forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bodysystemcuda.cu
276 lines (227 loc) · 9.32 KB
/
bodysystemcuda.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <helper_cuda.h>
#include <math.h>
//#include <GL/glew.h>
//#include <GL/freeglut.h>
// CUDA standard includes
#include <cuda_runtime.h>
//#include <cuda_gl_interop.h>
#include "bodysystem.h"
__constant__ float softeningSquared;
__constant__ double softeningSquared_fp64;
cudaError_t setSofteningSquared(float softeningSq) {
return cudaMemcpyToSymbol(softeningSquared, &softeningSq, sizeof(float), 0,
cudaMemcpyHostToDevice);
}
cudaError_t setSofteningSquared(double softeningSq) {
return cudaMemcpyToSymbol(softeningSquared_fp64, &softeningSq, sizeof(double),
0, cudaMemcpyHostToDevice);
}
template <class T>
struct SharedMemory {
__device__ inline operator T *() {
extern __shared__ int __smem[];
return (T *)__smem;
}
__device__ inline operator const T *() const {
extern __shared__ int __smem[];
return (T *)__smem;
}
};
template <typename T>
__device__ T rsqrt_T(T x) {
return rsqrt(x);
}
template <>
__device__ float rsqrt_T<float>(float x) {
return rsqrtf(x);
}
template <>
__device__ double rsqrt_T<double>(double x) {
return rsqrt(x);
}
// Macros to simplify shared memory addressing
#define SX(i) sharedPos[i + blockDim.x * threadIdx.y]
// This macro is only used when multithreadBodies is true (below)
#define SX_SUM(i, j) sharedPos[i + blockDim.x * j]
template <typename T>
__device__ T getSofteningSquared() {
return softeningSquared;
}
template <>
__device__ double getSofteningSquared<double>() {
return softeningSquared_fp64;
}
template <typename T>
struct DeviceData {
T *dPos[2]; // mapped host pointers
T *dVel;
cudaEvent_t event;
unsigned int offset;
unsigned int numBodies;
};
template <typename T>
__device__ typename vec3<T>::Type bodyBodyInteraction(
typename vec3<T>::Type ai, typename vec4<T>::Type bi,
typename vec4<T>::Type bj) {
typename vec3<T>::Type r;
// r_ij [3 FLOPS]
r.x = bj.x - bi.x;
r.y = bj.y - bi.y;
r.z = bj.z - bi.z;
// distSqr = dot(r_ij, r_ij) + EPS^2 [6 FLOPS]
T distSqr = r.x * r.x + r.y * r.y + r.z * r.z;
distSqr += getSofteningSquared<T>();
// invDistCube =1/distSqr^(3/2) [4 FLOPS (2 mul, 1 sqrt, 1 inv)]
T invDist = rsqrt_T(distSqr);
T invDistCube = invDist * invDist * invDist;
// s = m_j * invDistCube [1 FLOP]
T s = bj.w * invDistCube;
// a_i = a_i + s * r_ij [6 FLOPS]
ai.x += r.x * s;
ai.y += r.y * s;
ai.z += r.z * s;
return ai;
}
template <typename T>
__device__ typename vec3<T>::Type computeBodyAccel(
typename vec4<T>::Type bodyPos, typename vec4<T>::Type *positions,
int numTiles) {
typename vec4<T>::Type *sharedPos = SharedMemory<typename vec4<T>::Type>();
typename vec3<T>::Type acc = {0.0f, 0.0f, 0.0f};
for (int tile = 0; tile < numTiles; tile++) {
sharedPos[threadIdx.x] = positions[tile * blockDim.x + threadIdx.x];
__syncthreads();
// This is the "tile_calculation" from the GPUG3 article.
#pragma unroll 128
for (unsigned int counter = 0; counter < blockDim.x; counter++) {
acc = bodyBodyInteraction<T>(acc, bodyPos, sharedPos[counter]);
}
__syncthreads();
}
return acc;
}
template <typename T>
__global__ void integrateBodies(typename vec4<T>::Type *__restrict__ newPos,
typename vec4<T>::Type *__restrict__ oldPos,
typename vec4<T>::Type *vel,
unsigned int deviceOffset,
unsigned int deviceNumBodies, float deltaTime,
float damping, int numTiles) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
if (index >= deviceNumBodies) {
return;
}
typename vec4<T>::Type position = oldPos[deviceOffset + index];
typename vec3<T>::Type accel =
computeBodyAccel<T>(position, oldPos, numTiles);
// acceleration = force / mass;
// new velocity = old velocity + acceleration * deltaTime
// note we factor out the body's mass from the equation, here and in
// bodyBodyInteraction (because they cancel out). Thus here force ==
// acceleration
typename vec4<T>::Type velocity = vel[deviceOffset + index];
velocity.x += accel.x * deltaTime;
velocity.y += accel.y * deltaTime;
velocity.z += accel.z * deltaTime;
velocity.x *= damping;
velocity.y *= damping;
velocity.z *= damping;
// new position = old position + velocity * deltaTime
position.x += velocity.x * deltaTime;
position.y += velocity.y * deltaTime;
position.z += velocity.z * deltaTime;
// store new position and velocity
newPos[deviceOffset + index] = position;
vel[deviceOffset + index] = velocity;
}
template <typename T>
void integrateNbodySystem(DeviceData<T> *deviceData,
cudaGraphicsResource **pgres,
unsigned int currentRead, float deltaTime,
float damping, unsigned int numBodies,
unsigned int numDevices, int blockSize,
bool bUsePBO) {
if (bUsePBO) {
checkCudaErrors(cudaGraphicsResourceSetMapFlags(
pgres[currentRead], cudaGraphicsMapFlagsReadOnly));
checkCudaErrors(cudaGraphicsResourceSetMapFlags(
pgres[1 - currentRead], cudaGraphicsMapFlagsWriteDiscard));
checkCudaErrors(cudaGraphicsMapResources(2, pgres, 0));
size_t bytes;
checkCudaErrors(cudaGraphicsResourceGetMappedPointer(
(void **)&(deviceData[0].dPos[currentRead]), &bytes,
pgres[currentRead]));
checkCudaErrors(cudaGraphicsResourceGetMappedPointer(
(void **)&(deviceData[0].dPos[1 - currentRead]), &bytes,
pgres[1 - currentRead]));
}
for (unsigned int dev = 0; dev != numDevices; dev++) {
if (numDevices > 1) {
cudaSetDevice(dev);
}
int numBlocks = (deviceData[dev].numBodies + blockSize - 1) / blockSize;
int numTiles = (numBodies + blockSize - 1) / blockSize;
int sharedMemSize = blockSize * 4 * sizeof(T); // 4 floats for pos
integrateBodies<T><<<numBlocks, blockSize, sharedMemSize>>>(
(typename vec4<T>::Type *)deviceData[dev].dPos[1 - currentRead],
(typename vec4<T>::Type *)deviceData[dev].dPos[currentRead],
(typename vec4<T>::Type *)deviceData[dev].dVel, deviceData[dev].offset,
deviceData[dev].numBodies, deltaTime, damping, numTiles);
if (numDevices > 1) {
checkCudaErrors(cudaEventRecord(deviceData[dev].event));
// MJH: Hack on older driver versions to force kernel launches to flush!
cudaStreamQuery(0);
}
// check if kernel invocation generated an error
getLastCudaError("Kernel execution failed");
}
if (numDevices > 1) {
for (unsigned int dev = 0; dev < numDevices; dev++) {
checkCudaErrors(cudaEventSynchronize(deviceData[dev].event));
}
}
if (bUsePBO) {
checkCudaErrors(cudaGraphicsUnmapResources(2, pgres, 0));
}
}
// Explicit specializations needed to generate code
template void integrateNbodySystem<float>(DeviceData<float> *deviceData,
cudaGraphicsResource **pgres,
unsigned int currentRead,
float deltaTime, float damping,
unsigned int numBodies,
unsigned int numDevices,
int blockSize, bool bUsePBO);
template void integrateNbodySystem<double>(DeviceData<double> *deviceData,
cudaGraphicsResource **pgres,
unsigned int currentRead,
float deltaTime, float damping,
unsigned int numBodies,
unsigned int numDevices,
int blockSize, bool bUsePBO);