCl9AOcys8wllIoqSIrKwtRUVFYuXIlpk+fjsOHD8Pe3h77zM1xL4UIAqX+AIb9cpKSaLanWzcamFeqRH4s+/fTQLlSJfKSGjWKqpCuXk1ViNeto4qkU6fSzFl4OPD997TPzz4zXjTGXLKzKf2qfn0YTJEqDFJkZ0lLJ8+LKen8UnSLKbPYfi5+ECBApVEhLk0bFiOl91dxK5yIChQcWXfgAC1tkV5XWCTx5PJlbXT17t20LClzMNLAOS7OcLQvQFFOGg1ZPEjFRtwc3DC4Pk31LjuzzKTjrTpHUaida3SGv5t/vveHNRwGJzsnXHx8ESfu6w/zkkTcmzcNn8+FFVHPPzqPYeuGQYSI15u+jndbvIteQb3wbbdvAQDv7XoPW65tybVNaCgtY2K0thgAoFQrERUbBYCKSkmp/D16WNY2AKhboS72j9yP5X2Xw8fJBxfiLqDNb22wPGEs4JSY43lqCN10fmtRkC+qlMo/ZEjuKIL1l9fjtc2vAQA+aPUB3m7+ttHjTJ1KUb9JSVSFVa0ubMutj5TKP2BAyYuQZwqPVCn477+1BdoMsXo1XRP8/GhCbfTowv0mpGjUpUtzn+NSJKo5RaV0adeOlm3aWHZdKKsp/ZL3bb9+RWPL8fzzsejbVwOVivxOs7JIKHnvPfr/HjuWilqZI5QVhLc37XPcODrG5Mn0O/j9d9v0mRnrsGsXZb9JwvrOncaLFxpi+HCKbH74MP/kDFNyWbiQfJo9PUkAN4U33qB1Z8+m30xZplUrmniUy3NHpTIMYzpmi6gzZ87EwIEDUbduXbi6uqJp06aYMGECjh8/jho1auCzzz7D4cOHbdHWEockourTjEWRBNC//6aL1Lvvkvg5fLhlg4Rhw0hMzc6mgYKhCrTmcugQRdHdu2eb6rFSlGRJF1HNSec3RURVyBXwc6UVdVP6rZXODxgXUaOiaFBqb2+ef1tRUbUqdW5UKhJSU1IodQ4oGUWlAMDdXSuKGotG1U3l1z23Xw2hkKW1F9fqLXSkiyiKBlP5JTwdPTEwmPKffz2tv8BUxYrktyyKWuEgL4URUePS4tB7dW+kZqeiY/WOWBi+EMKzDz2h+QSMbToWIkQMWzcM5x5pw4w9PbVRYKdOafd38fFFZKoy4eHggZpetawiogKAIAgY2WQkrv7vKl5tQv8Pf9/8BfhfXaQ+9wcePzasolo7nR/Qiqj79+e/dsfHaycQhgzRvr735l4MXTcUGlGDMSFjMLfL3AKPY2dHaf0uLnQsW2QuFIaMDMqsAEhEZcoeTZpQVKJaTQV+DKHRaAt4TJxoWeR5XoYOpd/+1auU5SNRmEhUgNrXuTP51luCKSJqaYtuVKm0qfyDBhXdcb/7Tg1XV8oAq1uXBHOZjLxPf/qJUnKtjUJB9gALFtA19uhRCn7w96fiZ7oFEzUa4MED8oddsYL8qqdPp4jGd9+l9V97jbYfNw6YNIky0T7/nCJsly6lCfCHD0vfb6KkcOMGZfRlZFD/d8sWui5Ygr09ifQA3U9L4sQkk5t794CPP6bHc+eaNmYDqP8+cSJNRpf1CV5BoH7n2bPkE8wwjAWIZtKoUSPx5ZdfFufOnStu27ZNvHv3rrm7KNUkJSWJAMT4+HgxOloUAVG0sxPFlJTc682fT+/Z24vif/9Z59i3b4uiqyvtd9Ei6+zznXdof4AoTp1qnX3q4ulJ+z5/3vr7tibJydrvISlJ/zoTJ9L7H3xg2j6bLmkqYgbETVc25bzWfWV3ETMg/nbmt0K3+eOPqT3jxhlu64ABhT6MzWjXjtq4YoUobtlCj597rujbkZ2dLW7YsEHMzs422MZVqwxvP20arTN2bO7XNRqNGLQgSMQMiEsjlxptw6n7p0TMgOj4uaOYlGngByiK4oGYAyJmQHSd7SqmZKXoXadtW2rPypX531OrRdHBgd6/ccNok/KRocwQWy5tKWIGxNo/1BYT0hPyrZOtyhY7/d5JxAyI1b6rJj5MeZjz3ssv03FnztSu//Opn0XMgNjp907ihQv0vqOjKKanm9e2gjh065AYvDBYxAyImAGx2Q+dxKvxV/Otp3sdePLEesfPztZeu8+cyf3ekiX0ekiI9rWT906KrrNdRcyA2H9Nf1GpVpp1vGXLaJ9yuSgeO1b49luLjRupXVWriqJGY7vjGDunGdsj/T97eubvG+Vdx91dFJ8+td6xX3uN9vvyy/RcqRRFhYJeu33bescxhxs36PgKhSimpeV+7/FjUezWTRR9fOie/vhx8bTRXPbupc/k40PXN1uje05/9532Ou3mJopbt9r++BL374viF1+IYo0a2jYAoli/vijWq0f3L93XC/Pn6iqKTZuK4rBhojhjhij++68oRkfTfZzRj1Ipis2b0/fXrp0oZmUVfp8pKaLo7U37XLOm8PtjtNjiXt2vH/1ftWrF5wrDFDVlof8taX1JhgShZ5gdiXr27FmsXLkSkydPRs+ePVGlSuHTkksrNWqQ15VKlTuK89QpKhIFUGpAq1bWOV61asCcOfT4ww8L73knilSBUsKQLYGlPH2qTYO2RpSJLXFzowg+wHA0qjnp/ABQ2Y2iTfVFohbWExXQGoFHR+d+XanUVpc0ZKReEtD1RS1pqfwSUjSiseJSeYtKSQiCkBMFuSzKeEq/FIXap04fuDu4G1yvXWA71PKuhdTsVKy9uFbvOsaKS929SymQCgVdu8xh4o6JOHbvGDwdPbHlpS3wdsqfM6mQK/DPoH8Q5BOEO0l3MGDtgBz/VskX9eRJ7fq6fqhSFGqHDlQoyZq0DWyLM2+cQfXo2YDSEacS96Hh4oaYcWAGMlWZOetJ3ra+vhQ9ay0UCm1KcN6U/r/+oqVUUOrS40vouaonUrNT0blGZ/zZ/0/YyczLlR01ivanVpMfWFKS4XVv3qT7yn//WS/DwRBSKn///mU/0qM888IL5Bv/9CmlPedFFIEvv6THb75pWZqtIaSU/n/+AZ48oWwYpZKuKcXVXX3uOar+rFRqMy4AukY//zylHickUDRi9eoU+fbggcHdlQikVP4XX7RN9Kcx/vc/8kBt2pSiQosy2yYgAPjoI7pX7NlD11l7e/q/vHyZ/J7lchofdO5MFhX/+x9FnE6dCnz6KUWnfvklMGMG2QO8/TZFpw4fTlkYNWtSdG1qKkW5rl5N6/bvT+95epLH55tvko/jP//Q9xATQ8cvz3zxBfnYenhQVoa9feH36epK/0cA/b9xhHDxsWwZFQhbtkx/f2XjRmD9eooYX7KkZNRXYBimbMKXl0Kgzxc1KYlSMpVK6vC89ZZ1j/nmm1SkJCWF9l2Ym/nFiyQYSl5WUnV0ayGJkRUqUCekpCOl9Bsq1GROYSlAK6LeT7mf81pOOr+b7dL5d+4kwdfXt/Bp0bZEV0SVikqVlFR+CSnl3ZiIKomVknipyyuNX4FckOPo3aO4Eq/fzFitUWP1hdUADKfySwiCgJcbvgwA2Buj32DTmIgqfY6aNc3zsBN17AZW9luJIB/DXgBeTl7YMmwLnBXOOHr3KI7do8p7zz9P70dEaK9bpx5Qbr+uiGqr36y93B4d5FOBRRdRW+iBbHU2Zh6cicY/Ncalx6SE2yKVX0KfL+rDh1rv4sGDgdtPb6Pbym5IyEjA85Wfx4ahG+Bg52D2sQSBUlurV6frmeTnl5fVqyn9+qOPyOevRg0a1J85Y/2BYna2dtKOU/nLNjIZMGECPf7++/yD3SNHKB3b3l67nrUIC6N7S2YmedDrpvIX14BaEPKn9G/ZQsVMYmLoXr5kCRWBTEujyfcaNai/Z6zYZXGhVhdPKr+EnR2JJZGR+QvxFRUyGV3TV68G7t8nX+vdu2lSOyOD+mV79pDYs2ABperPnk1i6EcfUSDEp59SuvEPPwC//EK/1+3bSaBNT6cJ2vXraZ1XXqHfh7099dOPHqVr/IQJ9H/QujX9jpycyMe1WTMaI/z+O4m71pggS0kBNm+mts+YQUVx9+6l9paEoksnTmirsS9aRIEn1uLtt6lI5JkzNOnBFD1r19JkQ2QkMGYM/eZ1rTRSUmjCAgDef7/4rg0Mw5QPzOpS1qhRA88995zZfz/olrwrY+j6oooiXeBv3qTB66+/Wj/aRi6nzpZCQZ0ZKRrAEqQBbY8e1GFXq2lwYy1KS1EpiYKKS5njiQoAAW4BALSRqKnZqUjKopAwa0SiSiLq7dsUDS0hRf4MH170ESLmIImoR4+S4Kc7KVFSKEhEzczURi/qE1H93fwRXpvCZAwVmJp9eDZiU2Ph7eSNHrUKVhCre1YHAMSnx+t9X2qHFCGri6V+qA9SHiAlOwVyQY5uNbsVuH5tn9oYUI+UMqlgVpMmNPiNi6OI2ExVJs7HUYllfzEMhw7RtrYU/p97DsCT59Dm9jasGbgGlVwr4VrCNXRe0RnXE67nfD+2FFEPHdIWU/vnH7pvtGgBePsno+vKrrifch/BvsHY9tI2uNpbPvvk4UEDfLmcol11IwLT0mgQ8tJLNPAIDqZo/Dt3qPp006bkN/jZZ9aLbNq/nyIT/fysl53BlFxGjaKIuevXtT64EpIXquQraU0EQRuN+ssvhfdDtRa6IupXX2mrybdvT+LP2LEkDmzbRuJAdjaJZDVrUobGqlUlp5DR4cN0HffyKvsFWEyhQgWaBOvShe4x1uh3OTgA9epRpO/kyXT9Pn2afjMXLgB//kli5sCB9HupUQNwdKRtnzyh39LixXSOBQfT/1WXLiQu/fQTCb43b+buO+ZFpaLI6VmzgLZtSZzt04d+vzNnAq++SvusXZvE28qVScQyVOzUlqSmAi+/TOOYYcPo3mZNfHzoHAW0UfRM0bF/PzBiBPWXunShwJzjx2nSbPx4+s1/+illaNaoQT7EDMMwtsSsHMHly5dbdJDqJT2X2wQWLlyIhQsXQp3HVVwSfSIjqWPxzz8kFKxZY910UF3q1ycj+hkzaHa0SxfLqpFKImqfPhRdGRNDN6qePa3TztJSVEqiIBHV7HR+99yRqPeTaenu4A43BzcLW6klIICiErKzqeNQvTqQmKj9fy3JqfwA/Y4FgTq/AFVwlywVSgqSmHb9OnXe8k6KXLtGER6entoiVHl5NeRVbL62GSvOrsAXnb6AQq4dYX179Ft8cuATAMCM9jNgLy8498zHmb6khPQEve9LtgI3b9Kg29k5d3sB80XUy/GXAQA1vWua1EaAompXnluJtZfWYn6P+XB0VKBhQ4rkiIgAKjePgkqjgrPoi46hVZGdTe2ypOCVqeREb0cLGFx/MDrX6IxOKzrh3KNz6LyiM8JiDgMItImI2rAhDbbj4+nzt26dO5V/yp4puJ54HdU8qmHXy7ty/p8LQ4sWNACeNo0Gt61aUcTQkCEUnSQINNiYPp2yJ7ZvJ+F1yxb6rXzyCS1XrCj8hKCUyt+vHwm7TNnG1ZXEzK+/pqI/vXvT6xcukKgqCCTo2ILhw8lS6fx5rbVNSRJRpWjUN96gKEQp5VgQqP/VowdNtsyeTVFve/bQn7s7nbujRlFGUnFZYhRnKn95R6GgvlP9+iQW6iKKNFH14AFNop44QfY5p04ByckUNZrXTsbOjvqOzs40YZaZSZG0mZnUf8hbSKlmTa1wfvs2Tbzdvk3bPHhAVdEXL6bo2A8+oH5dUTBpEk1oV61KbbAF771H+z5wgAS8Fi1yv3/mDLBhA93r+T5nPc6epWtNdjZNGvz1FwW1vP8+9VcWLaIo1cREWn/Rotz9XoZhGJtQJA6tZQjdwlIStWrlNoP/9lvbtyMzk0zsLT3ew4eiKAi0/YMHVIQGEMVmzazXxrffpn1Onmy9fdqShQupvX375n9PpRJFmUz7fZnC9uvbRcyA2GhxI1EURXFP9B4RMyDW+7Ge1dpcpw61ae9eer5oET1v1Mhqh7ApuufOlCnF0wZjJtgZGdrzJDY2/7Z//knvtW5tZP+qbLHi1xVFzIC48crGnNd/PPFjTqGjWQdmmdzeo3eOipgBscb8Gnrf12io2AcgipGRud/r0YNe//lnkw8niqIo/nD8BxEzIPZd3dfkbZRqZc7n3nJ1iyiKovjGG3T8t98WxT5f0D7xUnhOEYiLF81rl7kcO6YtbCTxKPWRWGdBHREzIDpMfk6E231x7VrbHH/wYG1xrdu36bEgiOK6Uwdzfgv7bu6z6jFVKlHs2FFbuE0qfOLvL4r7DBwqOZl+I3I5rbt4ceHb4OtL+9q9u3D7MoWyYGxfFrhzR/sbkgqqjRhBzwcOtO2xpeNIf3/+advjFYRGI4p+ftqCbz/+aFpxtZs3qahQ9eq5P0/LlnSeFjUqlfZzbNtWdMflc9pylEpRjIqiIoYTJ4pi796iGBysLTJp7M/TkwqU/vQTFbXSh0ZDBdF27BDF7t1zb9+5M71uy0KCGzZo76X799vuOKIoiqNH5x4nqNVUGFW6x0p/deuK4vLlRVN0rTRT0HkdEyOKlSrRd9q+PfXJddm/n37L0vc+ZIitW8wwjDHKwr3aZoWlmPzopiC/8AIwcaLtj+ngoPV++fNP87ffupVuOWFhlE4nfYbTp40XITGHspTOn5BAEYeCQF6jppDjifosAlWKSLVGKr9EXl9UKWW3pEehSjRurH1c0vxQAUqPkwow6Uvpl1Lm9aXySyjkCrzS6BUAwK9nfgUALD29FP/bTifwR20+wsftPja5TVJBp4QM/ZGogmDYF7Wwkaj1KtQzeRs7mR2G1qdqSZKfqlRcasECYNMpKirlqwrDli0U3ZG3OJe1kc6Xe/e0Hm4VXSpi7yt78ZzXc8hyvgm80hk+1eJscnwpgmfvXoqcAIDWHTIw5ehrAICxTceiYw3relrI5VRgw8eHrhOZmRTtFhVl2D7DzY2iCKW06wkTchcEM5fDh4HHjyljQorIY8o+VatS5BAAzJ9PEWtSf+XDD217bCmlX6K4I1EFgfqGQUHAjh2UgmpKJGmNGpSmGh1NmUIjR1KU1bFjFJFa1EVu/vuPosA8PbUWJUzJxs6O+lpjx5Lf7qZN1DdITydrnf37yUv/0CG6zp8/T9k39+5R5sQ//1DUtHT/zIsgUJZF9+70246KotR6uZzudT160O9+9uzCF8TNS2ws2agBFPnaoYN195+XyZPp827cSEWsGjSgcd/+/fR5e/Wic+PKFTo/g4IoMre8F/yyhPh4+k3FxlJ074YNWssKiQ4d6Pf23XfkG7xgQTE0lGGYcgmLqFage3daVqkCLF9edClWgwdT5ygyErh61bxtN2+mpZRiV7kypS5rNMjxJiwsUjp/aXFzMCaiSqn8Pj6mF+SRPFETMhKQqcrMKSplKxH16lVK35LLKZ2xNCD5ojo6UnpzScSYL6okUhYk/o0OGQ0A2HptK749+i3GbiZzrUktJuHzTp9DMOOiIaV5J2clQ6lW6l1Hny9qVpb2t22uiCoVxapboa5Z2w1vRD/EDVc2ICUrJVf6m101Kiq1dGYYevUqmuumry/g4kLCw+3b2tcru1fGv333AklVAN8reDeyGxIzEq1+fEl0OHaM7hUA4NxzJq4nXkeAWwC+6vqV1Y8J0PX9r79oIP3NN5Sub0qBvEmTqEBidjalZ8brt+EtECmVv29fTv8tb0iTyqtXk3CqVtN50KyZbY/bpk1u4dSWNiGm8uGHdJ+2ZMJQJiPBYPlySu1XKKi4U1H7M0qp/H37WqfyOVN8yGQ0bunQAejWjXxPw8JIGKxVi+4blqSkN25ME3fR0cC775K1x40bZCsTGAiEh9PvqDDFqG7dAubMoTbHx5Pn+qxZlu/PVOrWpVR9APj4Y7LFcXOjVP+bN+neevs2nZcVK1I733qLJkPyWikwhnn6lMTpa9eoQNj27YYt8hQK+p39/rvpQS4MwzCFhUVUK9C/P3UYDh8uWk9HaeYX0Pp+mUJGhra6ZJ8+2telqKT9+wvfNlEsvZGoSUlkUq6LVFTKFOFBwtvJGw5yqqz9MOVhTkSqFKFqDXRFVCkKtUcP031bixvpN/fCC/lnmEsKur6ouoiiVkQ1FokKAMG+wWhRpQXUohrv734fIkS81ewtfNPtG7MEVADwcvSCANrmSeYTvetIoq5uJOrNmzRJ4upq2L/VEDmRqL6mR6ICQFhAGGp510KGKgMbrmxA/frAzz8D3y5IgdqLhNnmVWyspuggCPmjtyWyHlUHVuyFLN0P5x+fRc9VPZGanWrV49esSQMCpZL+b2SVT2NvxjcAgKquOiwAAERZSURBVMW9FsPD0cOqx9OlSxeK2HjvPdOrlAsCVZeuXZu876TCHeag0WgreQ8YYN62TOmneXPy78zOJq94AJgyxfbHFQRthFqVKnTdKyu0bKmNuJo2jaIIiwKNRjshMmhQ0RyTKb0EBlKE4MOHJP63a0e/oe3bKQjE358E1enTgfXr6R5jLLL68WPyu2zThsYVH31E4qy3N/DHH5ShVxR88glNxlarBnz7LUXXfvMNPQfIu/jDD2kMtGABReTHxpKHraUTkeUBtZrGpsOH02/jxAn6v92xgwR9hmGYkgSLqFZAEGhwWRwRl1IFyj//ND2ta+9eElKrVtVGAgLWFVETErQFg6R06JKOs7NWJM0bjWpuUSkAEAQhJxr1fsp93EuxXSTq9esk5AOlJ5UfoCiCs2eBX38t7pYYRl8k6okTlJotvdagQcH7GRMyJtfjBeELzBZQAUAuk8PT0ROA4eJS+tL5JRE4KMi8qM+nmU8RmxoLwPxIVEEQMLwhRaNKKf2vvw40fSESIkRUda8KP9eiVfwNiajXrwNICELTC3vg4+SDk/dP4rODn1n12IKgkwIrU8Jl2BioRTWG1B+CPnX6GN22uPDwIOHEyYnEms8/N2/7Eyeo4Ii7e8m07GBsz7vvah83bVp0aeBjx5Jw/+mnRXO8omTsWBKJRZHEmaKoiH70KAliHh58LjOm4+pK/dKDB6nP9NFHVBj1yRMSVD//nIJRAgOpD96uHQmlzZppo2KrVCFhbfx4spQQBOqD/forRbwWNJFtTRo3pjHBzZuUreHurn89JyeyXbt2jT7H48daG7byxsOHNHn23ntkE7R8ObBtG1nI3bzpgWnTZAgMpMCgP/8k+4N69ej3Uc+8uXuGYZgiwcTEZKak0rcvzYhGR5OXUfPmBW8jpfL36ZNbTJG8hM6epSqH3t6Wt0tK5ff3L7kRhvqoXp06R7duASEh2telSFRzIzwru1dGzNMYPEh5kJPOX9nd+pGop0/T0tNTa9FQWtAV8ksiuiLq5csU+bN+Pb3m4AB89plpkZ3DGgzD+ivrEeQdhG+6fQOZYPkclreTN55kPjHoiyoNKGJiyPfM2bkQfqiPKQq1sltluDsYGC0YYXjD4Zh5cCZ239yNR6mP4Ofqh4j75IcaVjnM7P0VFkMiqvT9NAlogE9fXI7eq3tj/on5GBs6FjW9a1rt+J07A7/9BqDVN0hxjYK3kzd+6PmD1fZvCxo2pAjiESOAmTPpPtOjh2nbSpFrvXsXXaQQU7Lo35/urbdu0UC6qCyP3N3Jz7EsIgjAjz8C585R369/fxI5bVmVWkrl79OHz2XGMmrXJi/RWbOAiAjqu0ZG0t/FixSpefiw4e1DQyl4ZOhQEmKLC3POM0dHEg2bN6do/EGDyldWxrlzlG12966+dxUAOuQ88/KiSaGRI8laoqjuFQzDMObCImopx8UFePFFSudftapgEVWjyS2i6lKpEs34Xb5MM8aS748llLZUfokaNWhAIonAEpak8wO5i0tJ6fzWjETN+/0OHVq6ROvSgCQ6Xr5M0QQaDaVDjxpFEU5SCldBuNi7YOtLW63SJh9nH0Q/iTYYiVqxItl9xMdTgYOmTa1QVMrMVH6J2j61ERYQhogHEVhzcQ3eaf4OTj0kP9SwgOITUaOjc7+uG6nbq3YvdKvZDbuid2HynslYN3id1Y7fuTOg8L8CZYeZAIDve3yPii5mXliKgZdfpgign36idLsLF2iSzBiiqBVRy9OgkcmNnR2lZF64QGIfYx0cHOj8Cg2lye/XX6e0ZlsIDxqNVpDmVH6msMjlQIsWyOWTnplJRa2io8lv19Ex91+FCqb3t0oaoaE0gfTFF+SR2r49fZ6yzo4dZN2QkkIe1X360HgqLk5aikhIUKNTJxlGj5bxZCvDMKUGTucvA0gp/WvWACqV8XVPn6a0CldX/VWSrZXSL4mQpU1ENVRcypJ0fkBbXOrW01t4lEZKrDVFVDe33EbqpSmVv7QQGEgdeo2G/vr3JzHg11+Lr0Pv40Tmy8aKH+X1RbVURM0pKuVjXiq/Li83ehmANqU/JxK1GETUms+CSvWm84MiZQRBwLxu8yATZPj38r84cOuA1Y7v5yei3uTXAbss9KzVM8fuoDQwfz5F6CcmAkuXFrz+sWN0LXV11fp3M+WTOnVISOfIIutSpQqwdi2JUn/+Cfxgo6D2Y8fIlsPNjYoQMYy1cXSk6MOhQ6mfFR5OKfutWtFEcGkVUCWmT6eJ+Lg44O23i7s1tmfxYopATUmhTMdjx4CvvqL6Ddu303g0JkaFv/7aig0b1Bg4kAVUhmFKDyyilgG6dqUZzbi4gqs/btpEyx499N+sOnWi5b59hWuTJEIWh09sYTAkolqczv8sElWKvHOQO+QIYNZCiqwLCjLNzoExD7mcqrD26wccP06RP8Xt0eTjTL8hQ+n8QH5f1OKKRAWAIfWHQC7IcfL+SRy/dxwxT2mWJTQg1OJ9WopuOr/kIy2K2u9HKiRWv2J9jAsdBwB4d8e7UGvMrKhkgKjYKJxLOgJHO0cs7rXYIl/c4sLBQVttfcWKgn24//iDlgMG2DbNmGHKM+3bU4EbgLIjTPXHN4cDB2gZHs5CB8NYgoMDWfnI5cBff2kLLpYmRJEKgO3aRXYiy5dTv1i3GK9aTd6nb71Fj0eNIj91L6/iajXDMIz1KZciqp2dHZo0aYImTZrgNal8aylGoQCGDKHHq1YZX1cSUQ35ZkrRqRcvaqMvLaG0RqJK7bVWOr8UiXr6IZmWVnavbHXRpHFjWo4Zw1E+tmL6dOrwlhSR2tuRDIsNpfMDuUXUlBSKQAe0IqGpSJ6o9SpYLqL6ufqhy3NUiWTSzknUDu/aOQWyipLAQDpPUlO1lXIfPwaSk+n1mjr2pzM7zoSnoyfOPjqLZWeWWeX4m67SRbh7ze4I9CwlVfd06NePbGRu3KCiUYbQrcb+8stF0zaGKa+8+iotk5KocGhBaDRU6fzsWdP2L0XuSxkODMOYT7NmwIcf0uM339T2QUoqSiVZ+Lz8MrXdzQ05BaDefhsYPRpo2ZJqaPj5UVGwdu2AefNo+88/B5Yto2wuhmGYskS5FFE9PT0RFRWFqKgoLDUlJ7EUIKX0r19PhWT0cecOdZhlMoom0EeFCtpCP1LkgSVIImRpjkTVjeawNJ1fKiKVqcoEYN1UfonPPwdWr6aZX6Z8YEokqjTYvXRJm6pesSIVHzOVTFVmTtRoYSJRAeSkrR+7dwxA8RSVAihlsPKz2m6SMCB9P9Wq5fYUruBcAZ+2p9Le0/ZNQ1JmUqGPv/kamVL3qdOngDVLJq6uWl/LFSsMr7dzJ6X9+/trbWIYhrENrq4U4QbkjgozxMGDVOl87FjT9l9aJ8YZpqTxySelI63/zBng+edJ7F21iop/paWRx3W9elTYuHNnbX8qLo6Kgh09SlG3q1dTIVYO7mAYpixSLkXUskjLliQApqZqC0flRXq9dWvjhuaF9UUVReD2bXpc2jrcgc8Cw1JTSQAA6PNYms4vRaJKSOn91sTXlzykpAEUU/YxxRNVikSNiQGiouixuan81xKuQSNq4OHgAT8XM3/8eXix7otwsnPKeV4cfqgSuin9QP5Ufl3Gh41HHZ86eJz+GF8c/qJQx32Q8gCRDyMhQECv2r0Kta/i5JVXaLlmDZCVpX8dKZV/2DC+NjGMrREEbbqsKSLqfapzicuXTUv/ZxGVYaxD3rT+994rXOaftcnMBKZOJX/aqCiKMp05k4J0Ll+mQJ1Ll4ANG4A9e4B79yiT59QpElvnzKEslaFDi/uTMAzD2I4SJ6IeOnQIvXv3RkBAAARBwIYNG/Kts2jRItSoUQOOjo4IDQ3F4cOHzTpGcnIyQkND0aZNGxw8eNBKLS9eBEEbjaovpT8zk27WgOFUfonCiqixsXQ8mQyoWtWyfRQXjo7aitPSoCE5WSsUWJrOL2GLSFSm/GFKJGrFijRZIorAxo30mqVFper51iu0DYWbgxv61u2b87xZQLNC7a8w5BVRpUhUfd+PQq7At93IcHD+8fm4kXjD4uNuubYFAPB85efh51o4Ubo46dgRCAigiaZt2/K/n5ystY4ZXnrqZjFMqcabXF5yJoCNIQmtKSkFpxQrlZTJBGivnQzDWE6zZuS1D1Dqe/Xq5DcuTW7YguRkICKCJjiXLaMaGjdv0vktceQIWYR9+SX5mQ4aRILpJ58AL74I1K1LFnJ5cXMDQkNpHDplitZmjGEYpqxS4kTUtLQ0NG7cGD/++KPe99esWYN3330X06ZNw5kzZ9C2bVv07NkTd6QeHoDQ0FA0aNAg39+DBw8AALdu3UJkZCR++uknvPLKK0hOTi6Sz2ZrpMHq9u1Ago62sn8/3dCOHKGZzxdfNL6fdu1IlL16laqxmotUlKlKFf0325JO3uJS0gyxmxvg5KRvC8M4K5xz+T6yiMpYA2+ngj1RAW006q5dtDS7qJQV/FB1kVL6ZYIMIZVCrLJPS5CEgOhoWkoiqiG/2PDa4eheszuUGiUm755s8XGlVP7eQQXMZJVw5HKtz+nKlfnf//dfmkirVw8IKb7/ZoYpV5gTiaortErXQUPcvUseqg4OQKVKlrePYRgtn35KE9xhYeRjPH8+9U3Gjctfl8EcpCLD8+eTXUf79nTeenhQev6IEVRDoUsX8oB3dKQsvBYtaPx37Rqt/++/wNq15mfgMQzDlAfsirsBeenZsyd69uxp8P158+ZhzJgxOQWh5s+fj507d2Lx4sWYM2cOACAyMtLoMQICKDqwQYMGCA4OxrVr19Csmf6oqKysLGTp5CtKgqtSqYRSd/quBFC7NtC4sR3OnhWwZo0aL76owYcfyvHHH6SV+/uL+OEHNapXF2Gs6a6uQJMmdjhzRsCePSoMG2Zeqdfr1wUAdqheXQOl0joVrYuSatXkOHZMhhs31FAqNbh/nz5PxYoilEqV2fsLcA3A08ynAAA/Z78S97sp70j/H6Xp/8VD4QGARFRj7a5bV4aDB+XIJEtePPecCkql6efzxbiLAIAg7yCrfD+dAztjXNNxqO5ZHfaCfbF954GBdE5HR9M16upVOwACatQw/P182elL7Lm5B+uvrMfJuyfNFoHTlenYc3MPAKBHzR6l6vemj6FDga++UmDLFhGxsSr4+GjfW7lSDkCGoUPVUKk0Rd620nhOM0xh8fSk8y4+vuDrfHy8DAD5bFy9qkJoqOH1pT5dYKAItVoFdTF06/icZsoiPXsCPXoAe/cKmDNHhsOHZViyBPj5ZxF16gBNm4oIDaW/xo1FuLhQdtHjxxS1eveugPv3Bdy8CVy4IOD8eQFxcYazhvz9RdSuLcLJCbh1S8Dt20BmpoA7d7TR5iNHavDVV2p4ecHoWNEa8HnNMGWLsnBOm9r2EieiGiM7OxuRkZGYMmVKrte7deuGo0ePmrSPJ0+ewNnZGQ4ODrh37x4uXbqE54zkJ82ZMwczZ87M9/r+/fvh7Oxs3gcoApo0qYWzZ+tj1qxMTJmiQEqKDIIgomfPGAwffhkKhUpv+mVeqlWrjzNnauGPP+7Bw8PE8q3P2LUrCEA9yOX3sG3bGcs+SDGiVtcDEIRDh+6gXr1zOHrUH8DzUCgSsW3bEbP3Z5+lLUt55/wdbLtpwn8AU+Ts3r27uJtgMo+yyKQ3Pi0e24yc0KJYA0CjnOexsYewbVuKyceJiIkAAKTGpGJbonV+tz3QA0iE0XbbmthYLwDtcOlSJrZu3Y1r13oBsMP9+wewbVuawe2auDVBZHIkftn5C17wfcGsY55MOolMVSZ8Fb64G3EX94R7hfsQJYDnnmuPmzc9MWPGJfTseQsAkJjoiP37uwEAKlXah23bDFQ6LAJK0znNMIUlI6MpgKo4evQyKlS4aXTdCxdoXQDYufM6PD2vGVx39+5qAELg6hqHbduOW6/BFsDnNFNWee89oEcPH6xdG4SzZyviyhXgyhUBf/5J78tkIry8MpGUZA+VyrDRuCCIqFQpDYGByahaNQVVqqSicuVUBASkwtk5dyCIKAJPnzrg0SNnxMU5w98/DbVrP8WxY7b8pPnh85phyhal+ZxON1ShPQ+lSkSNj4+HWq2GX57cAj8/P8TGxpq0j8uXL+ONN96ATCaDIAj4/vvv4S0ZSelh6tSpmDRpUs7z5ORkVK1aFR07doSPbuhNCaFRI2DFChGPHrk8ey5i8WI1wsKqQuowm4aAjRuBmzcDER5uXjGkTZvo5t6mTWWEh/ubtW1J4OFDAf/8AwCBCA+vgrt3KZK3Th0vhIeHm72/f7f8i6hzUQCAQT0G2aS4FGM5SqUSu3fvRteuXaEoJf4TKVkpeOPyG8gWs9Ghawc4K/RP6Li4CPj5Z3osCCJGjWqbq/q8MdQaNR6efwgAGN59OGp517JG00sEzZoBH34IJCQ4oV69cGRl2UEuFzFqVHujFiSRhyMReTgSGV4ZZl8LNm+jVP6BjQaiV/fSW1RKl+vXZfjgAyAqqiEWLAgGAHz3nQyiKKBVKw1Gj+5QLO0qjec0wxSWnTtlOHQI8PMLRnh4XaPr/vyzVoSxs6uD8HDD1/djx6gPFBZWwaI+kDXgc5opD4SHAx98ADx6pERkpIDTp4Wc5cOHAhISyFOMhFKgcmURlSsDgYEi6tcX0aABEBwswsXFAYDvs7+SC5/XDFO2KAvntKk2n6VKRJXIW+BEFEWTi560atUK58+fN/lYDg4OcHBwwMKFC7Fw4UKon+UxKRSKEvnjqFEDGDmSfHamTQMmTBBgZ2f+f3PHjlQYKjpaQHy8IqfYkincvk3LWrXkUChKX1nmmjVpeeuWDAqFLKfoQqVK9NxcqnqQeC0TZKjiWQV2slJ52pV5Suo5rQ8vOy/Yyeyg0qiQrEyGh7OH3vV0zf0DAwW4ueX+fMaunXcS7yBLnQUHuQOCfIMgl5W+c9kQAQGAiwuQlibgwAH6TmrUEODsbPz/v0XVFgCAyNhIs34rGlGDbTco8vbFei+Wmt9ZQbz8MhWROHFChlu3ZKhdG1i9mt4bMcKy66U1KU3nNMMUFmlePzm54L6Xrm9qTIzxc1VK861Zs/j7dHxOM+WBKlXor6+2FicePKBz0d8fCAgQnk34Fq7gZ0mBz2uGKVuU5nPa1HaXuMJSxqhQoQLkcnm+qNO4uLh80anWZvz48bh06RIiIiJsehxrsGwZFQ147z3AAv0UAODuDjRoQI/NTeuQCjJJBZpKGzVq0PLWLUp1eUSZ0xabqwe4kQevv6s/C6iMVRAEAT5ONGJOyDBcXMrXF6hQgR7nLSr1wa4P4PGlByIf6PeQvhJ/hbbzKVsCKkCF8yQXl507aWmoqJQuof6hAICr8VeRnGV6QcLTD0/jYepDuNq7on1ge3ObW2KpVAnoRpn7WLkSuHgRiIqi+86gQcXaNIYpd5hTWEp3nYIKS9185gxgxPmKYRgbExBAxZ8CA0tn0V6GYZiyRKkSUe3t7REaGprPZ2H37t1o1apVMbWq5GFiUG6BSF+piXazAAC1Whu1IImRpY2qVek7zMgg8/a4OHrdUhFVSoOu6V3TSi1kGMDHmUTUxIxEo+vVr09LXRH196jf8c2xb5CSnYJvj32rd7vL8ZcBAPV86xW+sSUQSRDYu5eWeUVmffi5+qGqe1WIEHHmoel+z5uubgIAdK/ZHQ52DuY2tUTzyiu0XLkS+OMPehweDpRAtxuGKdNIzlSJxm8J+dZ5+BAwZgEmVQovrX06hmEYhmEYa1LiRNTU1FRERUUhKioKABATE4OoqCjceabMTZo0CUuXLsWyZctw+fJlTJw4EXfu3MG4ceNs2q6FCxciODgYYWFhNj1OSUISUc2JRL1/n6o5KhQ0a1oacXAAKj+zLY2J0UaiVqxo2f66PNcFi8IXYVH4Ius0kGEAbSRquuFIVADo1ImWbdvS8mzsWYzbqr1e/nv5XzzJyB+6dPnxMxG1QtkWUSXrG1MiUQEgrDLdAyIemJ6VsPka+aH2Dupt8jalhb59ATc3itz//nt6bfjwYm0Sw5RLTI1EFcX8QqsklOYlLU07kcwiKsMwDMMwTAkUUU+dOoWQkBCEhIQAINE0JCQEn3zyCQBgyJAhmD9/PmbNmoUmTZrg0KFD2LZtGwIDA23artKUzm8tJBH11CkgK8u0baRU/mrVAHkpzgCWrAhu3Sp8Or9MkOHNsDdRv2J9azSNYQAA3k4UdmQsnR8APv6YfseDBwNPM59iwNoByFRloketHmjk1whZ6iysOr8q33ZSJGrdCsYLlJRWauYJDDdVRG3m3wwAcOrBKZPWv5t0F1GxURAgILx28RRlsSVOTtrU/YwMElR7lz2tmGFKPKaKqGlpgOpZke46dWhpKKVf6tN5eGj3zzAMwzAMU54pcSJqhw4dIIpivr/ly5fnrPPWW2/h1q1byMrKQmRkJNq1a1d8DS7DPPccRV9mZwOnT5u2TVlJ+9IVUQubzs8wtsDUSFSZjDy0RFHE6I2jEf0kGoEegfij3x8YEzIGAPDrmV9zbSOKojadv4xHokqYks4PaCNRTRVRt1zbAgBoWbUlfF1KdqVcSxkxQvt4wAASVhmGKVqkdP6CRFQpCtXeHmjUiB4bElHLSp+OYRiGYRjGWpQ4EbWkUh7T+QXBfF/U0l5USkIaMFy+rE33tTSdn2FsgameqBLfHP0GG65sgL3cHv8M/gc+zj4Y3nA47OX2iIqNwumH2pmSuLQ4PM18CgECgnxMVBdLGboiqr09eSGbglRcKvpJtEnffVlO5Zdo1077fY4cWbxtYZjyihQpmphIKfuGkERULy9tRD6LqAzDMAzDMKbBIqqJlMd0fgBo2ZKWpoqoZaXDLYnAJ07Q0t6e0tkYpqRgajo/ABy4dQBT9k4BAPzQ4wc0C6CUdB9nH/Sr2w8A8OtpbTSqFIVaw6sGnBRlM6wwMFBbhK9mTdPtR7ycvFDTi5SHyAeRRtdNy07Dvph9AMq2iCqTATt2ANu3Ax06FHdrGKZ8IomoajWQmmp4PSlS1dtbO/lRkIiaN3KfYRiGYRimvMIiKmMU3UhUY5ENEmVNRL1yhZZ+flrBhWFKAjnp/AWIqA9SHmDoP0OhETUY0WgExoaOzfX+a01fAwCsOr8KGcoMANqiUmXVDxUAHB21BeRMTeWXMLW41O6bu5GlzsJzXs8h2DfYkmaWGmrXBnr0KO5WMEz5xcmJJnwB4yn9UiSqt7c2EvXmTf3rSq+X9j4dwzAMwzCMtWAR1UTKYzo/AISGAgoFEBurTdU3RllL55fgVH6mpCGl8xfkifrlkS/xKO0RGlZsiJ9e+AlCntmATjU6obpndSRlJeHfy/8CQJn3Q5WQoqtMLSolYWpxqc1Xtan8eb93hmEYayIIpvmi6kvnj4mhCNa8lJWJcYZhGIZhGGvBIqqJlNd0ficnoGlTenzsmPF1lUrg3j16XNo73FWqUIqqBBeVYkoaUiRqQb6cV+IpnHpii4lwVjjne18myDC6yWgAwNIzSwGUHxFVirRv08a87SQ7BGMiqlqjxpbrVFSqLKfyMwxTctD1RTWEbjp/lSo0Ua7bf5MQRRZRGYZhGIZh8sIiKlMgphaXunsX0GgoTba0i44KBQ0uJDgSlSlpmOqJejf5LgCgmkc1g+uMajIKAgQcuHUA0YnROcJrPd+yLaJ+/jmlq/bta952Tf2bQoCAu8l38Sj1kd51dt/cjbi0OPg4+aBtYFsrtJZhGMY4kohqajq/XK4VSPP6oiYmAikp9Li0ZxcxDMMwDMNYCxZRmQIxVUSVIhaqVy8b/qG6kRelXRRmyh5SOn9iRiI0okbvOqIo4k7SHQDGRdRqHtXQrWY3AMAPJ37AvWQKSSrLnqhAbgHBHNwc3HK+G0PRqMujlgMAhjccDnu5vaVNZBiGMRlzRFRpXcnWJK8vqtSnq1SJspIYhmEYhmEYFlFNprx6ogJAy5a0PHvWeMXXspb2pRt5wSIqU9KQ0vk1ogZJmUl613mS+QTpynQAQBX3KnrXkRgTMgYAsPjUYgBARZeKOdGuTH6k4lL6RNQnGU+w4coGABTlyzAMUxRInqimpvMDWl/UvJGoUp9OElkZhmEYhmEYFlFNprx6ogJUwbpaNUrVP3nS8HplpaiUhO7n4HR+pqThYOcAF4ULAMO+qFIUqq+zL5wUxkOJ+tTpgwrOFaDUKAGUfT/UwiIVl4p4kP+esObiGmSps9DIrxGaVGpSxC1jGKa8Ym46P2BYRJUiU8vKxDjDMAzDMIw1YBGVMQlTUvrLWiQqp/MzJZ2CfFHvJpEfalWPqgXuy8HOASMajch5ziKqcXSLS4mimOs9KZV/VONREMqCtwnDMKUCa4qoZa1PxzAMwzAMYw1YRGVMQhJRjx0zvE5ZjkRlEZUpiUi+qAnpBkRUE4pK6SKl9ANlv6hUYWlSqQnkghyP0h7leMgCwOXHl3Hi/gnYyewwvNHwYmwhwzDlDUkYNSaiSu/l9USNjgZ054NYRGUYhmEYhskPi6iMSeiKqBr9NWzKXIeb0/mZko7ki1pQOn9V94IjUQGgfsX66Fi9IwCgddXWVmhh2cVJ4YQGFRsAyO2L+vvZ3wEA4bXDUdGFLxwMwxQdkjBqzBM1bySqJKImJeUWX8tan45hGIZhGMYasIhqIuW5sBQANGoEODtTB/vq1fzvZ2QADx/S47LS4a5aFWjWDAgLA3x9i7s1DJOfnEhUQ+n8zyJRTRVRAWD9kPU4N+4cQgNCC9/AMo5uSj8AqDVqrDy3EgCl8jMMwxQlBaXzK5VASgo9lkRUZ2fA358eSyn9Gg1w+zY9Lit9OoZhGIZhGGvAIqqJlOfCUgCgUJCYCOj3Rb1DAW9wddV2zEs7MhkV0jp+nB4zTEnD2/GZJ6qBdH4pEtXUdH4A8HD0QEO/hoVvXDkgLIAuilJxqd03d+NBygP4OPmgV1Cv4mwawzDlkIJE1KdPtY89PbWP8/qiPngAZGcDdnZAlSrWbiXDMAzDMEzphaUhxmQMFZfKzgY++ogeBwUBZamOiiCwgMqUXAqMRDWjsBRjPnmLS0kFpYY3HA57uX0xtoxhmPKINIltKJ1fet3DA5DLta/nFVFv3qRltWokpDIMwzAMwzAEd40Yk9EnomZlAYMGAZs3A/b2wBdfFE/bGKY8YswTVa1R437KfQDmRaIyptPQryHs5fZ4kvkEpx+exoYrGwAAo5qMKtZ2MQxTPpEiUZ8+pZT8vJPAef1QJXSLSwHsh8owDMMwDGMIjrFjTKZFC1peuUId8YwMoG9fElAdHYGNG4EePYq3jQxTnjAWiRqbGguVRgW5IIe/q39RN61cYC+3R2O/xgCA93e/jyx1Fhr5NUKTSk2Kt2EMw5RLJBFVFIHk5PzvSyKqtJ6EFIkqRaCyiMowDMMwDKMfFlEZk6lQAahThx7v3Qu88AKwcyfg5ARs2cICKsMUNd5Ohj1RpaJSAW4BkMvk+d5nrIOU0n/g1gEAVFBKKEueJgzDlBocHKhQFKDfF1V6LW8kat50fhZRGYZhGIZh9MMiqoksXLgQwcHBCJOqK5VTpJT+V14B9u2jQlI7dgCdOxdvuximPCKl8+uLRLWkqBRjPlJxKQCwk9lheKPhxdgahmHKO1KUqT5fVEPp/JKIev8+kJnJIirDMAzDMIwhWEQ1kfHjx+PSpUuIiIgo7qYUKy1b0jIzE3B3B3btAtq1K942MUx5RUrn1+eJykWligYpEhUAwmuHo6JLxWJsDcMw5R1JRNUXiWoonb9CBcDNjWwAYmK0IqrklcowDMMwDMMQLKIyZtGpE1V09fQE9uzRiqoMwxQ9UiRqclYylGplrvekdP5q7hyJakvq+daDs4LyZ0c1HlW8jWEYptxjTEQ1lM4vCFrB9PJlikgFOBKVYRiGYRgmL3bF3QCmdFGzJhARAfj5AQEBxd0ahinfeDp6QoAAESISMxLh5+qX856Uzs+RqLbFTmaHn3r9hAtxF9C7Tu/ibg7DMOUcSSA1J50foP7d2bPA/v0UkersDPj62q6dDMMwDMMwpREWURmzCQkp7hYwDAMAcpkcno6eeJL5BAkZCblE1JxIVPZEtTkjGo8o7iYwDMMAsCydH9D6ou7ZQ8saNShClWEYhmEYhtHC6fwMwzClGEO+qDmRqO4cicowDFNesCSdH9CKqFeu0JJT+RmGYRiGYfLDIirDMEwpxtuJRsMJ6Qk5r2WpshCXFgeA0/kZhmHKE6ZEohoTUSVYRGUYhmEYhskPi6gMwzClGKm4VEKGVkS9l3wPAOBk55TzPsMwDFP2McUTVV86v1RYytBzhmEYhmEYhkVUhmGYUo2Uzq8biapbVEpgUzuGYZhyg6FIVFE0ns5frRpgp1MpgSNRGYZhGIZh8sMiqoksXLgQwcHBCAsLK+6mMAzD5CBFmup6onJRKYZhmPKJIRE1NRVQqeixPhHVzg4IDNQ+ZxGVYRiGYRgmPyyimsj48eNx6dIlREREFHdTGIZhcsjxRM3QE4nKRaUYhmHKFYbS+aXnDg6Ak5P+bXV9UVlEZRiGYRiGyQ+LqAzDMKUYfZ6od5MoEpVFVIZhmPKFoUhU6bmXF2DI5UXyQfXxAdzcbNM+hmEYhmGY0gyLqAzDMKUYfZ6onM7PMAxTPpFE1ORkQK3Wvi5FoupL5ZeQIlE5CpVhGIZhGEY/LKIyDMOUYvR5ouoWlmIYhmHKD56e2sdPn2ofmyKidutGEagvvmiDhjEMwzAMw5QB7ApehWEYhimp6PNE5UhUhmGY8olCQUJoSgoJpz40z5Yrnd8QjRrRenK57dvJMAzDMAxTGuFIVIZhmFKMbjq/KIpIykxCclYyAPZEZRiGKY/o80U1JRIVYAGVYRiGYRjGGCyiMgzDlGKkdP4sdRbSlek5UajeTt5wsXcpzqYxDMMwxUBhRFSGYRiGYRjGMCyiMgzDlGJc7V2hkCkAkC/q3SQSUTkKlWEYpnwiCaWJWqtsk9L5GYZhGIZhGOOwiMowDFOKEQQhly8qF5ViGIYp33AkKsMwDMMwjG0olyJqTEwMOnbsiODgYDRs2BBpaWnF3SSGYRiL0fVFzSkq5c5FpRiGYcojLKIyDMMwDMPYBrvibkBxMGrUKHz++edo27YtEhMT4eDgUNxNYhiGsRjJFzUxI5EjURmGYco5+kRUTudnGIZhGIYpPOVORL148SIUCgXatm0LAPDmKXmGYUo5OZGoGTqRqB4cicowDFMe0eeJypGoDMMwDMMwhafEpfMfOnQIvXv3RkBAAARBwIYNG/Kts2jRItSoUQOOjo4IDQ3F4cOHTd7/9evX4erqij59+qBp06aYPXu2FVvPMAxT9Hg7PvNETU/gwlIMwzDlHE7nZxiGYRiGsQ0lLhI1LS0NjRs3xujRozFgwIB8769ZswbvvvsuFi1ahNatW2PJkiXo2bMnLl26hGrVKPIqNDQUWVlZ+bbdtWsXlEolDh8+jKioKFSsWBE9evRAWFgYunbtqrc9WVlZufaVnJwMAFAqlVAqldb4yAzDFCPSeVyaz2dPR08AQFxqXE4kaiXnSqX6MzGMpZSFc5phCoObmwDADomJGiiVaiiVQGqqAgDg6qpEaTs1+JxmmLIHn9cMU7YoC+e0qW0vcSJqz5490bNnT4Pvz5s3D2PGjMFrr70GAJg/fz527tyJxYsXY86cOQCAyMhIg9tXqVIFYWFhqFqVorTCw8MRFRVlUESdM2cOZs6cme/1/fv3w9nZ2eTPxTBMyWb37t3F3QSLiX8UDwA4cuUIstXZECDg3H/ncEm4VMwtY5jiozSf0wxTGK5f9wXQCnfupGDbtgN4+tQeAPWtjx7dBrm8WJtnMXxOM0zZg89rhilblOZzOj093aT1SpyIaozs7GxERkZiypQpuV7v1q0bjh49atI+wsLC8OjRIzx58gQeHh44dOgQ3njjDYPrT506FZMmTcp5npycjKpVq6Jjx47w8fGx7IMwDFNiUCqV2L17N7p27QqFQlHczbGI2KhYrHi4Ag80DwAA/q7+6NOrTzG3imGKh7JwTjNMYfDzEzBzJqBSuSM8PBxXrtDrnp4ievcOL97GWQCf0wxT9uDzmmHKFmXhnJayzguiVImo8fHxUKvV8PPzy/W6n58fYmNjTdqHnZ0dZs+ejXbt2kEURXTr1g0vvPCCwfUdHBzg4OCQ73WFQlFqfxwMw+SnNJ/Tvq6+AIDYNLoOVvOsVmo/C8NYi9J8TjNMYfClWwKePBGgUCiQkkLPvbyEUn1O8DnNMGUPPq8ZpmxRms9pU9tdqkRUCUEQcj0XRTHfa8YoyDJAHwsXLsTChQuhVqvN2o5hGMbW+DjljornolIMwzDlF6mwVFoakJ2tLTDFRaUYhmEYhmEKh6y4G2AOFSpUgFwuzxd1GhcXly861dqMHz8ely5dQkREhE2PwzAMYy4+ziyiMgzDMISHByDFFjx5AiQm0mMWURmGYRiGYQpHqRJR7e3tERoams+sdvfu3WjVqpVNj71w4UIEBwcjLCzMpsdhGIYxF2+n3CPjah7ViqklDMMwTHEjl5OQCrCIyjAMwzAMY01KXDp/amoqbty4kfM8JiYGUVFR8Pb2RrVq1TBp0iSMGDECzZo1Q8uWLfHzzz/jzp07GDdunE3bNX78eIwfPx7JycnwkHqmDMMwJYB86fweHInKMAxTnvHyAp4+JRFVSueX0vwZhmEYhmEYyyhxIuqpU6fQsWPHnOeTJk0CAIwcORLLly/HkCFDkJCQgFmzZuHhw4do0KABtm3bhsDAwOJqMsMwTLHiYOcAF4UL0pRpADgSlWEYprzj5QXExHAkKsMwDMMwjDUpcSJqhw4dIIqi0XXeeustvPXWW0XUIoILSzEMU5LxcfZBWhKJqOyJyjAMU76RBNPERBZRGYZhGIZhrEWp8kQtTriwFMMwJRnJF9VB7gBfF99ibg3DMAxTnEip+5zOzzAMwzAMYz1YRGUYhikDSL6oVdyrQCbwpZ1hGKY8oyuiciQqwzAMwzCMdeCRNsMwTBnAx5lEVC4qxTAMw3A6P8MwDMMwjPVhEdVEFi5ciODgYISFhRV3UxiGYfIhRaJyUSmGYRiG0/kZhmEYhmGsD4uoJsKeqAzDlGTCAmiCp3XV1sXcEoZhGKa4kQRTjkRlGIZhGIaxHnbF3QCGYRim8IwOGY3w2uHwc/Ur7qYwDMMwxYwkot65A6jV9JhFVIZhGIZhmMLBkagMwzBlBBZQGYZhGEArmEZH09LBAXByKr72MAzDMAzDlAVYRDUR9kRlGIZhGIZhSgNSJGpaGi05CpVhGIZhGKbwsIhqIuyJyjAMwzAMw5QG8haRYhGVYRiGYRim8LCIyjAMwzAMwzBliLwiat7nDMMwDMMwjPmwiMowDMMwDMMwZQh3d0Au1z7nSFSGYRiGYZjCwyIqwzAMwzAMw5QhBAHw9NQ+ZxGVYRiGYRim8LCIaiJcWIphGIZhGIYpLeim8HM6P8MwDMMwTOFhEdVEuLAUwzAMwzAMU1rQjT7lSFSGYRiGYZjCwyIqwzAMwzAMw5QxdKNPWURlGIZhGIYpPCyiMgzDMAzDMEwZg0VUhmEYhmEY68IiKsMwDMMwDMOUMdgTlWEYhmEYxrqwiMowDMMwDMMwZQz2RGUYhmEYhrEuLKKayMKFCxEcHIywsLDibgrDMAzDMAzDGIXT+RmGYRiGYawLi6gmMn78eFy6dAkRERHF3RSGYRiGYRiGMQqn8zMMwzAMw1gXFlEZhmEYhmEYpowhRZ8KAuDhUbxtYRiGYRiGKQuwiMowDMMwDMMwZQwp+tTTE5DLi7UpDMMwDMMwZQIWURmGYRiGYRimjFGvHuDkBDRtWtwtYRiGYRiGKRvYFXcDGIZhGIZhGIaxLhUrAvfuAa6uxd0ShmEYhmGYsgGLqAzDMAzDMAxTBpF8URmGYRiGYZjCw+n8DMMwDMMwDMMwDMMwDMMwRmARlWEYhmEYhmEYhmEYhmEYxggsoprIwoULERwcjLCwsOJuCsMwDMMwDMMwDMMwDMMwRQiLqCYyfvx4XLp0CREREcXdFIZhGIZhGIZhGIZhGIZhihAWURmGYRiGYRiGYRiGYRiGYYzAIirDMAzDMAzDMAzDMAzDMIwRWERlGIZhGIZhGIZhGIZhGIYxAouoDMP8v717D4ryuv84/lkVFxBBKQpoUFEBLyBGMcq21WhFxZFoqhONbYSoGKNiGWtMq2ND4y068VK8YLUKaoyX1luaeCneb2O8UrUSkhgNtsHgBQKoQdHn90fG/bkBFry0K+v7NbMz+5xznrPfZ/E7x/lyngcAAAAAAADYQREVAAAAAAAAAOygiAoAAAAAAAAAdtRwdABVjWEYkqTCwkK5uLg4OBoAj+vOnTu6efOmCgoKyGnACZDTgHMhpwHnQ14DzsUZcrqgoEDS/9f8ykMR9SFdu3ZNkhQYGOjgSAAAAAAAAAA8CYWFhfLy8iq3nyLqQ/L29pYkZWdn2/1iAVQNBQUFCggI0KVLl+Tp6enocAA8JnIacC7kNOB8yGvAuThDThuGocLCQjVo0MDuOIqoD6latR8eI+vl5VVl/3EAKM3T05OcBpwIOQ04F3IacD7kNeBcqnpOV2ajJH9YCgAAAAAAAADsoIgKAAAAAAAAAHZQRH1IZrNZ77zzjsxms6NDAfAEkNOAcyGnAedCTgPOh7wGnMuzlNMmwzAMRwcBAAAAAAAAAE8rdqICAAAAAAAAgB0UUQEAAAAAAADADoqoAAAAAAAAAGAHRVQAAAAAAAAAsIMi6kNYtGiRAgMD5erqqvbt2+vAgQOODgnAI0pKSpLJZLJ5+fn5OTosAJW0f/9+xcTEqEGDBjKZTNq8ebNNv2EYSkpKUoMGDeTm5qYXX3xR//rXvxwTLIAKVZTTcXFxpdbtTp06OSZYABWaMWOGOnTooNq1a6t+/frq16+fsrKybMawVgNVR2Vy+llYqymiVtK6deuUmJioSZMm6dSpU/r5z3+u6OhoZWdnOzo0AI+odevWysnJsb7OnDnj6JAAVNKNGzcUHh6uBQsWlNk/a9YszZkzRwsWLNCxY8fk5+enqKgoFRYW/o8jBVAZFeW0JPXq1ctm3d66dev/MEIAD2Pfvn0aPXq0jhw5ovT0dJWUlKhHjx66ceOGdQxrNVB1VCanJedfq02GYRiODqIq6Nixo9q1a6eUlBRrW8uWLdWvXz/NmDHDgZEBeBRJSUnavHmzMjIyHB0KgMdkMpm0adMm9evXT9IPO1saNGigxMREvf3225Kk4uJi+fr6aubMmXrjjTccGC2Aivw4p6Ufdrfk5+eX2qEKoGq4cuWK6tevr3379qlz586s1UAV9+Oclp6NtZqdqJVw+/ZtnThxQj169LBp79Gjhw4fPuygqAA8ri+++EINGjRQYGCgBg0apK+++srRIQF4Ai5cuKDLly/brNtms1ldunRh3QaqsL1796p+/foKDg5WfHy8cnNzHR0SgEr67rvvJEne3t6SWKuBqu7HOX2fs6/VFFEr4erVq7p79658fX1t2n19fXX58mUHRQXgcXTs2FErV67Ujh07tHTpUl2+fFkWi0XXrl1zdGgAHtP9tZl1G3Ae0dHRWr16tXbv3q3Zs2fr2LFj6tatm4qLix0dGoAKGIahcePG6Wc/+5lCQ0MlsVYDVVlZOS09G2t1DUcHUJWYTCabY8MwSrUBqBqio6Ot78PCwhQZGalmzZppxYoVGjdunAMjA/CksG4DzmPgwIHW96GhoYqIiFDjxo31ySef6Je//KUDIwNQkTFjxuj06dM6ePBgqT7WaqDqKS+nn4W1mp2oleDj46Pq1auX+o1Ybm5uqd+cAaiaatWqpbCwMH3xxReODgXAY/Lz85Mk1m3Aifn7+6tx48as28BTLiEhQR999JH27Nmj5557ztrOWg1UTeXldFmcca2miFoJNWvWVPv27ZWenm7Tnp6eLovF4qCoADxJxcXFyszMlL+/v6NDAfCYAgMD5efnZ7Nu3759W/v27WPdBpzEtWvXdOnSJdZt4CllGIbGjBmjjRs3avfu3QoMDLTpZ60GqpaKcroszrhWczt/JY0bN06vvfaaIiIiFBkZqSVLlig7O1sjR450dGgAHsH48eMVExOjRo0aKTc3V1OnTlVBQYFiY2MdHRqASigqKtKXX35pPb5w4YIyMjLk7e2tRo0aKTExUdOnT1dQUJCCgoI0ffp0ubu7a/DgwQ6MGkB57OW0t7e3kpKS1L9/f/n7++vixYuaOHGifHx89PLLLzswagDlGT16tD788ENt2bJFtWvXtu449fLykpubm0wmE2s1UIVUlNNFRUXPxFptMgzDcHQQVcWiRYs0a9Ys5eTkKDQ0VHPnzlXnzp0dHRaARzBo0CDt379fV69eVb169dSpUydNmTJFrVq1cnRoACph79696tq1a6n22NhYpaWlyTAM/fGPf9Sf//xn5eXlqWPHjlq4cKHNw+8BPD3s5XRKSor69eunU6dOKT8/X/7+/urataumTJmigIAAB0QLoCLlPdc0NTVVcXFxksRaDVQhFeX0rVu3nom1miIqAAAAAAAAANjBM1EBAAAAAAAAwA6KqAAAAAAAAABgB0VUAAAAAAAAALCDIioAAAAAAAAA2EERFQAAAAAAAADsoIgKAAAAAAAAAHZQRAUAAAAAAAAAOyiiAgAAAAAAAIAdFFEBAACeUSaTSZs3b37sedLS0lSnTp3Hngdl27t3r0wmk/Lz8/8r80+ePFkjRox44jEtWLBAL7300mNGBwAA8HSgiAoAAOBE4uLiZDKZZDKZ5OLiIl9fX0VFRWn58uW6d++ezdicnBxFR0c7KFLHu3z5shISEtS0aVOZzWYFBAQoJiZGu3btcnRoNiwWi3JycuTl5SXpyRatv/32W/3pT3/SxIkTS/UdPnxY1atXV69evR5p7vj4eB07dkwHDx583DABAAAcjiIqAACAk+nVq5dycnJ08eJFbdu2TV27dtVvfvMb9enTRyUlJdZxfn5+MpvNDozUvjt37vzX5r548aLat2+v3bt3a9asWTpz5oy2b9+url27avTo0f+1z30UNWvWlJ+fn0wm0xOfe9myZYqMjFSTJk1K9S1fvlwJCQk6ePCgsrOzH3pus9mswYMHa/78+U8gUgAAAMeiiAoAAOBkzGaz/Pz81LBhQ7Vr104TJ07Uli1btG3bNqWlpVnHPXg7/+3btzVmzBj5+/vL1dVVTZo00YwZM6xj8/PzNWLECPn6+srV1VWhoaH6+OOPbT53x44datmypTw8PKyF3PuOHTumqKgo+fj4yMvLS126dNHJkydtzjeZTFq8eLH69u2rWrVqaerUqZKkqVOnqn79+qpdu7aGDx+u3/3ud2rbtq3NuampqWrZsqVcXV3VokULLVq0yO53NGrUKJlMJh09elQDBgxQcHCwWrdurXHjxunIkSPWcXPmzFFYWJhq1aqlgIAAjRo1SkVFRdb++7tCN2/erODgYLm6uioqKkqXLl2yjjl//rz69u0rX19feXh4qEOHDtq5c6dNPMXFxZowYYICAgJkNpsVFBSkZcuWSbK9dX7v3r16/fXX9d1331l3HCclJendd99VWFhYqets3769/vCHP5T7Paxdu7bMW+5v3Lih9evX680331SfPn1s/t086MSJE4qIiJC7u7ssFouysrJs+l966SVt3rxZt27dKjcGAACAqoAiKgAAwDOgW7duCg8P18aNG8vsT05O1kcffaT169crKytLH3zwgXV34r179xQdHa3Dhw/rgw8+0Llz5/Tee++pevXq1vNv3ryp999/X6tWrdL+/fuVnZ2t8ePHW/sLCwsVGxurAwcO6MiRIwoKClLv3r1VWFhoE8c777yjvn376syZMxo6dKhWr16tadOmaebMmTpx4oQaNWqklJQUm3OWLl2qSZMmadq0acrMzNT06dM1efJkrVixosxrvX79urZv367Ro0erVq1apfofvFW+WrVqSk5O1tmzZ7VixQrt3r1bEyZMsBl/8+ZNTZs2TStWrNChQ4dUUFCgQYMGWfuLiorUu3dv7dy5U6dOnVLPnj0VExNjs7tzyJAhWrt2rZKTk5WZmanFixfLw8OjVGwWi0Xz5s2Tp6encnJylJOTo/Hjx2vo0KE6d+6cjh07Zh17+vRpnTp1SnFxcWV+D3l5eTp79qwiIiJK9a1bt04hISEKCQnRr3/9a6WmpsowjFLjJk2apNmzZ+v48eOqUaOGhg4datMfERGhO3fu6OjRo2XGAAAAUGUYAAAAcBqxsbFG3759y+wbOHCg0bJlS+uxJGPTpk2GYRhGQkKC0a1bN+PevXulztuxY4dRrVo1Iysrq8x5U1NTDUnGl19+aW1buHCh4evrW26cJSUlRu3atY2///3vNvEkJibajOvYsaMxevRom7af/vSnRnh4uPU4ICDA+PDDD23GTJkyxYiMjCzzsz/99FNDkrFx48Zy4yvP+vXrjZ/85CfW4/vXfuTIEWtbZmamIcn49NNPy52nVatWxvz58w3DMIysrCxDkpGenl7m2D179hiSjLy8POtnenl5lRoXHR1tvPnmm9bjxMRE48UXXyw3hlOnThmSjOzs7FJ9FovFmDdvnmEYhnHnzh3Dx8fHJr77Me3cudPa9sknnxiSjFu3btnMVbduXSMtLa3cOAAAAKoCdqICAAA8IwzDKPe5mnFxccrIyFBISIjGjh2rf/zjH9a+jIwMPffccwoODi53bnd3dzVr1sx67O/vr9zcXOtxbm6uRo4cqeDgYHl5ecnLy0tFRUWlnrX5412RWVlZeuGFF2zaHjy+cuWKLl26pGHDhsnDw8P6mjp1qs6fP1/u9yCpUs8Y3bNnj6KiotSwYUPVrl1bQ4YM0bVr13Tjxg3rmBo1atjE3aJFC9WpU0eZmZmSfrg1fsKECWrVqpXq1KkjDw8PffbZZ9Zrz8jIUPXq1dWlS5cK47EnPj5ea9as0ffff687d+5o9erVpXaGPuj+Lfaurq427VlZWTp69Kh1N22NGjU0cOBALV++vNQcbdq0sb739/eXJJufuyS5ubnp5s2bj3ZRAAAAT4kajg4AAAAA/xuZmZkKDAwss69du3a6cOGCtm3bpp07d+qVV15R9+7d9be//U1ubm4Vzu3i4mJzbDKZbG7/jouL05UrVzRv3jw1btxYZrNZkZGRun37ts15Zd1e/+Ni54Pz3rt3T9IPt/R37NjRZtyDjxt4UFBQkEwmkzIzM9WvX79yr+nrr79W7969NXLkSE2ZMkXe3t46ePCghg0bVuqPXpVVkL3f9tZbb2nHjh16//331bx5c7m5uWnAgAHWa6/M91sZMTExMpvN2rRpk8xms4qLi9W/f/9yx/v4+Ej64bb+evXqWduXLVumkpISNWzY0NpmGIZcXFyUl5enunXrWtsf/Lnfv977P5P7rl+/bjM/AABAVcROVAAAgGfA7t27debMGbtFNU9PTw0cOFBLly7VunXrtGHDBl2/fl1t2rTRv//9b33++eeP/PkHDhzQ2LFj1bt3b7Vu3Vpms1lXr16t8LyQkJBSz9M8fvy49b2vr68aNmyor776Ss2bN7d5lVcw9vb2Vs+ePbVw4UKbHaX35efnWz+npKREs2fPVqdOnRQcHKxvvvmm1PiSkhKbmLKyspSfn68WLVpYrz0uLk4vv/yywsLC5Ofnp4sXL1rHh4WF6d69e9q3b1+F34ck1axZU3fv3i3VXqNGDcXGxio1NVWpqakaNGiQ3N3dy52nWbNm8vT01Llz52yuZeXKlZo9e7YyMjKsr3/+859q3LixVq9eXakY7zt//ry+//57Pf/88w91HgAAwNOGnagAAABOpri4WJcvX9bdu3f17bffavv27ZoxY4b69OmjIUOGlHnO3Llz5e/vr7Zt26patWr661//Kj8/P9WpU0ddunRR586d1b9/f82ZM0fNmzfXZ599JpPJpF69elUqpubNm2vVqlWKiIhQQUGB3nrrrUrtwExISFB8fLwiIiJksVi0bt06nT59Wk2bNrWOSUpK0tixY+Xp6ano6GgVFxfr+PHjysvL07hx48qcd9GiRbJYLHrhhRf07rvvqk2bNiopKVF6erpSUlKUmZmpZs2aqaSkRPPnz1dMTIwOHTqkxYsXl5rLxcVFCQkJSk5OlouLi8aMGaNOnTpZHzvQvHlzbdy4UTExMTKZTJo8ebLNbs0mTZooNjZWQ4cOVXJyssLDw/X1118rNzdXr7zySqnPa9KkiYqKirRr1y6Fh4fL3d3dWiwdPny4WrZsKUk6dOiQ3e+2WrVq6t69uw4ePGjdkfvxxx8rLy9Pw4YNk5eXl834AQMGaNmyZRozZozdeR904MABNW3a1OZRDwAAAFURO1EBAACczPbt2+Xv768mTZqoV69e2rNnj5KTk7Vly5Zyb3H38PDQzJkzFRERoQ4dOujixYvaunWrqlX74b+LGzZsUIcOHfTqq6+qVatWmjBhQpm7IcuzfPly5eXl6fnnn9drr72msWPHqn79+hWe96tf/Uq///3vNX78eOsjB+Li4mye4zl8+HD95S9/UVpamsLCwtSlSxelpaWVuxNVkgIDA3Xy5El17dpVv/3tbxUaGqqoqCjt2rVLKSkpkqS2bdtqzpw5mjlzpkJDQ7V69WrNmDGj1Fzu7u56++23NXjwYEVGRsrNzU1r16619s+dO1d169aVxWJRTEyMevbsqXbt2tnMkZKSogEDBmjUqFFq0aKF4uPjy9wlK0kWi0UjR47UwIEDVa9ePc2aNcvaFxQUJIvFopCQkFKPNyjLiBEjtHbtWmtRd9myZerevXupAqok9e/fXxkZGTp58mSF8963Zs0axcfHV3o8AADA08pkPPhQKQAAAOApFxUVJT8/P61atcrRoSgtLU2JiYnWRwA4mmEYatGihd54441yd+H+eHynTp2UmJioV1999YnGcvbsWf3iF7/Q559/XmZRFgAAoCrhdn4AAAA8tW7evKnFixerZ8+eql69utasWaOdO3cqPT3d0aE9dXJzc7Vq1Sr95z//0euvv16pc0wmk5YsWaLTp08/8Xi++eYbrVy5kgIqAABwChRRAQAA8NQymUzaunWrpk6dquLiYoWEhGjDhg3q3r27o0N76vj6+srHx0dLlixR3bp1K31eeHi4wsPDn3g8PXr0eOJzAgAAOAq38wMAAAAAAACAHfxhKQAAAAAAAACwgyIqAAAAAAAAANhBERUAAAAAAAAA7KCICgAAAAAAAAB2UEQFAAAAAAAAADsoogIAAAAAAACAHRRRAQAAAAAAAMAOiqgAAAAAAAAAYMf/AQQoFfzdBrKvAAAAAElFTkSuQmCC",
"text/plain": [
- ""
+ ""
]
},
- "metadata": {
- "needs_background": "light"
- },
+ "metadata": {},
"output_type": "display_data"
}
],
@@ -142,6 +160,7 @@
"plt.grid(True)\n",
"plt.xlabel(r\"Discharge Capacity (Ah)\")\n",
"plt.ylabel(r\"$\\vert V - V_{comsol} \\vert$\")\n",
+ "colors = iter(plt.cycler(color='bgrcmyk'))\n",
"\n",
"# loop over C_rates dict to create plot\n",
"for key, C_rate in C_rates.items():\n",
@@ -175,7 +194,7 @@
" voltage_difference = np.abs(voltage_sol[0:end_index] - comsol_voltage[0:end_index])\n",
"\n",
" # plot discharge curves and absolute voltage_difference\n",
- " color = next(ax._get_lines.prop_cycler)[\"color\"]\n",
+ " color = next(colors)[\"color\"]\n",
" discharge_curve.plot(\n",
" comsol_discharge_capacity, comsol_voltage, color=color, linestyle=\":\"\n",
" )\n",
@@ -209,7 +228,12 @@
{
"cell_type": "code",
"execution_count": 5,
- "metadata": {},
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-09-16T18:29:54.229743Z",
+ "start_time": "2023-09-16T18:29:54.225157Z"
+ }
+ },
"outputs": [
{
"name": "stdout",
@@ -227,6 +251,13 @@
"source": [
"pybamm.print_citations()"
]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
}
],
"metadata": {
@@ -245,7 +276,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.9.0"
+ "version": "3.9.18"
},
"toc": {
"base_numbering": 1,
diff --git a/examples/scripts/compare_comsol/discharge_curve.py b/examples/scripts/compare_comsol/discharge_curve.py
index 02a3199b80..b5cc23d946 100644
--- a/examples/scripts/compare_comsol/discharge_curve.py
+++ b/examples/scripts/compare_comsol/discharge_curve.py
@@ -53,6 +53,7 @@
plt.grid(True)
plt.xlabel(r"Discharge Capacity (Ah)", fontsize=20)
plt.ylabel(r"$\vert V - V_{comsol} \vert$", fontsize=20)
+colors = iter(plt.cycler(color='bgrcmyk'))
for key, C_rate in C_rates.items():
current = 24 * C_rate
@@ -85,7 +86,7 @@
voltage_difference = np.abs(voltage_sol[0:end_index] - comsol_voltage[0:end_index])
# plot discharge curves and absolute voltage_difference
- color = next(ax._get_lines.prop_cycler)["color"]
+ color = next(colors)["color"]
discharge_curve.plot(
comsol_discharge_capacity, comsol_voltage, color=color, linestyle=":"
)
diff --git a/pybamm/experiment/experiment.py b/pybamm/experiment/experiment.py
index edcaeb8f58..d1c45015b6 100644
--- a/pybamm/experiment/experiment.py
+++ b/pybamm/experiment/experiment.py
@@ -68,11 +68,6 @@ def __init__(
termination,
)
- self.datetime_formats = [
- "Day %j %H:%M:%S",
- "%Y-%m-%d %H:%M:%S",
- ]
-
operating_conditions_cycles = []
for cycle in operating_conditions:
# Check types and convert to list
@@ -89,21 +84,36 @@ def __init__(
# Convert strings to pybamm.step._Step objects
# We only do this once per unique step, do avoid unnecessary conversions
- unique_steps_unprocessed = set(operating_conditions_steps_unprocessed)
+ # Assign experiment period and temperature if not specified in step
+ self.period = _convert_time_to_seconds(period)
+ self.temperature = _convert_temperature_to_kelvin(temperature)
+
processed_steps = {}
- for step in unique_steps_unprocessed:
- if isinstance(step, str):
- processed_steps[step] = pybamm.step.string(step)
+ for step in operating_conditions_steps_unprocessed:
+ if repr(step) in processed_steps:
+ continue
+ elif isinstance(step, str):
+ processed_step = pybamm.step.string(step)
elif isinstance(step, pybamm.step._Step):
- processed_steps[step] = step
+ processed_step = step
+
+ if processed_step.period is None:
+ processed_step.period = self.period
+ if processed_step.temperature is None:
+ processed_step.temperature = self.temperature
+
+ processed_steps[repr(step)] = processed_step
+
+ self.operating_conditions_steps = [
+ processed_steps[repr(step)]
+ for step in operating_conditions_steps_unprocessed
+ ]
# Save the processed unique steps and the processed operating conditions
# for every step
self.unique_steps = set(processed_steps.values())
- self.operating_conditions_steps = [
- processed_steps[step] for step in operating_conditions_steps_unprocessed
- ]
+ # Allocate experiment global variables
self.initial_start_time = self.operating_conditions_steps[0].start_time
if (
@@ -118,15 +128,6 @@ def __init__(
self.termination_string = termination
self.termination = self.read_termination(termination)
- # Modify steps with period and temperature in place
- self.period = _convert_time_to_seconds(period)
- self.temperature = _convert_temperature_to_kelvin(temperature)
- for step in self.unique_steps:
- if step.period is None:
- step.period = self.period
- if step.temperature is None:
- step.temperature = self.temperature
-
def __str__(self):
return str(self.operating_conditions_cycles)
diff --git a/pybamm/parameters/bpx.py b/pybamm/parameters/bpx.py
index 8f555fa9a8..8efd26cd57 100644
--- a/pybamm/parameters/bpx.py
+++ b/pybamm/parameters/bpx.py
@@ -119,6 +119,9 @@ def _bpx_to_param_dict(bpx: BPX) -> dict:
# reference temperature
T_ref = pybamm_dict["Reference temperature [K]"]
+ def arrhenius(Ea, T):
+ return exp(Ea / constants.R * (1 / T_ref - 1 / T))
+
# lumped parameters
for name in [
"Specific heat capacity [J.K-1.kg-1]",
@@ -258,10 +261,12 @@ def _positive_electrode_entropic_change(sto, c_s_max):
"Maximum concentration in " + negative_electrode.pre_name.lower() + "[mol.m-3]"
]
k_n_norm = pybamm_dict[
- negative_electrode.pre_name + "reaction rate constant [mol.m-2.s-1]"
+ negative_electrode.pre_name
+ + "reaction rate constant [mol.m-2.s-1]"
]
- E_a_n = pybamm_dict.get(
- negative_electrode.pre_name + "reaction rate activation energy [J.mol-1]", 0.0
+ Ea_k_n = pybamm_dict.get(
+ negative_electrode.pre_name
+ + "reaction rate constant activation energy [J.mol-1]", 0.0
)
# Note that in BPX j = 2*F*k_norm*sqrt((ce/ce0)*(c/c_max)*(1-c/c_max))*sinh(...),
# and in PyBaMM j = 2*k*sqrt(ce*c*(c_max - c))*sinh(...)
@@ -270,10 +275,9 @@ def _positive_electrode_entropic_change(sto, c_s_max):
def _negative_electrode_exchange_current_density(c_e, c_s_surf, c_s_max, T):
k_ref = k_n # (A/m2)(m3/mol)**1.5 - includes ref concentrations
- arrhenius = exp(E_a_n / constants.R * (1 / T_ref - 1 / T))
return (
k_ref
- * arrhenius
+ * arrhenius(Ea_k_n, T)
* c_e**0.5
* c_s_surf**0.5
* (c_s_max - c_s_surf) ** 0.5
@@ -288,10 +292,12 @@ def _negative_electrode_exchange_current_density(c_e, c_s_surf, c_s_max, T):
"Maximum concentration in " + positive_electrode.pre_name.lower() + "[mol.m-3]"
]
k_p_norm = pybamm_dict[
- positive_electrode.pre_name + "reaction rate constant [mol.m-2.s-1]"
+ positive_electrode.pre_name
+ + "reaction rate constant [mol.m-2.s-1]"
]
- E_a_p = pybamm_dict.get(
- positive_electrode.pre_name + "reaction rate activation energy [J.mol-1]", 0.0
+ Ea_k_p = pybamm_dict.get(
+ positive_electrode.pre_name
+ + "reaction rate constant activation energy [J.mol-1]", 0.0
)
# Note that in BPX j = 2*F*k_norm*sqrt((ce/ce0)*(c/c_max)*(1-c/c_max))*sinh(...),
# and in PyBaMM j = 2*k*sqrt(ce*c*(c_max - c))*sinh(...)
@@ -300,10 +306,9 @@ def _negative_electrode_exchange_current_density(c_e, c_s_surf, c_s_max, T):
def _positive_electrode_exchange_current_density(c_e, c_s_surf, c_s_max, T):
k_ref = k_p # (A/m2)(m3/mol)**1.5 - includes ref concentrations
- arrhenius = exp(E_a_p / constants.R * (1 / T_ref - 1 / T))
return (
k_ref
- * arrhenius
+ * arrhenius(Ea_k_p, T)
* c_e**0.5
* c_s_surf**0.5
* (c_s_max - c_s_surf) ** 0.5
@@ -316,7 +321,7 @@ def _positive_electrode_exchange_current_density(c_e, c_s_surf, c_s_max, T):
# diffusivity
# negative electrode
- E_a = pybamm_dict.get(
+ Ea_D_n = pybamm_dict.get(
negative_electrode.pre_name + "diffusivity activation energy [J.mol-1]", 0.0
)
D_n_ref = pybamm_dict[negative_electrode.pre_name + "diffusivity [m2.s-1]"]
@@ -324,30 +329,27 @@ def _positive_electrode_exchange_current_density(c_e, c_s_surf, c_s_max, T):
if callable(D_n_ref):
def _negative_electrode_diffusivity(sto, T):
- arrhenius = exp(E_a / constants.R * (1 / T_ref - 1 / T))
- return arrhenius * D_n_ref(sto)
+ return arrhenius(Ea_D_n, T) * D_n_ref(sto)
elif isinstance(D_n_ref, tuple):
def _negative_electrode_diffusivity(sto, T):
- arrhenius = exp(E_a / constants.R * (1 / T_ref - 1 / T))
name, (x, y) = D_n_ref
- return arrhenius * pybamm.Interpolant(
+ return arrhenius(Ea_D_n, T) * pybamm.Interpolant(
x, y, sto, name=name, interpolator="linear"
)
else:
def _negative_electrode_diffusivity(sto, T):
- arrhenius = exp(E_a / constants.R * (1 / T_ref - 1 / T))
- return arrhenius * D_n_ref
+ return arrhenius(Ea_D_n, T) * D_n_ref
pybamm_dict[negative_electrode.pre_name + "diffusivity [m2.s-1]"] = _copy_func(
_negative_electrode_diffusivity
)
# positive electrode
- E_a = pybamm_dict.get(
+ Ea_D_p = pybamm_dict.get(
positive_electrode.pre_name + "diffusivity activation energy [J.mol-1]", 0.0
)
D_p_ref = pybamm_dict[positive_electrode.pre_name + "diffusivity [m2.s-1]"]
@@ -355,30 +357,27 @@ def _negative_electrode_diffusivity(sto, T):
if callable(D_p_ref):
def _positive_electrode_diffusivity(sto, T):
- arrhenius = exp(E_a / constants.R * (1 / T_ref - 1 / T))
- return arrhenius * D_p_ref(sto)
+ return arrhenius(Ea_D_p, T) * D_p_ref(sto)
elif isinstance(D_p_ref, tuple):
def _positive_electrode_diffusivity(sto, T):
- arrhenius = exp(E_a / constants.R * (1 / T_ref - 1 / T))
name, (x, y) = D_p_ref
- return arrhenius * pybamm.Interpolant(
+ return arrhenius(Ea_D_p, T) * pybamm.Interpolant(
x, y, sto, name=name, interpolator="linear"
)
else:
def _positive_electrode_diffusivity(sto, T):
- arrhenius = exp(E_a / constants.R * (1 / T_ref - 1 / T))
- return arrhenius * D_p_ref
+ return arrhenius(Ea_D_p, T) * D_p_ref
pybamm_dict[positive_electrode.pre_name + "diffusivity [m2.s-1]"] = _copy_func(
_positive_electrode_diffusivity
)
# electrolyte
- E_a = pybamm_dict.get(
+ Ea_D_e = pybamm_dict.get(
electrolyte.pre_name + "diffusivity activation energy [J.mol-1]", 0.0
)
D_e_ref = pybamm_dict[electrolyte.pre_name + "diffusivity [m2.s-1]"]
@@ -386,54 +385,48 @@ def _positive_electrode_diffusivity(sto, T):
if callable(D_e_ref):
def _electrolyte_diffusivity(sto, T):
- arrhenius = exp(E_a / constants.R * (1 / T_ref - 1 / T))
- return arrhenius * D_e_ref(sto)
+ return arrhenius(Ea_D_e, T) * D_e_ref(sto)
elif isinstance(D_e_ref, tuple):
def _electrolyte_diffusivity(sto, T):
- arrhenius = exp(E_a / constants.R * (1 / T_ref - 1 / T))
name, (x, y) = D_e_ref
- return arrhenius * pybamm.Interpolant(
+ return arrhenius(Ea_D_e, T) * pybamm.Interpolant(
x, y, sto, name=name, interpolator="linear"
)
else:
def _electrolyte_diffusivity(sto, T):
- arrhenius = exp(E_a / constants.R * (1 / T_ref - 1 / T))
- return arrhenius * D_e_ref
+ return arrhenius(Ea_D_e, T) * D_e_ref
pybamm_dict[electrolyte.pre_name + "diffusivity [m2.s-1]"] = _copy_func(
_electrolyte_diffusivity
)
# conductivity
- E_a = pybamm_dict.get(
+ Ea_sigma_e = pybamm_dict.get(
electrolyte.pre_name + "conductivity activation energy [J.mol-1]", 0.0
)
- C_e_ref = pybamm_dict[electrolyte.pre_name + "conductivity [S.m-1]"]
+ sigma_e_ref = pybamm_dict[electrolyte.pre_name + "conductivity [S.m-1]"]
- if callable(C_e_ref):
+ if callable(sigma_e_ref):
def _conductivity(c_e, T):
- arrhenius = exp(E_a / constants.R * (1 / T_ref - 1 / T))
- return arrhenius * C_e_ref(c_e)
+ return arrhenius(Ea_sigma_e, T) * sigma_e_ref(c_e)
- elif isinstance(C_e_ref, tuple):
+ elif isinstance(sigma_e_ref, tuple):
def _conductivity(c_e, T):
- arrhenius = exp(E_a / constants.R * (1 / T_ref - 1 / T))
- name, (x, y) = C_e_ref
- return arrhenius * pybamm.Interpolant(
+ name, (x, y) = sigma_e_ref
+ return arrhenius(Ea_sigma_e, T) * pybamm.Interpolant(
x, y, c_e, name=name, interpolator="linear"
)
else:
def _conductivity(c_e, T):
- arrhenius = exp(E_a / constants.R * (1 / T_ref - 1 / T))
- return arrhenius * C_e_ref
+ return arrhenius(Ea_sigma_e, T) * sigma_e_ref
pybamm_dict[electrolyte.pre_name + "conductivity [S.m-1]"] = _copy_func(
_conductivity
diff --git a/pybamm/simulation.py b/pybamm/simulation.py
index b25b76f859..4b65b973aa 100644
--- a/pybamm/simulation.py
+++ b/pybamm/simulation.py
@@ -255,7 +255,7 @@ def set_up_and_parameterise_model_for_experiment(self):
parameterised_model = new_parameter_values.process_model(
new_model, inplace=False
)
- self.experiment_unique_steps_to_model[repr(op)] = parameterised_model
+ self.experiment_unique_steps_to_model[op.basic_repr()] = parameterised_model
# Set up rest model if experiment has start times
if self.experiment.initial_start_time:
@@ -778,8 +778,8 @@ def solve(
else:
dt = op_conds.duration
op_conds_str = str(op_conds)
- model = self.op_conds_to_built_models[repr(op_conds)]
- solver = self.op_conds_to_built_solvers[repr(op_conds)]
+ model = self.op_conds_to_built_models[op_conds.basic_repr()]
+ solver = self.op_conds_to_built_solvers[op_conds.basic_repr()]
logs["step number"] = (step_num, cycle_length)
logs["step operating conditions"] = op_conds_str
diff --git a/pybamm/solvers/solution.py b/pybamm/solvers/solution.py
index ecc8f7b702..4c9ccb993d 100644
--- a/pybamm/solvers/solution.py
+++ b/pybamm/solvers/solution.py
@@ -443,7 +443,7 @@ def initial_start_time(self):
@initial_start_time.setter
def initial_start_time(self, value):
- """Updates the reason for termination"""
+ """Updates the initial start time of the experiment"""
self._initial_start_time = value
def set_summary_variables(self, all_summary_variables):
diff --git a/pybamm/step/_steps_util.py b/pybamm/step/_steps_util.py
index 879461b73c..e524bc6064 100644
--- a/pybamm/step/_steps_util.py
+++ b/pybamm/step/_steps_util.py
@@ -71,22 +71,25 @@ def __init__(
):
self.type = typ
- # Record all the args for repr
- self.args = f"{typ}, {value}"
+ # Record all the args for repr and hash
+ self.repr_args = f"{typ}, {value}"
+ self.hash_args = f"{typ}, {value}"
if duration:
- self.args += f", duration={duration}"
+ self.repr_args += f", duration={duration}"
if termination:
- self.args += f", termination={termination}"
+ self.repr_args += f", termination={termination}"
+ self.hash_args += f", termination={termination}"
if period:
- self.args += f", period={period}"
+ self.repr_args += f", period={period}"
if temperature:
- self.args += f", temperature={temperature}"
+ self.repr_args += f", temperature={temperature}"
+ self.hash_args += f", temperature={temperature}"
if tags:
- self.args += f", tags={tags}"
+ self.repr_args += f", tags={tags}"
if start_time:
- self.args += f", start_time={start_time}"
+ self.repr_args += f", start_time={start_time}"
if description:
- self.args += f", description={description}"
+ self.repr_args += f", description={description}"
# Check if drive cycle
self.is_drive_cycle = isinstance(value, np.ndarray)
@@ -158,7 +161,15 @@ def __str__(self):
return repr(self)
def __repr__(self):
- return f"_Step({self.args})"
+ return f"_Step({self.repr_args})"
+
+ def basic_repr(self):
+ """
+ Return a basic representation of the step, only with type, value, termination
+ and temperature, which are the variables involved in processing the model. Also
+ used for hashing.
+ """
+ return f"_Step({self.hash_args})"
def to_dict(self):
"""
@@ -184,13 +195,11 @@ def to_dict(self):
def __eq__(self, other):
return (
isinstance(other, _Step)
- and self.__repr__() == other.__repr__()
- and self.next_start_time == other.next_start_time
- and self.end_time == other.end_time
+ and self.hash_args == other.hash_args
)
def __hash__(self):
- return hash(repr(self))
+ return hash(self.basic_repr())
@property
def unit(self):
diff --git a/scripts/update_version.py b/scripts/update_version.py
index 4a5f60d8d8..fb9b15dd31 100644
--- a/scripts/update_version.py
+++ b/scripts/update_version.py
@@ -5,10 +5,10 @@
import json
import os
import re
-from datetime import date, datetime
-
+from datetime import date
from dateutil.relativedelta import relativedelta
+
import pybamm
@@ -16,12 +16,10 @@ def update_version():
"""
Opens file and updates the version number
"""
- current_year = datetime.now().strftime("%y")
- current_month = datetime.now().month
-
- release_version = f"{current_year}.{current_month}"
+ release_version = os.getenv("VERSION")[1:]
last_day_of_month = date.today() + relativedelta(day=31)
+
# pybamm/version.py
with open(os.path.join(pybamm.root_dir(), "pybamm", "version.py"), "r+") as file:
output = file.read()
@@ -41,23 +39,24 @@ def update_version():
file.write(replace_version)
# docs/source/_static/versions.json for readthedocs build
- with open(
- os.path.join(pybamm.root_dir(), "docs", "source", "_static", "versions.json"),
- "r+",
- ) as file:
- output = file.read()
- json_data = json.loads(output)
- json_data.insert(
- 2,
- {
- "name": f"v{release_version}",
- "version": f"{release_version}",
- "url": f"https://docs.pybamm.org/en/v{release_version}/",
- },
- )
- file.truncate(0)
- file.seek(0)
- file.write(json.dumps(json_data, indent=4))
+ if "rc" not in release_version:
+ with open(
+ os.path.join(pybamm.root_dir(), "docs", "_static", "versions.json"),
+ "r+",
+ ) as file:
+ output = file.read()
+ json_data = json.loads(output)
+ json_data.insert(
+ 2,
+ {
+ "name": f"v{release_version}",
+ "version": f"{release_version}",
+ "url": f"https://docs.pybamm.org/en/v{release_version}/",
+ },
+ )
+ file.truncate(0)
+ file.seek(0)
+ file.write(json.dumps(json_data, indent=4))
# vcpkg.json
with open(os.path.join(pybamm.root_dir(), "vcpkg.json"), "r+") as file:
@@ -90,40 +89,14 @@ def update_version():
with open(os.path.join(pybamm.root_dir(), "CHANGELOG.md"), "r+") as file:
output_list = file.readlines()
output_list[0] = changelog_line1
- output_list.insert(2, changelog_line2)
+ if "rc0" in release_version:
+ output_list.insert(2, changelog_line2)
+ else:
+ output_list[2] = changelog_line2
file.truncate(0)
file.seek(0)
file.writelines(output_list)
-def get_changelog():
- """
- Opens CHANGELOG.md and overrides the changelog with the latest version.
- Used in GitHub workflow to create the changelog for the GitHub release.
- """
- # This month
- now = datetime.now()
- current_year = now.strftime("%y")
- current_month = now.month
-
- # Previous month
- previous_date = datetime.now() + relativedelta(months=-1)
- previous_year = previous_date.strftime("%y")
- previous_month = previous_date.month
-
- current_version = re.escape(f"# [v{current_year}.{current_month}]")
- previous_version = re.escape(f"# [v{previous_year}.{previous_month}]")
-
- # Open CHANGELOG.md and keep the relevant lines
- with open(os.path.join(pybamm.root_dir(), "CHANGELOG.md"), "r+") as file:
- output = file.read()
- re_changelog = f"{current_version}.*?(##.*)(?={previous_version})"
- release_changelog = re.findall(re_changelog, output, re.DOTALL)[0]
- print(release_changelog)
- file.truncate(0)
- file.seek(0)
- file.write(release_changelog)
-
-
if __name__ == "__main__":
update_version()
diff --git a/tests/unit/test_experiments/test_simulation_with_experiment.py b/tests/unit/test_experiments/test_simulation_with_experiment.py
index 13531281de..6688fae5b1 100644
--- a/tests/unit/test_experiments/test_simulation_with_experiment.py
+++ b/tests/unit/test_experiments/test_simulation_with_experiment.py
@@ -38,8 +38,12 @@ def test_set_up(self):
[3600, 3 / Crate * 3600, 24 * 3600, 24 * 3600],
)
- model_I = sim.experiment_unique_steps_to_model[repr(op_conds[1])] # CC charge
- model_V = sim.experiment_unique_steps_to_model[repr(op_conds[2])] # CV hold
+ model_I = sim.experiment_unique_steps_to_model[
+ op_conds[1].basic_repr()
+ ] # CC charge
+ model_V = sim.experiment_unique_steps_to_model[
+ op_conds[2].basic_repr()
+ ] # CV hold
self.assertIn(
"Current cut-off [A] [experiment]",
[event.name for event in model_V.events],
@@ -729,6 +733,38 @@ def test_experiment_start_time_starting_solution(self):
# test that the final time is correct (i.e. starting solution correctly set)
self.assertEqual(new_solution["Time [s]"].entries[-1], 5400)
+ def test_experiment_start_time_identical_steps(self):
+ # Test that if we have the same step twice, with different start times,
+ # they get processed only once
+ model = pybamm.lithium_ion.SPM()
+
+ experiment = pybamm.Experiment(
+ [
+ pybamm.step.string(
+ "Discharge at C/2 for 10 minutes",
+ start_time=datetime(2023, 1, 1, 8, 0, 0),
+ ),
+ pybamm.step.string("Discharge at C/3 for 10 minutes"),
+ pybamm.step.string(
+ "Discharge at C/2 for 10 minutes",
+ start_time=datetime(2023, 1, 1, 10, 0, 0),
+ ),
+ pybamm.step.string("Discharge at C/3 for 10 minutes"),
+ ]
+ )
+
+ sim = pybamm.Simulation(model, experiment=experiment)
+ sim.solve(calc_esoh=False)
+
+ # Check that there are 4 steps
+ self.assertEqual(len(experiment.operating_conditions_steps), 4)
+
+ # Check that there are only 2 unique steps
+ self.assertEqual(len(sim.experiment.unique_steps), 2)
+
+ # Check that there are only 3 built models (unique steps + padding rest)
+ self.assertEqual(len(sim.op_conds_to_built_models), 3)
+
if __name__ == "__main__":
print("Add -v for more debug output")
diff --git a/tests/unit/test_parameters/test_bpx.py b/tests/unit/test_parameters/test_bpx.py
index 8288655b87..2559641d7e 100644
--- a/tests/unit/test_parameters/test_bpx.py
+++ b/tests/unit/test_parameters/test_bpx.py
@@ -9,7 +9,6 @@
import pybamm
import copy
-
class TestBPX(TestCase):
def setUp(self):
self.base = {
@@ -161,7 +160,26 @@ def test_constant_functions(self):
json.dump(bpx_obj, tmp)
tmp.flush()
- pybamm.ParameterValues.create_from_bpx(tmp.name)
+ param = pybamm.ParameterValues.create_from_bpx(tmp.name)
+
+ # Function to check that functional parameters output constants
+ def check_constant_output(func):
+ stos = [0, 1]
+ T = 298.15
+ p_vals = [func(sto, T) for sto in stos]
+ self.assertEqual(p_vals[0], p_vals[1])
+
+ for electrode in ["Negative", "Positive"]:
+ D = param[f"{electrode} electrode diffusivity [m2.s-1]"]
+ dUdT = param[f"{electrode} electrode OCP entropic change [V.K-1]"]
+ check_constant_output(D)
+ check_constant_output(dUdT)
+
+ kappa = param["Electrolyte conductivity [S.m-1]"]
+ De = param["Electrolyte diffusivity [m2.s-1]"]
+ check_constant_output(kappa)
+ check_constant_output(De)
+
def test_table_data(self):
bpx_obj = copy.copy(self.base)
@@ -222,6 +240,66 @@ def test_bpx_soc_error(self):
with self.assertRaisesRegex(ValueError, "Target SOC"):
pybamm.ParameterValues.create_from_bpx("blah.json", target_soc=10)
+ def test_bpx_arrhenius(self):
+ bpx_obj = copy.copy(self.base)
+
+ filename = "tmp.json"
+ with tempfile.NamedTemporaryFile(
+ suffix=filename, delete=False, mode="w"
+ ) as tmp:
+ # write to a tempory file so we can
+ # get the source later on using inspect.getsource
+ # (as long as the file still exists)
+ json.dump(bpx_obj, tmp)
+ tmp.flush()
+
+ pv = pybamm.ParameterValues.create_from_bpx(tmp.name)
+
+
+ def arrhenius_assertion(pv, param_key, Ea_key):
+ sto = 0.5
+ T = 300
+ c_e = 1000
+ c_s_surf = 15000
+ c_s_max = 20000
+ T_ref = pv["Reference temperature [K]"]
+ Ea = pv[Ea_key]
+
+ if "exchange-current" in param_key:
+ eval_ratio = (
+ pv[param_key](c_e, c_s_surf, c_s_max, T).value
+ / pv[param_key](c_e, c_s_surf, c_s_max, T_ref).value
+ )
+ else:
+ eval_ratio = (
+ pv[param_key](sto, T).value
+ / pv[param_key](sto, T_ref).value
+ )
+
+ calc_ratio = pybamm.exp(Ea / pybamm.constants.R * (1 / T_ref - 1 / T)).value
+
+ self.assertAlmostEqual(eval_ratio, calc_ratio)
+
+ param_keys = [
+ "Electrolyte conductivity [S.m-1]",
+ "Electrolyte diffusivity [m2.s-1]",
+ "Negative electrode diffusivity [m2.s-1]",
+ "Positive electrode diffusivity [m2.s-1]",
+ "Positive electrode exchange-current density [A.m-2]",
+ "Negative electrode exchange-current density [A.m-2]",
+ ]
+
+ Ea_keys = [
+ "Electrolyte conductivity activation energy [J.mol-1]",
+ "Electrolyte diffusivity activation energy [J.mol-1]",
+ "Negative electrode diffusivity activation energy [J.mol-1]",
+ "Positive electrode diffusivity activation energy [J.mol-1]",
+ "Positive electrode reaction rate constant activation energy [J.mol-1]",
+ "Negative electrode reaction rate constant activation energy [J.mol-1]",
+ ]
+
+ for param_key, Ea_key in zip(param_keys, Ea_keys):
+ arrhenius_assertion(pv, param_key, Ea_key)
if __name__ == "__main__":
print("Add -v for more debug output")