-
Notifications
You must be signed in to change notification settings - Fork 70
/
par_sprune.h
476 lines (431 loc) · 14.9 KB
/
par_sprune.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
// SPRUNE :: https://github.com/prideout/par
// Sweep and Prune library for detecting axis-aligned box collisions in 2D.
//
// For an emscripten demo of this library, take a look at the following link.
//
// https://prideout.net/d3cpp
//
// The axis-aligned bounding boxes are specified by (minx, miny, maxx, maxy).
// Simple usage example:
//
// float boxes[] = {
// 0.10, 0.10, 0.30, 0.30, // box 0
// 0.20, 0.20, 0.40, 0.40, // box 1
// 0.60, 0.15, 0.70, 0.25, // box 2
// };
// int nboxes = 3;
// par_sprune_context* ctx = par_sprune_overlap(boxes, nboxes, 0);
// int const* pairs = ctx->collision_pairs;
// for (int i = 0; i < ctx->ncollision_pairs * 2; i += 2) {
// printf("box %d overlaps box %d\n", pairs[i], pairs[i + 1]);
// }
// par_sprune_free_context(ctx);
//
// Distributed under the MIT License, see bottom of file.
#ifndef PAR_SPRUNE_H
#define PAR_SPRUNE_H
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <stdbool.h>
#ifndef PAR_SPRUNE_INT
#define PAR_SPRUNE_INT int32_t
#endif
#ifndef PAR_SPRUNE_FLT
#define PAR_SPRUNE_FLT float
#endif
// -----------------------------------------------------------------------------
// BEGIN PUBLIC API
// -----------------------------------------------------------------------------
typedef struct {
PAR_SPRUNE_INT const* const collision_pairs; // list of two-tuples
PAR_SPRUNE_INT const ncollision_pairs; // number of two-tuples
PAR_SPRUNE_INT const* const culled; // filled by par_sprune_cull
PAR_SPRUNE_INT const nculled; // set by par_sprune_cull
} par_sprune_context;
void par_sprune_free_context(par_sprune_context* context);
// Takes an array of 4-tuples (minx miny maxx maxy) and performs SaP. Populates
// "collision_pairs" and "ncollision_pairs". Optionally takes an existing
// context to avoid memory churn; pass NULL for initial construction.
par_sprune_context* par_sprune_overlap(PAR_SPRUNE_FLT const* aabbs,
PAR_SPRUNE_INT naabbs, par_sprune_context* previous);
// Reads new aabb data from the same pointer that was passed to the overlap
// function and refreshes the two relevant fields. This function should
// only be used when the number of aabbs remains constant. If this returns
// false, no changes to the collision set were detected.
bool par_sprune_update(par_sprune_context* ctx);
// Examines all collision groups and creates a culling set such that no boxes
// would overlap if the culled boxes are removed. When two boxes collide, the
// box that occurs earlier in the list is more likely to be culled. Populates
// the "culled" and "nculled" fields in par_sprune_context. This is useful for
// hiding labels in GIS applications.
void par_sprune_cull(par_sprune_context* context);
// -----------------------------------------------------------------------------
// END PUBLIC API
// -----------------------------------------------------------------------------
#ifdef __cplusplus
}
#endif
#ifdef PAR_SPRUNE_IMPLEMENTATION
#define PARINT PAR_SPRUNE_INT
#define PARFLT PAR_SPRUNE_FLT
#include <stdlib.h>
#include <assert.h>
#ifndef PAR_PI
#define PAR_PI (3.14159265359)
#define PAR_MIN(a, b) (a > b ? b : a)
#define PAR_MAX(a, b) (a > b ? a : b)
#define PAR_CLAMP(v, lo, hi) PAR_MAX(lo, PAR_MIN(hi, v))
#define PAR_SWAP(T, A, B) { T tmp = B; B = A; A = tmp; }
#define PAR_SQR(a) ((a) * (a))
#endif
#ifndef PAR_MALLOC
#define PAR_MALLOC(T, N) ((T*) malloc(N * sizeof(T)))
#define PAR_CALLOC(T, N) ((T*) calloc(N * sizeof(T), 1))
#define PAR_REALLOC(T, BUF, N) ((T*) realloc(BUF, sizeof(T) * (N)))
#define PAR_FREE(BUF) free(BUF)
#endif
#ifndef PAR_ARRAY
#define PAR_ARRAY
#define pa_free(a) ((a) ? PAR_FREE(pa___raw(a)), 0 : 0)
#define pa_push(a, v) (pa___maybegrow(a, (int) 1), (a)[pa___n(a)++] = (v))
#define pa_count(a) ((a) ? pa___n(a) : 0)
#define pa_add(a, n) (pa___maybegrow(a, (int) n), pa___n(a) += (n))
#define pa_last(a) ((a)[pa___n(a) - 1])
#define pa_end(a) (a + pa_count(a))
#define pa_clear(arr) if (arr) pa___n(arr) = 0
#define pa___raw(a) ((int*) (a) -2)
#define pa___m(a) pa___raw(a)[0]
#define pa___n(a) pa___raw(a)[1]
#define pa___needgrow(a, n) ((a) == 0 || pa___n(a) + ((int) n) >= pa___m(a))
#define pa___maybegrow(a, n) (pa___needgrow(a, (n)) ? pa___grow(a, n) : 0)
#define pa___grow(a, n) (*((void**)& (a)) = pa___growf((void*) (a), (n), \
sizeof(*(a))))
// ptr[-2] is capacity, ptr[-1] is size.
static void* pa___growf(void* arr, int increment, int itemsize)
{
int dbl_cur = arr ? 2 * pa___m(arr) : 0;
int min_needed = pa_count(arr) + increment;
int m = dbl_cur > min_needed ? dbl_cur : min_needed;
int* p = (int *) PAR_REALLOC(uint8_t, arr ? pa___raw(arr) : 0,
itemsize * m + sizeof(int) * 2);
if (p) {
if (!arr) {
p[1] = 0;
}
p[0] = m;
return p + 2;
}
return (void*) (2 * sizeof(int));
}
#endif
typedef struct {
// Public:
PARINT* collision_pairs;
PARINT ncollision_pairs;
PARINT* culled;
PARINT nculled;
// Private:
PARFLT const* aabbs;
PARINT naabbs;
PARINT* sorted_indices[2];
PARINT* pairs[2];
} par_sprune__context;
static inline int par_qsort_cmpswap(char *__restrict a, char *__restrict b,
size_t w,
int (*compar)(const void *_a, const void *_b,
void *_arg),
void *arg)
{
char tmp, *end = a+w;
if (compar(a, b, arg) > 0) {
for(; a < end; a++, b++) { tmp = *a; *a = *b; *b = tmp; }
return 1;
}
return 0;
}
// qsort doesn't take a context, so we have our own portable implementation.
// Parameters:
// base is the array to be sorted
// nel is the number of elements in the array
// w is the size in bytes of each element of the array
// compar is the comparison function
// arg is a pointer to be passed to the comparison function
//
static inline void par_qsort(
void *base,
size_t nel,
size_t w,
int (*compar)(const void *_a, const void *_b, void *_arg),
void *arg)
{
char *b = (char*) base, *end = (char*) (b + nel * w);
if (nel < 7) {
char *pi, *pj;
for (pi = b+w; pi < end; pi += w) {
for (pj = pi; pj > b && par_qsort_cmpswap(pj-w, pj, w, compar, arg);
pj -= w) {}
}
return;
}
char *x, *y, *xend, ch;
char *pl, *pr;
char *last = b+w*(nel-1), *tmp;
char *l[3];
l[0] = b;
l[1] = b+w*(nel/2);
l[2] = last;
if (compar(l[0],l[1],arg) > 0) {
tmp=l[0]; l[0]=l[1]; l[1]=tmp;
}
if (compar(l[1],l[2],arg) > 0) {
tmp=l[1]; l[1]=l[2]; l[2]=tmp;
if (compar(l[0],l[1],arg) > 0) {
tmp=l[0]; l[0]=l[1]; l[1]=tmp;
}
}
for(x = l[1], y = last, xend = x+w; x<xend; x++, y++) {
ch = *x; *x = *y; *y = ch;
}
pl = b;
pr = last;
while (pl < pr) {
for (; pl < pr; pl += w) {
if (par_qsort_cmpswap(pl, pr, w, compar, arg)) {
pr -= w;
break;
}
}
for (; pl < pr; pr -= w) {
if (par_qsort_cmpswap(pl, pr, w, compar, arg)) {
pl += w;
break;
}
}
}
par_qsort(b, (pl-b) / w, w, compar, arg);
par_qsort(pl+w, (end - (pl+w)) / w, w, compar, arg);
}
void par_sprune_free_context(par_sprune_context* context)
{
par_sprune__context* ctx = (par_sprune__context*) context;
pa_free(ctx->sorted_indices[0]);
pa_free(ctx->sorted_indices[1]);
pa_free(ctx->pairs[0]);
pa_free(ctx->pairs[1]);
pa_free(ctx->collision_pairs);
PAR_FREE(ctx);
}
static void par_sprune__remove(PARINT* arr, PARINT val)
{
int i = pa_count(arr) - 1;
for (; i >= 0; i--) {
if (arr[i] == val) {
break;
}
}
assert(i >= 0);
for (++i; i < pa_count(arr); i++) {
PAR_SWAP(PARINT, arr[i - 1], arr[i]);
}
pa___n(arr)--;
}
typedef struct {
PARFLT const* aabbs;
} par__sprune_sorter;
static int par__cmpinds(const void* pa, const void* pb, void* psorter)
{
PARINT a = *((const PARINT*) pa);
PARINT b = *((const PARINT*) pb);
par__sprune_sorter* sorter = (par__sprune_sorter*) psorter;
PARFLT const* aabbs = sorter->aabbs;
PARFLT vala = aabbs[a];
PARFLT valb = aabbs[b];
if (vala > valb) return 1;
if (vala < valb) return -1;
if (a > b) return 1;
if (a < b) return -1;
return 0;
}
static int par__cmppairs(const void* pa, const void* pb, void* unused)
{
PARINT a = *((const PARINT*) pa);
PARINT b = *((const PARINT*) pb);
if (a > b) return 1;
if (a < b) return -1;
a = *(1 + (const PARINT*) pa);
b = *(1 + (const PARINT*) pb);
if (a > b) return 1;
if (a < b) return -1;
return 0;
}
static int par__cmpfind(const void* pa, const void* pb)
{
PARINT a = *((const PARINT*) pa);
PARINT b = *((const PARINT*) pb);
if (a > b) return 1;
if (a < b) return -1;
a = *(1 + (const PARINT*) pa);
b = *(1 + (const PARINT*) pb);
if (a > b) return 1;
if (a < b) return -1;
return 0;
}
par_sprune_context* par_sprune_overlap(PARFLT const* aabbs, PARINT naabbs,
par_sprune_context* previous)
{
par_sprune__context* ctx = (par_sprune__context*) previous;
if (!ctx) {
ctx = PAR_CALLOC(par_sprune__context, 1);
}
ctx->aabbs = aabbs;
ctx->naabbs = naabbs;
for (int axis = 0; axis < 2; axis++) {
pa_clear(ctx->sorted_indices[axis]);
pa_add(ctx->sorted_indices[axis], naabbs * 2);
pa_clear(ctx->pairs[axis]);
}
for (PARINT i = 0; i < naabbs; i++) {
ctx->sorted_indices[0][i * 2 + 0] = i * 4 + 0;
ctx->sorted_indices[1][i * 2 + 0] = i * 4 + 1;
ctx->sorted_indices[0][i * 2 + 1] = i * 4 + 2;
ctx->sorted_indices[1][i * 2 + 1] = i * 4 + 3;
}
par__sprune_sorter sorter;
sorter.aabbs = ctx->aabbs;
PARINT* active = 0;
// Sweep a plane first across the X-axis, then down through the Y-axis.
for (int axis = 0; axis < 2; axis++) {
PARINT** pairs = &ctx->pairs[axis];
PARINT* indices = ctx->sorted_indices[axis];
par_qsort(indices, naabbs * 2, sizeof(PARINT), par__cmpinds, &sorter);
pa_clear(active);
for (PARINT i = 0; i < naabbs * 2; i++) {
PARINT fltindex = indices[i];
PARINT boxindex = fltindex / 4;
bool ismin = ((fltindex - axis) % 4) == 0;
if (ismin) {
for (int j = 0; j < pa_count(active); j++) {
pa_push(*pairs, active[j]);
pa_push(*pairs, boxindex);
pa_push(*pairs, boxindex);
pa_push(*pairs, active[j]);
}
pa_push(active, boxindex);
} else {
par_sprune__remove(active, boxindex);
}
}
}
// Sort the Y-axis collision pairs to make it easier to intersect it
// with the set of X-axis collision pairs. We also sort the X-axis
// pairs because it's required for subsequent calls to par_sprune_update.
PARINT* xpairs = ctx->pairs[0];
PARINT* ypairs = ctx->pairs[1];
int nxpairs = pa_count(xpairs) / 2;
int nypairs = pa_count(ypairs) / 2;
int pairsize = 2 * sizeof(PARINT);
pa_free(active);
par_qsort(xpairs, nxpairs, pairsize, par__cmppairs, 0);
par_qsort(ypairs, nypairs, pairsize, par__cmppairs, 0);
pa_clear(ctx->collision_pairs);
// Find the intersection of X-axis overlaps and Y-axis overlaps.
for (int i = 0; i < pa_count(xpairs); i += 2) {
PARINT* key = xpairs + i;
if (key[1] < key[0]) {
continue;
}
void* found = bsearch(key, ypairs, nypairs, pairsize, par__cmpfind);
if (found) {
pa_push(ctx->collision_pairs, key[0]);
pa_push(ctx->collision_pairs, key[1]);
}
}
ctx->ncollision_pairs = pa_count(ctx->collision_pairs) / 2;
return (par_sprune_context*) ctx;
}
bool par_sprune_update(par_sprune_context* context)
{
par_sprune__context* ctx = (par_sprune__context*) context;
PARINT* collision_pairs = ctx->collision_pairs;
PARINT ncollision_pairs = ctx->ncollision_pairs;
ctx->collision_pairs = 0;
par_sprune_overlap(ctx->aabbs, ctx->naabbs, context);
bool dirty = ncollision_pairs != ctx->ncollision_pairs;
if (!dirty) {
int pairsize = 2 * sizeof(PARINT);
for (int i = 0; i < ctx->ncollision_pairs; i += 2) {
PARINT* key = ctx->collision_pairs + i;
if (!bsearch(key, collision_pairs, ncollision_pairs,
pairsize, par__cmpfind)) {
dirty = true;
break;
}
}
}
pa_free(collision_pairs);
return dirty;
}
bool par_sprune__is_culled(par_sprune__context* ctx, PARINT key)
{
for (int i = 0; i < pa_count(ctx->culled); i++) {
if (key == ctx->culled[i]) {
return true;
}
}
return false;
}
static int par__cmpfindsingle(const void* pa, const void* pb)
{
PARINT a = *((const PARINT*) pa);
PARINT b = *((const PARINT*) pb);
if (a > b) return 1;
if (a < b) return -1;
return 0;
}
void par_sprune_cull(par_sprune_context* context)
{
par_sprune__context* ctx = (par_sprune__context*) context;
pa_clear(ctx->culled);
PARINT* collision_pairs = ctx->collision_pairs;
PARINT ncollision_pairs = ctx->ncollision_pairs;
int pairsize = 2 * sizeof(PARINT);
for (int i = 0; i < ctx->naabbs; i++) {
PARINT* found = (PARINT*) bsearch(&i, collision_pairs, ncollision_pairs,
pairsize, par__cmpfindsingle);
if (!found) {
continue;
}
if (!par_sprune__is_culled(ctx, found[0]) &&
!par_sprune__is_culled(ctx, found[1])) {
pa_push(ctx->culled, found[0]);
}
}
ctx->nculled = pa_count(ctx->culled);
}
#undef PARINT
#undef PARFLT
#endif // PAR_SPRUNE_IMPLEMENTATION
#endif // PAR_SPRUNE_H
// par_sprune is distributed under the MIT license:
//
// Copyright (c) 2019 Philip Rideout
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.