-
Notifications
You must be signed in to change notification settings - Fork 3
/
seq2seq_bot.py
264 lines (229 loc) · 12.3 KB
/
seq2seq_bot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
'''A simple wrapper for the Seq2Seq Tensorflow example model.
main() will train this model on the cornell movie dataset.
Hacked together from the Tensorflow french-english translation example.
Train a model with
python seq2seq_bot.py
Converse with previously trained bot with
python seq2seq_bot.py --converse=True
'''
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import os
import random
import sys
import time
import logging
import numpy as np
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
import bot
import cornell_movie_dialog
from tensorflow.models.rnn.translate import data_utils
from tensorflow.models.rnn.translate import seq2seq_model
tf.app.flags.DEFINE_float("learning_rate", 0.5, "Learning rate.")
tf.app.flags.DEFINE_float("learning_rate_decay_factor", 0.99,
"Learning rate decays by this much.")
tf.app.flags.DEFINE_float("max_gradient_norm", 5.0,
"Clip gradients to this norm.")
tf.app.flags.DEFINE_float("temperature", 1.0,
"Temperature for sampling outputs for get_response.")
tf.app.flags.DEFINE_integer("batch_size", 64,
"Batch size to use during training.")
tf.app.flags.DEFINE_integer("size", 512, "Size of each model layer.")
tf.app.flags.DEFINE_integer("num_layers", 1, "Number of layers in the model.")
tf.app.flags.DEFINE_integer("vocab_size", 40000, "Vocabulary size.")
tf.app.flags.DEFINE_string("data_dir", "tmp/bot_data", "Data directory")
tf.app.flags.DEFINE_string("train_dir", "tmp/bot_train", "Training directory.")
tf.app.flags.DEFINE_integer("max_train_data_size", 0,
"Limit on the size of training data (0: no limit).")
tf.app.flags.DEFINE_integer("steps_per_checkpoint", 200,
"How many training steps to do per checkpoint.")
tf.app.flags.DEFINE_boolean("use_fp16", False,
"Train using fp16 instead of fp32.")
tf.app.flags.DEFINE_string("converse", False,
"Reload a previously trained model and converse immediately.")
tf.app.flags.DEFINE_string("dataset", 'cornell',
"String name of dataset to use")
FLAGS = tf.app.flags.FLAGS
# We use a number of buckets and pad to the closest one for efficiency.
# See seq2seq_model.Seq2SeqModel for details of how they work.
_buckets = [(5, 10), (10, 15), (20, 25), (40, 50)]
class Seq2Seq(bot.Bot):
def init_for_conversation(self):
self.sess = tf.Session()
# Create model and load parameters.
self.model = self.create_model(self.sess, True)
self.model.batch_size = 1 # We decode one sentence at a time.
# Load vocabularies.
self.source_vocab_path = os.path.join(FLAGS.data_dir,
"vocab%d.source" % FLAGS.vocab_size)
self.target_vocab_path = os.path.join(FLAGS.data_dir,
"vocab%d.target" % FLAGS.vocab_size)
self.source_vocab, _ = data_utils.initialize_vocabulary(self.source_vocab_path)
_, self.rev_target_vocab = data_utils.initialize_vocabulary(self.target_vocab_path)
def init_and_train(self):
self.train()
print("Training completed!")
print("Reloading parameters and starting conversation mode.")
self.init_for_conversation()
def get_response(self, sentence):
# Get token-ids for the input sentence.
token_ids = data_utils.sentence_to_token_ids(tf.compat.as_bytes(sentence), self.source_vocab)
# Which bucket does it belong to?
bucket_id = len(_buckets) - 1
for i, bucket in enumerate(_buckets):
if bucket[0] >= len(token_ids):
bucket_id = i
break
else:
logging.warning("Sentence truncated: %s", sentence)
# Get a 1-element batch to feed the sentence to the model.
encoder_inputs, decoder_inputs, target_weights = self.model.get_batch(
{bucket_id: [(token_ids, [])]}, bucket_id)
# Get output logits for the sentence.
_, _, output_logits = self.model.step(self.sess, encoder_inputs, decoder_inputs,
target_weights, bucket_id, True)
# This is a greedy decoder - outputs are just argmaxes of output_logits.
output_with_temp = [logit / FLAGS.temperature for logit in output_logits]
output_softmax = [np.exp(logit - logit.max()) for logit in output_with_temp]
output_softmax = [exponential / np.sum(exponential) for exponential in output_softmax]
top_10 = [np.sort(logit[0])[-10:] for logit in output_softmax]
# print(top_10[0])
outputs = [np.random.choice(FLAGS.vocab_size, 1, p=logits[0])[0] for logits in output_softmax]
# outputs = [int(np.argmax(logit, axis=1)) for logit in output_softmax]
# outputs = [int(np.argmax(logit, axis=1)) for logit in output_logits]
# If there is an EOS symbol in outputs, cut them at that point.
if data_utils.EOS_ID in outputs:
outputs = outputs[:outputs.index(data_utils.EOS_ID)]
# Print out sentence corresponding to outputs.
return " ".join([tf.compat.as_str(self.rev_target_vocab[output]) for output in outputs])
def read_data(self, source_path, target_path, max_size=None):
"""Read data from source and target files and put into buckets.
Args:
source_path: path to the files with token-ids for the source language.
target_path: path to the file with token-ids for the target language;
it must be aligned with the source file: n-th line contains the desired
output for n-th line from the source_path.
max_size: maximum number of lines to read, all other will be ignored;
if 0 or None, data files will be read completely (no limit).
Returns:
data_set: a list of length len(_buckets); data_set[n] contains a list of
(source, target) pairs read from the provided data files that fit
into the n-th bucket, i.e., such that len(source) < _buckets[n][0] and
len(target) < _buckets[n][1]; source and target are lists of token-ids.
"""
data_set = [[] for _ in _buckets]
with tf.gfile.GFile(source_path, mode="r") as source_file:
with tf.gfile.GFile(target_path, mode="r") as target_file:
source, target = source_file.readline(), target_file.readline()
counter = 0
while source and target and (not max_size or counter < max_size):
counter += 1
if counter % 100000 == 0:
print(" reading data line %d" % counter)
sys.stdout.flush()
source_ids = [int(x) for x in source.split()]
target_ids = [int(x) for x in target.split()]
target_ids.append(data_utils.EOS_ID)
for bucket_id, (source_size, target_size) in enumerate(_buckets):
if len(source_ids) < source_size and len(target_ids) < target_size:
data_set[bucket_id].append([source_ids, target_ids])
break
source, target = source_file.readline(), target_file.readline()
return data_set
def create_model(self, session, forward_only):
"""Create translation model and initialize or load parameters in session."""
dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
model = seq2seq_model.Seq2SeqModel(
FLAGS.vocab_size,
FLAGS.vocab_size,
_buckets,
FLAGS.size,
FLAGS.num_layers,
FLAGS.max_gradient_norm,
FLAGS.batch_size,
FLAGS.learning_rate,
FLAGS.learning_rate_decay_factor,
forward_only=forward_only,
dtype=dtype)
ckpt = tf.train.get_checkpoint_state(FLAGS.train_dir)
if ckpt and tf.gfile.Exists(ckpt.model_checkpoint_path):
print("Reading model parameters from %s" % ckpt.model_checkpoint_path)
model.saver.restore(session, ckpt.model_checkpoint_path)
else:
print("Created model with fresh parameters.")
init_op = tf.initialize_all_variables()
session.run(init_op)
return model
def train(self):
"""Train a model using movie dialog data."""
# Prepare data.
print("Preparing data in %s" % FLAGS.data_dir)
if FLAGS.dataset == 'cornell':
self.dataset = cornell_movie_dialog.CornellMovieData
else:
raise NotImplementedError("Dataset " + FLAGS.dataset + " has not been implemented.")
source_train, target_train, _, _ = self.dataset.prepare_data(
FLAGS.vocab_size, FLAGS.data_dir)
if not os.path.exists(FLAGS.train_dir):
os.makedirs(FLAGS.train_dir)
with tf.Session() as sess:
# Create model.
print("Creating %d layers of %d units." % (FLAGS.num_layers, FLAGS.size))
model = self.create_model(sess, False)
# Read data into buckets and compute their sizes.
print("Reading training data (limit: %d)."
% FLAGS.max_train_data_size)
train_set = self.read_data(source_train, target_train, FLAGS.max_train_data_size)
train_bucket_sizes = [len(train_set[b]) for b in xrange(len(_buckets))]
train_total_size = float(sum(train_bucket_sizes))
# A bucket scale is a list of increasing numbers from 0 to 1 that we'll use
# to select a bucket. Length of [scale[i], scale[i+1]] is proportional to
# the size if i-th training bucket, as used later.
train_buckets_scale = [sum(train_bucket_sizes[:i + 1]) / train_total_size
for i in xrange(len(train_bucket_sizes))]
# This is the training loop.
step_time, loss = 0.0, 0.0
current_step = 0
previous_losses = []
while True:
# Choose a bucket according to data distribution. We pick a random number
# in [0, 1] and use the corresponding interval in train_buckets_scale.
random_number_01 = np.random.random_sample()
bucket_id = min([i for i in xrange(len(train_buckets_scale))
if train_buckets_scale[i] > random_number_01])
# Get a batch and make a step.
start_time = time.time()
encoder_inputs, decoder_inputs, target_weights = model.get_batch(
train_set, bucket_id)
_, step_loss, _ = model.step(sess, encoder_inputs, decoder_inputs,
target_weights, bucket_id, False)
step_time += (time.time() - start_time) / FLAGS.steps_per_checkpoint
loss += step_loss / FLAGS.steps_per_checkpoint
current_step += 1
# Once in a while, we save checkpoint, print statistics, and run evals.
if current_step % FLAGS.steps_per_checkpoint == 0:
# Print statistics for the previous epoch.
perplexity = math.exp(float(loss)) if loss < 300 else float("inf")
print("global step %d learning rate %.4f step-time %.2f perplexity "
"%.2f" % (model.global_step.eval(), model.learning_rate.eval(),
step_time, perplexity))
# Decrease learning rate if no improvement was seen over last 3 times.
if len(previous_losses) > 2 and loss > max(previous_losses[-3:]):
sess.run(model.learning_rate_decay_op)
previous_losses.append(loss)
# Save checkpoint and zero timer and loss.
checkpoint_path = os.path.join(FLAGS.train_dir, "translate.ckpt")
model.saver.save(sess, checkpoint_path, global_step=model.global_step)
step_time, loss = 0.0, 0.0
sys.stdout.flush()
def main(_):
if FLAGS.converse:
bot = Seq2Seq(mode='converse')
else:
bot = Seq2Seq(mode='train')
bot.converse()
if __name__ == "__main__":
tf.app.run()