-
Notifications
You must be signed in to change notification settings - Fork 2
/
kalman_filter.py
228 lines (179 loc) · 7.69 KB
/
kalman_filter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import numpy as np
from numpy import dot
from scipy.linalg import inv, block_diag
import pdb
class FirstOrderRCLowPassFilter():
def __init__(self):
self.alpha_ = 0.0
self.inited_ = False
self.state_ = np.array([0.0, 0.0])
def SetAlpha(self, alpha):
self.alpha_ = alpha
self.inited_ = False
def AddMeasure(self, z):
if self.inited_:
self.state_ = z + self.alpha_ * (self.state_ - z)
else:
self.state_ = z
self.inited_ = True
def AddMeasure_noinput(self):
z = self.state_
self.AddMeasure(z)
def get_state(self):
return self.state_
def isInited(self):
return self.inited_
class Tracker_center(): # kalman filter which only track the center of bbox
def __init__(self):
self.inited_ = False
self.id = 0 # tracker's id
self.obj = {} # object information
self.hits = 0 # number of detection matches
self.no_losses = 0 # number of unmatched tracks (track loss)
# Initialize parameters for Kalman Filtering
# The state is the (x, y) coordinates of the center of detection box
# state: [center_c, center_c_dot, center_r, center_r_dot]
self.x_state_ = []
self.whRCF = FirstOrderRCLowPassFilter()
self.whRCF.SetAlpha(0.5)
self.dt = 1
#state transition matrix F
self.F = np.array([[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
self.F[0, 1] = self.dt
self.F[2, 3] = self.dt
# Measurement matrix H, assuming we can only measure the coordinates
self.H = np.array([[1, 0, 0, 0],
[0, 0, 1, 0]])
# Initialize the state covariance P
self.L = 10.0 #10.0 #no change
self.P = np.diag(self.L * np.ones(4))
# Initialize the process covariance
self.Q_comp_mat = np.array([[self.dt**4/4., self.dt**3/2.],
[self.dt**3/2., self.dt**2]])
self.Q = block_diag(self.Q_comp_mat, self.Q_comp_mat)
# Initialize the measurement covariance
self.R_scaler = 1.0 #1.0
self.R_diag_array = self.R_scaler * np.array([self.L, self.L])
self.R = np.diag(self.R_diag_array)
def Init(self, x, wh):
self.x_state_ = x
self.inited_ = True
self.whRCF.AddMeasure(wh)
def update_R(self):
R_diag_array = self.R_scaler * np.array([self.L, self.L])
self.R = np.diag(R_diag_array)
def isInited(self):
if not self.inited_:
return False
if not self.whRCF.isInited():
return False
return True
def get_x_state(self):
if not self.isInited():
raise ValueError('tracker not initiated.')
return self.x_state_
def kalman_filter(self, z, wh):
'''
Implement the Kalman Filter, including the predict and the update stages,
with the measurement z
'''
if not self.isInited():
raise ValueError('tracker not initiated.')
x = self.x_state_.astype('float')
# Predict
x = dot(self.F, x)
self.P = dot(self.F, self.P).dot(self.F.T) + self.Q
#Update
S = dot(self.H, self.P).dot(self.H.T) + self.R
K = dot(self.P, self.H.T).dot(inv(S)) # Kalman gain
y = z - dot(self.H, x) # residual
x += dot(K, y)
self.P = self.P - dot(K, self.H).dot(self.P)
self.x_state_ = x.astype(int) # convert to integer coordinates
#(pixel values)
self.whRCF.AddMeasure(wh)
def predict_only(self):
'''
Implment only the predict stage. This is used for unmatched detections and
unmatched tracks
'''
if not self.isInited():
raise ValueError('tracker not initiated.')
x = self.x_state_
# Predict
x = dot(self.F, x)
self.P = dot(self.F, self.P).dot(self.F.T) + self.Q
self.x_state_ = x.astype(int)
self.whRCF.AddMeasure_noinput()
class Tracker(): # class for Kalman Filter-based tracker
def __init__(self):
# Initialize parametes for tracker (history)
self.id = 0 # tracker's id
self.obj = {}
self.hits = 0 # number of detection matches
self.no_losses = 0 # number of unmatched tracks (track loss)
# Initialize parameters for Kalman Filtering
# The state is the (x, y) coordinates of the detection box
# state: [left, left_dot, up, up_dot, right, right_dot, down, down_dot]
# or[left, left_dot, up, up_dot, width, width_dot, height, height_dot]
self.x_state=[]
self.dt = 1. # time interval
# Process matrix, assuming constant velocity model
self.F = np.array([[1, self.dt, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, self.dt, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, self.dt, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 1, self.dt],
[0, 0, 0, 0, 0, 0, 0, 1]])
# Measurement matrix, assuming we can only measure the coordinates
self.H = np.array([[1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0]])
# Initialize the state covariance
self.L = 10.0
self.P = np.diag(self.L*np.ones(8))
# Initialize the process covariance
self.Q_comp_mat = np.array([[self.dt**4/4., self.dt**3/2.],
[self.dt**3/2., self.dt**2]])
self.Q = block_diag(self.Q_comp_mat, self.Q_comp_mat,
self.Q_comp_mat, self.Q_comp_mat)
# Initialize the measurement covariance
self.R_scaler = 1.0
self.R_diag_array = self.R_scaler * np.array([self.L, self.L, self.L, self.L])
self.R = np.diag(self.R_diag_array)
def update_R(self):
R_diag_array = self.R_scaler * np.array([self.L, self.L, self.L, self.L])
self.R = np.diag(R_diag_array)
def kalman_filter(self, z):
'''
Implement the Kalman Filter, including the predict and the update stages,
with the measurement z
'''
x = self.x_state
# Predict
x = dot(self.F, x)
self.P = dot(self.F, self.P).dot(self.F.T) + self.Q
#Update
S = dot(self.H, self.P).dot(self.H.T) + self.R
K = dot(self.P, self.H.T).dot(inv(S)) # Kalman gain
y = z - dot(self.H, x) # residual
x += dot(K, y)
self.P = self.P - dot(K, self.H).dot(self.P)
self.x_state = x.astype(int) # convert to integer coordinates
#(pixel values)
def predict_only(self):
'''
Implment only the predict stage. This is used for unmatched detections and
unmatched tracks
'''
x = self.x_state
# Predict
x = dot(self.F, x)
self.P = dot(self.F, self.P).dot(self.F.T) + self.Q
self.x_state = x.astype(int)