forked from kostrzewa/tmLQCD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Dov_psi.c
493 lines (399 loc) · 13.4 KB
/
Dov_psi.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
/***********************************************************************
*
* Copyright (C) 2003 Ines Wetzorke
* 2006 Urs Wenger
* 2004, 2009 Carsten Urbach
*
* This file is part of tmLQCD.
*
* tmLQCD is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* tmLQCD is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with tmLQCD. If not, see <http://www.gnu.org/licenses/>.
*
* Action of the overlap Dirac operator D on a given spinor field
*
* This software is distributed under the terms of the GNU General Public
* License (GPL)
*
* The externally accessible function is
*
* void Dov_psi(spinor * const P, spinor * const S)
* Action of the overlap operator Dov on a given spinor field
* Dov = (1+s-m0/2){1+gamma5 Q/sqrt(Q^2)} + m0
* with Q = gamma5*(-(1+s)+D_W)
*
* void Qov_psi(spinor * const P, spinor * const S)
* Action of the hermitian overlap operator Dov on a given spinor field
* i.e. Qov = gamma_5 * Dov
*
*************************************************************************/
#ifdef HAVE_CONFIG_H
# include<config.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "global.h"
#include "su3.h"
#include "linalg_eo.h"
#include "start.h"
#include "D_psi.h"
#include "gamma.h"
#include "chebyshev_polynomial_nd.h"
#include "solver/eigenvalues.h"
#include "solver/sub_low_ev.h"
#include "Dov_psi.h"
#include "solver/dirac_operator_eigenvectors.h"
#include "init_spinor_field.h"
void addproj_q_invsqrt(spinor * const Q, spinor * const P, const int n, const int N);
/* |R>=rnorm^2 Q^2 |S> */
void norm_Q_sqr_psi(spinor * const R, spinor * const S,
const double rnorm);
/* void norm_Q_n_psi(spinor *R, spinor *S, double m, int n, double rnorm) */
/* norm_Q_n_psi makes multiplication of any power of */
/* Q== gamma5*D_W, initial vector S, final R, finally the */
/* vector R is multiplied by a factor rnorm^n */
/* |R>=rnorm^n Q^n |S> where m is a mass */
void norm_Q_n_psi(spinor * const R, spinor * const S,
const int n, const double rnorm);
/* this is Q/sqrt(Q^2) */
void Q_over_sqrt_Q_sqr(spinor * const R, double * const c,
const int n, spinor * const S,
const double rnorm, const double minev);
double ov_s = 0.6;
double m_ov = 0.;
int ov_n_cheby=100;
double * ov_cheby_coef = NULL;
Dov_WS *dov_ws=NULL;
void Dov_psi_prec(spinor * const P, spinor * const S) {
/* todo: do preconditioning */
spinorPrecWS *ws=(spinorPrecWS*)g_precWS;
static _Complex double alpha;
Dov_psi(P,S);
alpha = -1.0;
spinorPrecondition(P,P,ws,T,L,alpha,0,1);
}
void calculateOverlapPolynomial(){
if(ov_cheby_coef != NULL) free(ov_cheby_coef);
ov_cheby_coef = (double*)malloc(ov_n_cheby*sizeof(double));
chebyshev_coefs(ev_minev, 1., ov_cheby_coef, ov_n_cheby, -0.5);
printf("last chebycheff coefficients\n");
for(int i = ov_n_cheby-3;i<ov_n_cheby;i++)
printf("%d %e\n",i,ov_cheby_coef[i]);
}
/**
* initializes the Dov workspace
*/
void init_Dov_WS(){
int i;
dov_ws=(Dov_WS*)malloc(sizeof(Dov_WS));
dov_ws->n_spinors=7;
if(g_proc_id==0) printf("Initilizing Dov spinor workspace with %d spinors!!!\n",dov_ws->n_spinors);
allocate_spinor_field_array(&(dov_ws->dum_spinors),&(dov_ws->dum_spinors_membuf),VOLUMEPLUSRAND,dov_ws->n_spinors);
dov_ws->lock_map=malloc(sizeof(int)*dov_ws->n_spinors);
for(i = 0 ; i< dov_ws->n_spinors;i++)
dov_ws->lock_map[i]=0;
}
void free_Dov_WS(){
if(dov_ws!=NULL){
free_spinor_field_array(&(dov_ws->dum_spinors_membuf));
free(dov_ws->lock_map);
free(dov_ws);
dov_ws=NULL;
}
}
spinor * lock_Dov_WS_spinor(int num){
if(num<dov_ws->n_spinors){
if(dov_ws->lock_map[num]==0){
dov_ws->lock_map[num]=1;
return dov_ws->dum_spinors[num];
} else {
if(g_proc_id == 0) fprintf(stderr,"spinor %d locked already\n" , num+1);
return NULL;
}
} else {
if(g_proc_id == 0) fprintf(stderr,"Error number of spinor fields exceeded: adjust it to %d in Dov_psi.c !!!!\n" , num+1);
return NULL;
}
}
void unlock_Dov_WS_spinor(int num){
if(num<dov_ws->n_spinors){
if(dov_ws->lock_map[num]==1){
dov_ws->lock_map[num]=0;
} else {
if(g_proc_id == 0) fprintf(stderr,"spinor %d was not locked already (double unlock ?? )\n" , num+1);
}
} else {
if(g_proc_id == 0) fprintf(stderr,"Error number of spinor fields exceeded (in unlock ?? check your unlock indices against lock indices !!! ): adjust it to %d in Dov_psi.c !!!!\n" , num+1);
}
}
void Dov_psi(spinor * const P, spinor * const S) {
double c0,c1;
spinor *s;
static int n_cheby = 0;
static int rec_coefs = 1;
ov_s = 0.5*(1./g_kappa - 8.) - 1.;
/* printf("Degree of Polynomial set to %d\n", ov_n_cheby); */
if(n_cheby != ov_n_cheby || rec_coefs) {
calculateOverlapPolynomial();
n_cheby = ov_n_cheby;
rec_coefs = 0;
}
if(dov_ws==NULL){
init_Dov_WS();
}
/* s_ = calloc(VOLUMEPLUSRAND+1, sizeof(spinor)); */
/* #if (defined SSE3 || defined SSE2 || defined SSE) */
/* s = (spinor*)(((unsigned long int)(s_)+ALIGN_BASE)&~ALIGN_BASE); */
/* #else */
/* s = s_; */
/* #endif */
s=lock_Dov_WS_spinor(0);
/* here we do with M = 1 + s */
/* M + m_ov/2 + (M - m_ov/2)\gamma_5 sign(Q(-M)) */
c0 = -(1.0 + ov_s - 0.5*m_ov);
c1 = -(1.0 + ov_s + 0.5*m_ov);
Q_over_sqrt_Q_sqr(s, ov_cheby_coef, ov_n_cheby, S, ev_qnorm, ev_minev);
gamma5(s, s, VOLUME);
assign_mul_add_mul_r(s, S, c0, c1, VOLUME);
assign(P, s, VOLUME);
/* free(s_); */
unlock_Dov_WS_spinor(0);
return;
}
void Qov_psi(spinor * const P, spinor * const S) {
Dov_psi(P, S);
gamma5(P, P, VOLUME);
return;
}
void Qov_sq_psi(spinor * const P, spinor * const S) {
Dov_psi(g_spinor_field[DUM_MATRIX], S);
gamma5(g_spinor_field[DUM_MATRIX], g_spinor_field[DUM_MATRIX], VOLUME);
Dov_psi(P,g_spinor_field[DUM_MATRIX]);
gamma5(P,P, VOLUME);
return;
}
void Qov_sq_psi_prec(spinor * const P, spinor * const S) {
spinorPrecWS *ws=(spinorPrecWS*)g_precWS;
static _Complex double alpha = 0.0;
alpha = ws->precExpo[0];
spinorPrecondition(P,S,ws,T,L,alpha,0,1);
Dov_psi(g_spinor_field[DUM_MATRIX], P);
gamma5(P, g_spinor_field[DUM_MATRIX], VOLUME);
alpha = ws->precExpo[1];
spinorPrecondition(P,P,ws,T,L,alpha,0,1);
Dov_psi(g_spinor_field[DUM_MATRIX], P);
gamma5(P, g_spinor_field[DUM_MATRIX], VOLUME);
alpha = ws->precExpo[2];
spinorPrecondition(P,P,ws,T,L,alpha,0,1);
return;
}
void addproj_q_invsqrt(spinor * const Q, spinor * const P, const int n, const int N) {
int j;
spinor *aux;
_Complex double cnorm, lambda;
static double save_ev[2]={-1.,-1.};
static int * ev_sign = NULL;
if(eigenvls[0] != save_ev[0] && eigenvls[1] != save_ev[1] ) {
if(g_proc_id == 0 && g_debug_level > 1) {
printf("# Recomputing eigenvalue signs!\n");
fflush(stdout);
}
for(j = 0; j < 2; j++) {
save_ev[j] = eigenvls[j];
}
free(ev_sign);
ev_sign = (int*) malloc(n * sizeof(int));
aux=lock_Dov_WS_spinor(1);
for(j=0; j < n; j++) {
D_psi(aux, &(eigenvectors[j*evlength]));
gamma5(aux, aux, N);
lambda = scalar_prod(&(eigenvectors[j*evlength]), aux, N, 1);
if (creal(lambda) < 0) {
ev_sign[j] = -1;
}
else {
ev_sign[j] = 1;
}
}
unlock_Dov_WS_spinor(1);
/* free(aux_); */
}
for(j = 0; j < n; j++) {
cnorm = scalar_prod(&(eigenvectors[j*evlength]), P, N, 1);
cnorm *= ev_sign[j];
assign_add_mul(Q, &(eigenvectors[j*evlength]), cnorm, N);
}
return;
}
/* |R>=rnorm^2 Q^2 |S> */
void norm_Q_sqr_psi(spinor * const R, spinor * const S,
const double rnorm) {
spinor *aux;
aux=lock_Dov_WS_spinor(1);
/* Term -1-s is done in D_psi! does this comment make sense for HMC? */
/* no, it doesn't, we do have to work on this */
/* here we need to set kappa = 1./(2 (-1-s) + 8) */
D_psi(R, S);
gamma5(aux, R, VOLUME);
D_psi(R, aux);
gamma5(R, R, VOLUME);
mul_r(R, rnorm*rnorm, R, VOLUME);
unlock_Dov_WS_spinor(1);
return;
}
/* void norm_Q_n_psi(spinor *R, spinor *S, double m, int n, double rnorm) */
/* norm_Q_n_psi makes multiplication of any power of */
/* Q== gamma5*D_W, initial vector S, final R, finally the */
/* vector R is multiplied by a factor rnorm^n */
/* |R>=rnorm^n Q^n |S> */
void norm_Q_n_psi(spinor * const R, spinor * const S,
const int n, const double rnorm) {
int i;
double npar = 1.;
spinor *aux;
aux=lock_Dov_WS_spinor(1);
assign(aux, S, VOLUME);
for(i=0; i < n; i++){
D_psi(R, aux);
/* Term -1-s is done in D_psi! does this comment make sense for HMC? */
gamma5(aux, R, VOLUME);
npar *= rnorm;
}
mul_r(R, npar, aux, VOLUME);
unlock_Dov_WS_spinor(1);
return;
}
void Q_over_sqrt_Q_sqr(spinor * const R, double * const c,
const int n, spinor * const S,
const double rnorm, const double minev) {
int j;
double fact1, fact2, temp1, temp2, temp3, temp4, maxev, tnorm;
spinor *sv, *d, *dd, *aux, *aux3;
double ap_eps_sq = 0.;
sv=lock_Dov_WS_spinor(2);
d=lock_Dov_WS_spinor(3);
dd=lock_Dov_WS_spinor(4);
aux=lock_Dov_WS_spinor(5);
aux3=lock_Dov_WS_spinor(6);
eigenvalues_for_cg_computed = no_eigenvalues - 1;
if(eigenvalues_for_cg_computed < 0) eigenvalues_for_cg_computed = 0;
maxev=1.0;
fact1=4/(maxev-minev);
fact2=-2*(maxev+minev)/(maxev-minev);
zero_spinor_field(d, VOLUME);
zero_spinor_field(dd, VOLUME);
if(1) assign_sub_lowest_eigenvalues(aux3, S, no_eigenvalues-1, VOLUME);
else assign(aux3, S, VOLUME);
/* Check whether switch for adaptive precision is on */
/* this might be implemented again in the future */
/* Use the 'old' version using Clenshaw's recursion for the
Chebysheff polynomial
*/
if(1) {
for (j = n-1; j >= 1; j--) {
assign(sv, d, VOLUME);
if ((j%10) == 0 ) {
assign_sub_lowest_eigenvalues(aux, d, no_eigenvalues-1, VOLUME);
}
else {
assign(aux, d, VOLUME);
}
norm_Q_sqr_psi(R, aux, rnorm);
temp1=-1.0;
temp2=c[j];
assign_mul_add_mul_add_mul_add_mul_r(d, R, dd, aux3, fact2, fact1, temp1, temp2, VOLUME);
assign(dd, sv, VOLUME);
}
if(1) assign_sub_lowest_eigenvalues(R, d, no_eigenvalues-1, VOLUME);
else assign(R, d, VOLUME);
norm_Q_sqr_psi(aux, R, rnorm);
temp1=-1.0;
temp2=c[0]/2.;
temp3=fact1/2.;
temp4=fact2/2.;
assign_mul_add_mul_add_mul_add_mul_r(aux, d, dd, aux3, temp3, temp4, temp1, temp2, VOLUME);
norm_Q_n_psi(R, aux, 1, rnorm);
}
else {
/* Use the adaptive precision version using the forward recursion
for the Chebysheff polynomial
*/
/* d = T_0(Q^2) */
assign(d, aux3, VOLUME);
/* dd = T_1(Q^2) */
norm_Q_sqr_psi(dd, d, rnorm);
temp3 = fact1/2.;
temp4 = fact2/2.;
assign_mul_add_mul_r(dd, d, temp3, temp4, VOLUME);
/* r = c_1 T_1(Q^2) + 1./2 c_0 */
temp1 = c[1];
temp2 = c[0]/2.;
mul_add_mul_r(R, dd, d, temp1, temp2, VOLUME);
temp1=-1.0;
for (j = 2; j <= n-1; j++) {
/* aux = T_j(Q^2) = 2 Q^2 T_{j-1}(Q^2) - T_{j-2}(Q^2) */
norm_Q_sqr_psi(aux, dd, rnorm);
assign_mul_add_mul_add_mul_r(aux, dd, d, fact1, fact2, temp1, VOLUME);
/* r = r + c_j T_j(Q^2) */
temp2 = c[j];
assign_add_mul_r(R, aux, temp2, VOLUME);
/* The stoppping criterio tnorm = |T_j(Q^2)| */
tnorm = square_norm(aux, VOLUME, 1) * temp2 * temp2;
/*
auxnorm=square_norm(R);
if(g_proc_id == g_stdio_proc){printf("j= %d\t|c T|^2= %g\t c_j= %g\t|r|^2= %g\n",j,tnorm,temp2,auxnorm); fflush( stdout);};
*/
if(tnorm < ap_eps_sq) break;
/* d = T_{j-1}(Q^2) */
assign(d, dd, VOLUME);
/* dd = T_{j}(Q^2) */
assign(dd, aux, VOLUME);
}
if(g_proc_id == g_stdio_proc && g_debug_level > 0) {
printf("Order of Chebysheff approximation = %d\n",j);
fflush( stdout);
}
/* r = Q r */
assign(aux, R, VOLUME);
norm_Q_n_psi(R, aux, 1, rnorm);
}
/* add in piece from projected subspace */
addproj_q_invsqrt(R, S, no_eigenvalues-1, VOLUME);
unlock_Dov_WS_spinor(2);
unlock_Dov_WS_spinor(3);
unlock_Dov_WS_spinor(4);
unlock_Dov_WS_spinor(5);
unlock_Dov_WS_spinor(6);
return;
}
void CheckApproximation(spinor * const P, spinor * const S) {
spinor *s, *s_;
static int n_cheby = 0;
static int rec_coefs = 1;
ov_s = 0.5*(1./g_kappa - 8.) - 1.;
if(n_cheby != ov_n_cheby || rec_coefs) {
calculateOverlapPolynomial();
n_cheby = ov_n_cheby;
rec_coefs = 0;
}
s_ = calloc(VOLUMEPLUSRAND+1, sizeof(spinor));
#if (defined SSE3 || defined SSE2 || defined SSE)
s = (spinor*)(((unsigned long int)(s_)+ALIGN_BASE)&~ALIGN_BASE);
#else
s = s_;
#endif
Q_over_sqrt_Q_sqr(s, ov_cheby_coef, ov_n_cheby, S, ev_qnorm, ev_minev);
Q_over_sqrt_Q_sqr(P, ov_cheby_coef, ov_n_cheby, s, ev_qnorm, ev_minev);
free(s);
return;
}