forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MonteCarlo_gold.cpp
140 lines (117 loc) · 5.08 KB
/
MonteCarlo_gold.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <curand.h>
//#include "curand_kernel.h"
#include "helper_cuda.h"
////////////////////////////////////////////////////////////////////////////////
// Common types
////////////////////////////////////////////////////////////////////////////////
#include "MonteCarlo_common.h"
////////////////////////////////////////////////////////////////////////////////
// Black-Scholes formula for Monte Carlo results validation
////////////////////////////////////////////////////////////////////////////////
#define A1 0.31938153
#define A2 -0.356563782
#define A3 1.781477937
#define A4 -1.821255978
#define A5 1.330274429
#define RSQRT2PI 0.39894228040143267793994605993438
// Polynomial approximation of
// cumulative normal distribution function
double CND(double d) {
double K = 1.0 / (1.0 + 0.2316419 * fabs(d));
double cnd = RSQRT2PI * exp(-0.5 * d * d) *
(K * (A1 + K * (A2 + K * (A3 + K * (A4 + K * A5)))));
if (d > 0) cnd = 1.0 - cnd;
return cnd;
}
// Black-Scholes formula for call value
extern "C" void BlackScholesCall(float &callValue, TOptionData optionData) {
double S = optionData.S;
double X = optionData.X;
double T = optionData.T;
double R = optionData.R;
double V = optionData.V;
double sqrtT = sqrt(T);
double d1 = (log(S / X) + (R + 0.5 * V * V) * T) / (V * sqrtT);
double d2 = d1 - V * sqrtT;
double CNDD1 = CND(d1);
double CNDD2 = CND(d2);
double expRT = exp(-R * T);
callValue = (float)(S * CNDD1 - X * expRT * CNDD2);
}
////////////////////////////////////////////////////////////////////////////////
// CPU Monte Carlo
////////////////////////////////////////////////////////////////////////////////
static double endCallValue(double S, double X, double r, double MuByT,
double VBySqrtT) {
double callValue = S * exp(MuByT + VBySqrtT * r) - X;
return (callValue > 0) ? callValue : 0;
}
extern "C" void MonteCarloCPU(TOptionValue &callValue, TOptionData optionData,
float *h_Samples, int pathN) {
const double S = optionData.S;
const double X = optionData.X;
const double T = optionData.T;
const double R = optionData.R;
const double V = optionData.V;
const double MuByT = (R - 0.5 * V * V) * T;
const double VBySqrtT = V * sqrt(T);
float *samples;
curandGenerator_t gen;
checkCudaErrors(curandCreateGeneratorHost(&gen, CURAND_RNG_PSEUDO_DEFAULT));
unsigned long long seed = 1234ULL;
checkCudaErrors(curandSetPseudoRandomGeneratorSeed(gen, seed));
if (h_Samples != NULL) {
samples = h_Samples;
} else {
samples = (float *)malloc(pathN * sizeof(float));
checkCudaErrors(curandGenerateNormal(gen, samples, pathN, 0.0, 1.0));
}
// for(int i=0; i<10; i++) printf("CPU sample = %f\n", samples[i]);
double sum = 0, sum2 = 0;
for (int pos = 0; pos < pathN; pos++) {
double sample = samples[pos];
double callValue = endCallValue(S, X, sample, MuByT, VBySqrtT);
sum += callValue;
sum2 += callValue * callValue;
}
if (h_Samples == NULL) free(samples);
checkCudaErrors(curandDestroyGenerator(gen));
// Derive average from the total sum and discount by riskfree rate
callValue.Expected = (float)(exp(-R * T) * sum / (double)pathN);
// Standard deviation
double stdDev = sqrt(((double)pathN * sum2 - sum * sum) /
((double)pathN * (double)(pathN - 1)));
// Confidence width; in 95% of all cases theoretical value lies within these
// borders
callValue.Confidence =
(float)(exp(-R * T) * 1.96 * stdDev / sqrt((double)pathN));
}