diff --git a/examples/advanced/HybridImaging/main.jl b/examples/advanced/HybridImaging/main.jl index 4b7eb2c8..e4043f11 100644 --- a/examples/advanced/HybridImaging/main.jl +++ b/examples/advanced/HybridImaging/main.jl @@ -156,6 +156,7 @@ skym = SkyModel(sky, skyprior, g; metadata=skymetadata) # This is everything we need to specify our posterior distribution, which our is the main # object of interest in image reconstructions when using Bayesian inference. +using Enzyme post = VLBIPosterior(skym, intmodel, dvis; admode=set_runtime_activity(Enzyme.Reverse)) # To sample from our prior we can do @@ -179,7 +180,6 @@ fig |> DisplayAs.PNG |> DisplayAs.Text #hide # To use this we use the [`comrade_opt`](@ref) function using Optimization using OptimizationOptimJL -using Enzyme xopt, sol = comrade_opt(post, LBFGS(); initial_params=prior_sample(rng, post), maxiters=1000, g_tol=1e0)