-
Notifications
You must be signed in to change notification settings - Fork 1
/
index.html
232 lines (193 loc) · 10.6 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
---
layout: bootcamp
root: .
venue: Stanford
address: Branner Earth Sciences Library, Teaching Corner, Mitchell Earth Sciences Building 2nd Floor
country: United-States
humandate: April 23-24, 2015
humantime: 8:30 am - 4:30 pm
startdate: 2015-04-23
enddate: 2015-04-24
latlng:
registration: open
instructor: ["Amy Hodge", "Tracy Teal"]
assistant: []
contact: [email protected]
raw: raw.github.com/datacarpentry/2015-04-23-stanford/gh-pages
eventbrite: 16087912379
---
<!--
Edit the values in the parameter block above to be appropriate for your bootcamp.
Please use three-letter month names for the 'humandate' field.
-->
<!--
This block includes the Eventbrite registration widget if 'eventbrite' has been set in the header.
-->
<h2>General Information</h2>
<p>
</p>
<p>
Data Carpentry workshops are for any researcher who has data they want to analyze, and no prior computational experience is required. This hands-on workshop teaches basic concepts, skills and tools for working more effectively with data. We will cover data organization in spreadsheets, data cleaning, the command line, and R for data analysis and visualization using examples from biology. Participants should bring their laptops and plan to participate actively. By the end of the workshop learners should be able to more effectively manage and analyze data and be able to apply the tools and approaches directly to their ongoing research.
<p>
Data Carpentry's aim is to teach researchers basic concepts, skills,
and tools for working with data so that they can get more done in less
time, and with less pain.
</p>
<p>
Preliminary schedule:
<ul>
<li> Day 1 morning: Data organization in spreadsheets and data cleaning with OpenRefine
<li> Day 1 afternoon: Introduction to databases, combining and querying data using SQL
<li> Day 2 morning: Introduction to R
<li> Day 2 afternoon: Data analysis and visualization in R
</ul>
</p>
<p>Updates will be posted to this website as they become available.</p>
<!--
<p>Data files for the workshop are available at <a href = "/2015-01-15-cornell/data/biology/">the following link</a></p>
<p>The etherpad for this workshop can be found <a href = "https://etherpad.mozilla.org/7XixtJSZJq">here</a></p>
<p>A static copy of the etherpad as of 5:30 on Friday after the workshop ended is <a href ="etherpad-snapshot-530-Friday.html">here</a></p>
-->
<!-- This block displays the instructors' names if they are available. -->
{% if page.instructor %}
<p>
<strong>Instructors:</strong>
{{page.instructor | join: ', ' %}}
</p>
<p>
<strong>Assistants:</strong>
{{page.assistant | join: ', ' %}}
{% endif %}
<!--
Modify this block to reflect the target audience for your bootcamp.
In particular, if it is only open to people from a particular institution,
or if specialized prerequisite knowledge is required, please mention that.
-->
<p>
<strong>Who:</strong>
The course is aimed at faculty, research staff, postdocs, graduate students, advanced undergraduates, and other researchers in any field. No prior computational experience is required.
</p>
<!--
This block displays the address and links to a map showing directions.
-->
{% if page.latlng %}
<p>
<strong>Where:</strong>
{{ page.address }}.
Get directions with
<a href="http://www.openstreetmap.org/?mlat={{ page.latlng | replace:',','&mlon=' }}&zoom=16">OpenStreetMap</a>
or
<a href="http://maps.google.com/maps?q={{ page.latlng }}">Google Maps</a>. Within Mann Library, B30A Classroom is in the basement as you exit the elevators. See <a href="http://smartmap.mannlib.cornell.edu/location/b30a" target="_blank"> the floor plan </a>.
</p>
{% endif %}
<!--
Modify the block below if there are any special requirements.
-->
<p>
<p>
<strong>Requirements:</strong>
Data Carpentry's teaching is hands-on, so participants are encouraged to bring in and use their own laptops to insure the proper setup of tools for an efficient workflow once you leave the workshop. (We will provide instructions on setting up the required software several days in advance, and the classroom will have computers with the software installed). <em> There are no pre-requisites, and we will assume no prior knowledge about the tools.</em> Participants are required to abide by Software Carpentry's
<a href="http://software-carpentry.org/conduct.html">Code of Conduct</a>.
</p>
<!--
This block automatically inserts a contact email address if one has been specified for the page.
If one hasn't, this block inserts the generic contact address for Software Carpentry.
-->
<p>
<strong>Contact</strong>:
Please email
{% if page.contact %}
<a href='mailto:{{page.contact}}'>{{page.contact}}</a>
{% else %}
<a href='mailto:{{site.contact}}'>{{site.contact}}</a>
{% endif %}
for questions and information not covered here.
</p>
<p><strong>Twitter</strong>: #datacarpentry</p> @datacarpentry
<h2>Acknowledgements & Support</h2>
<!--
<div class="pull-right" style="max-width: 320px; padding-left: 6px;">
</div>
-->
<p>
Data Carpentry is supported by the <a href=http://http://www.moore.org/>Gordon and Betty Moore Foundation</a> and a partnership of several NSF-funded <a href="http://www.nsf.gov/dir/index.jsp?org=BIO" target="_blank">BIO</a> Centers (<a href="http://nescent.org" target="_blank">NESCent</a>, <a href="http://iplantcollaborative.org" target="_blank">iPlant</a>, <a href="http://idigbio.org" target="_blank">iDigBio</a>, <a href="http://beacon-center.org/" target="_blank">BEACON</a> and <a href="http://sesync.org" target="_blank">SESYNC</a>) and <a href="http://software-carpentry.org" target="_blank">Software Carpentry</a>, and is sponsored by the <a href="http://dataone.org" target="_blank">Data Observation Network for Earth</a> (DataONE). The structure and objectives of the curriculum as well as the teaching style are informed by <a href="http://software-carpentry.org" target="_blank">Software Carpentry</a>.
</p>
{% if page.eventbrite %}
<h2>Registration</h2>
<p>
Registration is through EventBrite, see below.</p>
<iframe src="http://www.eventbrite.com/tickets-external?eid={{page.eventbrite}}&ref=etckt" frameborder="0" width="100%" height="210" scrolling="auto"></iframe>
{% endif %}
<!--
Edit this block to show the syllabus and schedule for your bootcamp.
-->
<!--
<h2>Schedule</h2>
(anticipate)
<table class="table table-striped">
<tr> <td>Thursday</td> <td>09:00</td> <td><a href = "lessons/excel/ecology-examples/00-intro.html">Better Use of Spreadsheets</a></td> </tr>
<tr> <td></td> <td></td> <td>Refreshments will be served around 10:30.</td> </tr>
<tr> <td></td> <td>12:00</td> <td>Lunch break (on your own)</td> </tr>
<tr> <td></td> <td>13:00</td> <td>Cleaning and managing data with <a href="lessons/OpenRefine/open-refine-demo.html">OpenRefine</a>, <a href="lessons/sql/sql.html">Introduction to relational databases with SQLite</a> </td> </tr>
<tr> <td></td> <td></td> <td>Refreshments will be served around 14:30.</td> </tr>
<tr> <td></td> <td>16:00</td> <td>Wrap-up</td> </tr>
<tr> <td>Friday</td> <td>09:00</td> <td> <a href="lessons/R/index.html"> Working with data in R </a></td> </tr>
<tr> <td></td> <td></td> <td>Refreshments will be served around 10:30.</td> </tr>
<tr> <td></td> <td>12:00</td> <td>Lunch break (on your own)</td> </tr>
<tr> <td></td> <td>13:00</td> <td> <a href = "lessons/shell/index.html">Workflows and automating repetitive tasks with command line shell </a> </td> </tr>
<tr> <td></td> <td></td> <td>Refreshments will be served around 14:30.</td> </tr>
<tr> <td></td> <td>16:00</td> <td>Wrap-up</td> </tr>
</table>
-->
<hr/>
<!--
Edit the setup instructions in _includes/setup.html to reflect your bootcamp.
(In particular, most bootcamps teach either Python or R, not both.)
<h2>Additional Resources</h2>
<h3>shell</h3>
<ul>
<li><a href=http://fosswire.com/post/2007/08/unixlinux-command-cheat-sheet/>Unix/Linux Command Reference</a>
<li><a href=https://github.com/swcarpentry/boot-camps/blob/master/shell/shell_cheatsheet.md
>Shell cheat sheet</a>
<li><a href=http://software-carpentry.org/v4/shell/index.html>Software Carpentry shell lessons</a>
</ul>
<h3>R</h3>
<b>Where to learn more about R</b>
<ul>
<li><a href=http://www.statmethods.net/>http://www.statmethods.net/</a> - good for data organization, basics stats and graphs
<li><a href=http://www.gardenersown.co.uk/Education/Lectures/R/anova.htm>http://www.gardenersown.co.uk/Education/Lectures/R/anova.htm</a> - basic parametric and non-parametric stats
<li><a href=http://www.cyclismo.org/tutorial/R/index.html>http://www.cyclismo.org/tutorial/R/index.html</a> - R tutorial
<li><a href=http://www.amazon.com/R-Action-Robert-Kabacoff/dp/1935182390>R in Action</a> - good book as an R reference
<li><a href=http://www.twotorials.com/>http://www.twotorials.com/</a>
<li><a href=http://www.r-bloggers.com/>http://www.r-bloggers.com/</a>
<li><a href=http://tryr.codeschool.com/>http://tryr.codeschool.com/</a>
<li><a href=http://adv-r.had.co.nz/>Advanced R Programming by Hadley Wickham</a>
<li><a href=http://www.computerworld.com/s/article/9239625/Beginner_s_guide_to_R_Introduction>Beginner's Guide to R from Computer World</a>
<li><a href=http://www.scoop.it/t/r-for-journalists>R for Journalists</a>
<li><a href=http://www.r-bloggers.com/>R Bloggers</a>
<li><a href=http://www.inside-r.org/>inside-R</a>
<li><a href=http://ropensci.org/>rOpenSci</a>
</ul>
<p>
<b>Plotting in R</b>
<ul>
<li><a href=http://www.harding.edu/fmccown/r/>http://www.harding.edu/fmccown/r/</a> - Very simple graphs
<li><a href=https://storify.com/tracykteal/r-galleries>A variety of R gallery recommendations</a>
<li><a href=http://docs.ggplot2.org/>ggplot gallery</a> - extensive and comprehensive; a great resource
<li><a href=http://www.amazon.com/R-Graphics-Cookbook-Winston-Chang-ebook/dp/B00AJ5X7W4/>R Graphics Cookbook</a> - highly recommended
<li><a href=http://www.cookbook-r.com/Graphs/>Some of R Graphics Cookbook plots</a> - a set of some of the plots from the R Graphics Cookbook by Winston Chang
<li><a href=http://rgm3.lab.nig.ac.jp/RGM/R_image_list?page=665&init=true>R Graphical Manual</a> - plots from apparently every R CRAN package
</ul>
-->
<!--
<h2>Setup</h2>
<p>
To participate in a Data Carpentry workshop,
you will need working copies of the software described below.
Please make sure to install everything
(or at least to download the installers)
<em>before</em> the start of your bootcamp.
Participants should bring and use their own laptops to insure the proper setup of tools for an efficient workflow once you leave the workshop.
</p>
{% include setup.html %}
-->