-
Notifications
You must be signed in to change notification settings - Fork 0
/
genre_classification_MLP.py
106 lines (80 loc) · 3.36 KB
/
genre_classification_MLP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import os
import json
import numpy as np
from sklearn.model_selection import train_test_split
import tensorflow.keras as keras
from tensorflow.python.keras.backend import sparse_categorical_crossentropy
import matplotlib.pyplot as plt
from tensorflow.python.keras.layers.core import Dropout
DATASET_PATH = "data.json"
def load_data(dataset_path):
with open(dataset_path, "r") as fp:
data = json.load(fp)
# convert list into numpy array
inputs = np.array(data["mfcc"])
targets = np.array(data["labels"])
return inputs, targets
def plot_history(history):
fig, axs = plt.subplots(2)
# accuracy subplot
axs[0].plot(history.history["accuracy"], label="MLP Train Accuracy")
axs[0].plot(history.history["val_accuracy"], label="MLP Test Accuracy")
axs[0].set_ylabel("Accuracy")
axs[0].legend(loc="lower right")
axs[0].set_title("Accuracy Evaluation")
axs[1].plot(history.history["loss"], label="MLP Train Error")
axs[1].plot(history.history["val_loss"], label="MLP Test Error")
axs[1].set_ylabel("Error")
axs[1].set_xlabel("Epoch")
axs[1].legend(loc="upper right")
axs[1].set_title("Error Evaluation")
plt.show()
def predict(model, X, y):
X = X[np.newaxis, ...]
prediction = model.predict(X)
print("Prediction shape is: {}".format(prediction.shape))
predicted_index = np.argmax(prediction, axis=1)
print("Expected Index is {}, Predicted Index is {}".format(y, predicted_index))
if __name__ == "__main__":
# load data
inputs, targets = load_data(DATASET_PATH)
#print (inputs.shape)
# split the data into train and test data
inputs_train, inputs_test, targets_train, targets_test = train_test_split(inputs,
targets,
test_size=0.3)
# build the network architecture
model = keras.Sequential([
# input layer
keras.layers.Flatten(input_shape=(inputs.shape[1], inputs.shape[2])),
# first hidden layer
keras.layers.Dense(512, activation="relu",
kernel_regularizer=keras.regularizers.l2(0.001)),
keras.layers.Dropout(0.3),
# second hidden layer
keras.layers.Dense(256, activation="relu",
kernel_regularizer=keras.regularizers.l2(0.001)),
keras.layers.Dropout(0.3),
# third hidden layer
keras.layers.Dense(64, activation="relu",
kernel_regularizer=keras.regularizers.l2(0.001)),
keras.layers.Dropout(0.3),
# output layer
keras.layers.Dense(10, activation="softmax")
])
# compile the network
optimizer = keras.optimizers.Adam(learning_rate=0.0001)
model.compile(optimizer=optimizer,
loss=sparse_categorical_crossentropy, metrics=["accuracy"])
model.summary()
# train the network
history = model.fit(inputs_train, targets_train, validation_data=(inputs_test, targets_test), epochs=100,
batch_size=32)
test_error, test_accuracy = model.evaluate(
inputs_test, targets_test, verbose=1)
print("Accuracy on test set is {}".format(test_accuracy))
# Make prediction on a sample
X = inputs_test[50]
y = targets_test[50]
predict(model, X, y)
plot_history(history)